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We unveil a novel source of non-Markovianity for the dynamics of quantum systems, which
appears when the system does not explore the full set of dynamical trajectories in the interaction
with its environment. We term this e®ect non-Markovianity by undersampling and demonstrate
its appearance in the operation of an all-optical quantum simulator involving a polarization
qubit interacting with a dephasing °uctuating environment.
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1. Introduction

Non-Markovianity is a property of quantum dynamical maps which, loosely speak-
ing, should capture the appearance of memory e®ects in the evolution of open
quantum systems.1–3 Such e®ects can be traced back to a back°ow of information
from the environment to the system, and their appearance is closely connected to a
property of the dynamics known as divisibility.4–11 Lack of this property re°ects the
fact that knowledge of the system state at a given time is not enough to determine its
future evolution.

In those situations, where the open quantum system is coupled to a classical-like
°uctuating environment,12–15 the partial trace over the environment is usually
obtained by averaging the dynamics over the realizations of the stochastic process that

International Journal of Quantum Information
Vol. 15, No. 8 (2017) 1740009 (11 pages)
#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0219749917400093

1740009-1

In
t. 

J. 
Q

ua
nt

um
 In

fo
rm

. 2
01

7.
15

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

M
IL

A
N

 o
n 

02
/0

4/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0219749917400093


describes its classical °uctuations. On the other hand, the possible non-Markovianity
of the resulting dynamical map is not determined by the sole properties of the clas-
sical stochastic process. Rather, it results from an interplay between the structure of
the interaction Hamiltonian, the time scale of the classical environment and the
dimension of the open quantum system. In fact, a classical environment with °uc-
tuations described by a (classically) non-Markovian process may induce either a
Markovian or a non-Markovian quantum evolution, depending on the structure of
the interaction Hamiltonian.16,17

Having these considerations in mind, in this paper we discuss and unveil a novel
source of non-Markovianity for open quantum systems coupled to classical ¯elds,
which appears when the structure of the interaction does not allow the system to
explore the full set of realizations of the stochastic process. In this case, the reduced
dynamics of the open quantum system do not correspond to the averaging over the
stochastic ensemble, since the system is not actually sensing all the possible trajec-
tories of the environment. Rather, the average should be explicitly performed on the
actual trajectories and the resulting dynamical map may be non-Markovian also
when the ensemble-averaged one is Markovian.

We term this e®ect non-Markovianity by undersampling and demonstrate its
appearance in optical platforms, that is, for polarization qubit interacting with a
dephasing °uctuating environment. To this aim, we employ our recently developed
all-optical quantum simulator.18 In turn, our analysis may be considered as a
benchmark to assess the performances of quantum simulators involving sampling of
limited size.

It is worth noting that for open quantum systems subject to dephasing, an
e®ective description in terms of the coupling with a classical °uctuating ¯eld is always
viable.19–21 The explicit construction of the corresponding classical stochastic process
may indeed be obtained for a generic quantum environment.21 Non-Markovianity by
undersampling is thus expected to be a general feature, which is present in any
system interacting with a structured environment inducing a dephasing dynamics.
Besides, quantum environments may be described by classical ¯elds, at least in the
short-time limit, whenever global symmetries are available, leading to the de¯nition
of environmental operators that remain well de¯ned when the size of the environment
is increased.22

The paper is structured as follows: In Sec. 2 we introduce the model of the
dynamics, in Sec. 3 we brie°y describe the experimental setup and in Sec. 4 we
present the experimental results and their analysis. Section 5 concludes with ¯nal
remarks.

2. Model

Let us consider a single qubit interacting with a classical ¯eld via the (interaction)
Hamiltonian HI ¼ !ðtÞ"3, where !ðtÞ denotes a stochastic process describing the
°uctuating ¯eld and "3 is a Pauli matrix. The corresponding evolution operator is
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given by

UðtÞ ¼ exp $i

Z t

0
HIðsÞds

! "
¼ e$i’ðtÞ"3 ; ð1Þ

where the time-dependent phase is given by ’ðtÞ ¼
R t

0 !ðsÞds. If %0 denotes the initial
state of the qubit, the state at time t is obtained by averaging over the realizations of
the stochastic process, that is, the dynamical map corresponds to the ensemble
average

%ðtÞ ¼ EðtÞ½%0& ¼ hUðtÞ%0U †ðtÞi"; ð2Þ

where the functional integral

hf½!ðtÞ&i" ¼
Z

D½!ðtÞ&p½!ðtÞ&f½!ðtÞ& ð3Þ

is performed over all the possible trajectories of the stochastic process " ' !ðtÞ,
p½!ðtÞ& being its probability distribution and D½!ðtÞ& being the volume element of the
probability space. On the other hand, if the interaction between the system and its
environment is such that the number N of realizations is inherently small, then the
dynamical map corresponds to the average over the actual realizations, i.e.

%ðtÞ ¼ ENðtÞ½%0& ¼
1

N

X

k

e$i’kðtÞ"3%0e
i’kðtÞ"3 ; ð4Þ

where ’kðtÞ ¼
R t

0 !kðsÞds denotes the phase-shift originating from the speci¯c kth

realization of the process. Of course, if the number of realizations is large, we are back
to the ensemble average by the law of large numbers

ENðtÞ½%& ¼N!1E1ðtÞ½%& ' EðtÞ½%&: ð5Þ

The properties of the dynamical maps EN at ¯nite N may be di®erent from those of E
and, in particular, EN may be non-Markovian even if E is Markovian.

We perform simulations involving Gaussian noise and RTN, and we discuss the
non-Markovianity of the dynamics. For Gaussian noise, we choose a paradigmatic
example, the Ornstein–Uhlenbeck (OU) stochastic process,23 which has been widely
studied in the context of open quantum systems.17,20,24 Both OU noise and RTN are
characterized by an exponentially decaying correlation function, and hence by a
Lorentzian spectrum. The statistics of the two stochastic processes, however, is
completely di®erent. For the RTN, each realization !RTNðtÞ jumps randomly between
the two values (#, where # is a coupling constant, with a switching rate $. This
means that, after a time t, the number of jumps that have occurred follows a Poisson
distribution with parameter $t. Thus, in order to generate a sample of RTN noise, we
discretize time with steps of length %t and at each step we perform a jump with

probability %P ¼ 1$ e$$%t. The initial state of the noise is chosen randomly between
þ# and $#, with probability 50%.
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For the OU process, on the other hand, we have !OUðtÞ ¼ #BðtÞ, where BðtÞ
satis¯es the stochastic equation

Bðtþ %tÞ ¼ ð1$ 2$%tÞBðtÞ þ 2
ffiffiffi
$

p
dWðtÞ; ð6Þ

where dWðtÞ is a Wiener increment with zero mean and variance, "2 ¼ %t. For each
realization we impose the initial condition Bð0Þ ¼ 0. For both models, an exact
solution for Eq. (2) can be found.25,26 It reads

&ðtÞ ¼ 1

2
½1$GðtÞ&"3&0"3 þ

1

2
½1þGðtÞ&&0: ð7Þ

The function GðtÞ, known as the decoherence function, can be obtained analytically
for both noises. For RTN it reads

GRTN ¼ e$$tðcosh 'tþ '$1$ sinh 'tÞ; ð8Þ

where ' ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$ 2 $ 4# 2

p
. For the OU noise

GOU ¼ e$2# 2(ðtÞ; (ðtÞ ¼ 1

2$ 2
ðe$2$t þ 2$t$ 1Þ: ð9Þ

To work with adimensional units, in the following we rede¯ne t as #t and $ as $=#.
Among the di®erent criteria that have been devised to characterize the non-

Markovianity of a quantum map, we employ the one introduced by Breuer et al.,27

which links the presence of a back°ow of information from the environment to the
system to a temporary increase of the distinguishability among di®erent initial states
of the system evolved according to the same reduced dynamics. The distinguish-
ability between states is quanti¯ed by their trace distance, de¯ned as

DðtÞ ¼ 1

2
jj&1ðtÞ $ &2ðtÞjj1; ð10Þ

where we denote jjAjj1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffi
A†A

p
as the trace norm of the operator A. A map is non-

Markovian if there exists a pair of initial states &1ð0Þ; &2ð0Þ for which DðtÞ is not
monotonically decreasing in time.

In Ref. 27, a measure N is introduced in order to quantify the degree of non-
Markovianity. It is de¯ned as the time integral of the derivative of the trace distance
on the time intervals where it is increasing, that is

N ðEÞ ¼ 1

2
max
ð&1;&2Þ

Z 1

0
ð _D12ðtÞ þ j _D12ðtÞjÞdt; ð11Þ

where

_D12ðtÞ ¼
d

dt
Dð&1ðtÞ; &2ðtÞÞ; ð12Þ

and the maximization is over all possible pairs of initial states of the dynamics. N ðEÞ
is clearly zero if the map E is Markovian, and it is greater the more the trace distance
deviates for a monotonically decreasing behavior.

M. A. C. Rossi et al.
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For single-qubit dephasing channels as in Eq. (7), the optimal pair of states to

witness non-Markovianity is known to be the pair j(i ¼ ðjHi( jV iÞ=
ffiffiffi
2

p
.3 The trace

distance between these two states is Dð&þðtÞ; &$ðtÞÞ ¼ jGðtÞj, where &( ¼ j(ih(j.
Thus, a non-monotonic behavior of the decoherence function GðtÞ is a necessary and
su±cient condition for the non-Markovianity of the channel. Starting from the above
formula for Dð&þðtÞ; &$ðtÞÞ, it is clear that the dephasing map induced by the
Gaussian stochastic process is Markovian, as (ðtÞ is a monotonically increasing
function of t, while RTN gives a non-Markovian map for $ < 2.25 But if the dynamics
of the qubit is given by a ¯nite number of realizations of the stochastic process,
Eq. (4), then the above conclusions are no longer valid.

3. Experimental Apparatus

In order to demonstrate the non-Markovianity by undersampling, we exploit our
recently developed quantum simulator.18 This simulator can perform the evaluation
of Eq. (4) using the polarization of a single photon as a qubit and exploiting its
spectral components to average over the realizations of the stochastic dynamics. In
particular, we consider the qubit a®ected by dephasing driven either by Gaussian
noise or non-Gaussian random-telegraph noise (RTN). These are interesting exam-
ples since, in both cases, the ensemble average of Eq. (2) may be performed analyt-
ically and it is known that Gaussian noise is leading to a Markovian map, whereas

Fig. 1. Schematic diagram of our setup. The pump is a 405.5 nm laser diode; a couple of frequency-
entangled photons is generated via parametric down-conversion (PDC) through a BBO, Beta barium
borate nonlinear crystal; one photon is sent via a multi-mode ¯ber (MMF) to the single-photon detector
D2. The other is sent through a single-spatial-mode and polarization preserving ¯ber (SMF) to the 4F
system. The 4F system is composed of two di®raction gratings G1-G2, two lenses L1-L2, a half-wave plate
H1 that prepares the photon in the initial state jþi, the spatial light modulator (SLM), and a tomographic
apparatus T, made of a quarter-wave plate, a half-wave plate and a polarizer. The photon is then sent
through a MMF to the single-photon detector D1. Finally, an electronic device measures the coincidence
counts (CC) and sends them to the computer (PC).

Non-Markovianity by undersampling in quantum optical simulators
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RTN noise may originate both Markovian and non-Markovian maps depending on
the values of its switching rate.25

Our experimental setup is sketched in Fig. 1 and described in detail in Ref. 18.
Frequency-entangled photon pairs are generated by parametric down-conversion
(PDC) and then collected by two ¯ber couplers. The idler photon is detected after
traveling through a multimode ¯ber (MMF). The signal photon enters a 4F system
and is then coupled to a MMF and reaches the single photon detector. Coincidence
counts with the idler photon are then detected. The key ingredient of the simulator is
a spatial light modulator (SLM), placed on the Fourier plane between the two lenses
L1 and L2 of the 4F system. The SLM is a 1D liquid crystal mask (640 pixels) used to
introduce a di®erent phase (externally controlled by the PC) to each pixel. The PDC
spectrum, selected with a rectangular pro¯le through a slit, hits 64 pixels. A phase
’kðtÞ is assigned to each group of pixels, implementing the simulation of the
dynamical map in Eq. (4). The average over the realizations of the noise is thus
performed by (coherently) collecting the di®erent spatial components through the
lens L2 and the grating G2 into a MMF. The state reconstruction is performed by the
tomographic apparatus T placed between the SLM and the L2 lens.

4. Results

With the apparatus described above, we simulated the interaction of the qubit,
initially prepared in the state jþi, with RTN and OU noise, with $ ¼ 4. For $ ¼ 4,
the RTN is in the fast regime and thus for both kinds of noise the dynamics is
Markovian when considering the ensemble average, Eq. (2). To perform the simu-
lation, we discretize the time interval f0; t1; . . . ; tng (with step #t ¼ 0:001) and
generate on a computer the required number of realizations of each type of noise

!kðtiÞ. Then for each output time step ti, the accumulated phases ’kðtiÞ ¼
R ti
0 !kðtÞdt

are encoded in blocks of adjacent pixels in order to use the maximum number of
available pixels. A photon initially prepared in the jþi state is sent through the SLM
and its state is then reconstructed via a tomography, with four projective measure-
ments.28–31 The acquisition time is 10 s.

From the o®-diagonal element of the density matrix we can obtain the deco-
herence function GðtÞ and hence the optimal trace distance. The appropriate cor-
rections are implemented to take into account imperfections in the experimental
apparatus. The initial state of the photon is not exactly &þ, but rather a combination
with the maximally mixed state:

&0;exp ¼ p&þ þ ð1$ pÞI=2; ð13Þ

where I is the identity operator and p * 0:98.
The results are summarized in Fig. 2, which shows the evolution of the trace

distance as a function of time for the two noises, comparing experimental data
(points) with a simulation (solid, shaded lines) and with the analytical solution of the

M. A. C. Rossi et al.
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ensemble-averaged map, Eq. (2). From top to bottom, the number of realizations of
the noise that are simulated in the SLM increases. We clearly see that the trace
distance has revivals, thus witnessing the non-Markovianity of the quantum evolu-
tion. The behavior of the map is similar between the two kinds of noise. The lower the
number of realizations, the more pronounced are the revivals. For 64 realizations of
the noise, the evolution of the trace distance is close to the ensemble-averaged map.

We now seek to ¯nd a relation between the non-Markovianity of the quantum
map of Eq. (4) and the number N of trajectories that build up the map. A quanti-
tative analysis must rely on a measure of the degree of non-Markovianity of the
dynamics. We employ the one introduced in Eq. (11), based on the back°ow of
information from the environment to the system, using the pair of optimal initial
states ðjþi; j$iÞ. The results are presented in Fig. 3. The map ENðtÞ depends on the

actual realizations of the noise and thus we consider the average N of the non-
Markovianity measureN over a large number of repetitions of the experiment. In the

left panel, N is presented as a function of the number of realizations N of the noise,
for both OU and RTN. We can see that it decreases monotonically with N, although
the functional dependence is not trivial. On the right panel, the probability density
function of N for di®erent simulation is presented for three di®erent values of N ,
showing that, with increasing N , the distribution gets more peaked around the

average N .
From the above considerations a question arises on whether we may link the non-

Markovianity of the map EN to its distance from the asymptotic one E1. As we will
see, this is indeed the case. As a measure of the distinguishability, we employ the
in¯delity

#N ' #NðEN ; E1Þ ¼ 1$ F ðEN ; E1Þ; ð14Þ

where the ¯delity F ðEN ; E1Þ between channels is de¯ned as the state ¯delity between
the Choi–Jamiołkowski (CJ) states of the two channels.32 Given the maximally

entangled state between the qubit and an ancilla, j$i ¼ ðj00iþ j11iÞ=
ffiffiffi
2

p
, the CJ

state of a map E is &E ¼ ðI+ EÞðj$ih$jÞ. After a straightforward calculation, we then
obtain the in¯delity between the channels E1ðtÞ and ENðtÞ (for the sake of simplicity
we drop the explicit dependence on t of G and GN):

#NðtÞ ¼
1

2
½1$GRe½GN & $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG2 $ 1ÞðjGN j2 $ 1Þ

q
&; ð15Þ

where GN ¼ he$2i’kiN . Note that in the limit N ! 1 we have GN ! G and, thus,
#NðtÞ ! 0.

The map ENðtÞ depends on the actual realizations of the noise and thus we con-

sider the average FN ðtÞ of the ¯delity over a large number of repetitions of the
experiment. The left panel of Fig. 4 shows the in¯delity#N for particular realizations
of the experiment with a low number of trajectories of the noise, while the right panel
shows the same quantity averaged over a high number of repetitions. From the latter,
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we can see that the average in¯delity #N , starting from zero, reaches a value that is
constant in time and depends on the number of trajectories of the noise.

We have then investigated the dependence of this value on N and its connection
with the non-Markovianity. The results are presented in Fig. 5, where the average

over time of #N is shown as a function of N, for the OU noise and RTN, averaged
over time. The in¯delity decreases with N as does the non-Markovianity (cf. Fig. 3).
The right panel clearly shows that there is a monotonic dependence of the non-
Markovianity measure on the average in¯delity between the undersampled channel
and the ensemble-averaged one.
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Fig. 2. Evolution of the trace distance with time for the OU noise (left) and RTN (right) for 2, 16 and 64
realizations of the noise (from top to bottom), with $ ¼ 4. The points represent experimental data, while
the solid curve is the simulated trajectory. For comparison, the dynamics resulting from the ensemble-
averaged noise is shown with the black dashed line. The trace distance has revivals that are more pro-
nounced for lower numbers of realizations. This is a clear signature of the non-Markovianity of the map, in
contrast with the analytical solution of Eq. (7) that shows a monotonic behavior.

M. A. C. Rossi et al.

1740009-8

In
t. 

J. 
Q

ua
nt

um
 In

fo
rm

. 2
01

7.
15

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

M
IL

A
N

 o
n 

02
/0

4/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Fig. 4. (Color online) In the left panel, in¯delity #N as a function of time for N ¼ 2 (blue), N ¼ 16
(orange), N ¼ 64 (green) for OU noise. In the right panel the same quantity, averaged over 5,000 repe-
titions of the experiment, for (top to bottom) 2, 10, 20, 50, 100 and 200 trajectories of the noise. We can see
that the average ¯delity saturates to a constant value that depends on N.

Fig. 3. (Color online) Left panel: Average non-Markovianity N on the time interval t 2 ½0; 8&, obtained
by repeating the simulation 5,000 times, as a function of the number of realizationsN of the noise. The solid
blue line is for the OU noise, the dashed orange line is for the RTN. Right panel: the distribution of the
values of N for the OU noise, for the number of realizations of Fig. 2: N ¼ 2 (blue), N ¼ 16 (orange),
N ¼ 64 (green).

Fig. 5. (Color online) Left panel: Log–log plot of the average over 5,000 repetitions of the time averaged

in¯delity #N , as a function of the realizations of the noise for the OU (solid blue) and RTN (dashed
orange). As the number of trajectories increases, the in¯delity vanishes, as does the BLP measure of non-

Markovianity. Right panel: Average BLP measure of non-Markovianity N as a function of the average

in¯delity #N . Note the monotonic, although nontrivial relation between the two quantities.
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5. Conclusions

In this paper, we have introduced, demonstrated and discussed non-Markovianity by
undersampling, a phenomenon which appears in the dynamics of quantum systems
interacting with structured environments, when the system does not explore the full
set of dynamical trajectories. We have demonstrated experimentally its appearance
using an all-optical quantum simulator built with a polarization qubit interacting
with a dephasing °uctuating environment. Our results clearly indicate that non-
Markovianity is quantitatively linked to the in¯delity between the undersampled
channel and the ensemble-averaged asymptotic one.

Our results pave the way for a deeper understanding of the origin of non-Markovianity
in dephasing quantum channels and represent a benchmark to assess the performances
of quantum simulators involving sampling of limited size.
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