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We introduce a measure to quantify the non-Gaussian character of a quantum state: the quantum relative
entropy between the state under examination and a reference Gaussian state. We analyze in detail the properties
of our measure and illustrate its relationships with relevant quantities in quantum information such as the
Holevo bound and the conditional entropy; in particular, a necessary condition for the Gaussian character of a
quantum channel is also derived. The evolution of non-Gaussianity is analyzed for quantum states undergoing
conditional Gaussification toward twin beams and de-Gaussification driven by Kerr interaction. Our analysis
allows us to assess non-Gaussianity as a resource for quantum information and, in turn, to evaluate the
performance of Gaussification and de-Gaussification protocols.
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The use of Gaussian states and operations allows the
implementation of relevant quantum-information protocols
including teleportation, dense coding, and quantum cloning
#1$. Indeed, the Gaussian sector of the Hilbert space plays a
crucial role in quantum information processing with continu-
ous variables !CVs", especially concerning quantum-optical
implementations #2$. On the other hand, quantum-
information protocols required for long-distance communica-
tion as, for example, entanglement distillation and entangle-
ment swapping, require non-Gaussian operations #3$. In
addition, it has been demonstrated that using non-Gaussian
states and operations teleportation #4–6$ and cloning #7$ of
quantum states may be improved. Indeed, de-Gaussification
protocols for single-mode and two-mode states have been
proposed #4–6,8,9$ and realized #10$. From a more theoreti-
cal point of view, it should be noticed that any strongly su-
peradditive and continuous functional is minimized, at fixed
covariance matrix !CM", by Gaussian states. This is crucial
to prove extremality of Gaussian states and Gaussian opera-
tions #11,12$ for various quantities such as channel capacities
#13$, multipartite entanglement measures #14$, and distillable
secret keys in quantum key distribution protocols. Overall,
non-Gaussianity !nG" appears to be a resource for CV quan-
tum information and a question naturally arises as to whether
a convenient measure to quantify the non-Gaussian character
of a quantum state may be introduced. Notice that the notion
of nG already appeared in classical statistics in the frame-
work of independent component analysis #15$.

The first measure of nG of a CV state ! was suggested in
#16$ based on the Hilbert-Schmidt distance between ! and a
reference Gaussian state. In turn, the HS-based measure has
been used to characterize the role of nG as a resource for
teleportation #17,18$ and in promiscuous quantum correla-
tions in CV systems #19$. Here we introduce a measure "#!$
based on the quantum relative entropy between ! and a ref-
erence Gaussian state. This quantity is related to information
measures and allows us to assess nG as a resource for quan-
tum information as well as the performances of Gaussifica-
tion and de-Gaussification protocols. In the following, after
introducing its formal definition and showing that it can be

easily computed for any state, either single-mode or multi-
mode, we analyze in detail the properties of "#!$ as well as
its dynamics under Gaussification #29$ and de-Gaussification
protocols.

Let us consider a CV system made of d bosonic modes
described by the mode operators ak, k=1, . . . ,d, with com-
mutation relations #ak ,aj

†$="kj. A quantum state ! of d
bosonic modes is fully described by its characteristic func-
tion ##!$!!"=Tr#!D!!"$ where D!!"= !k=1

d Dk!$k" is the
d-mode displacement operator, with != !$1 , . . . ,$d"T, $k!C,
and where Dk!$k"=exp!$kak

†−$k
*ak" is the single-mode dis-

placement operator. The canonical operators are given by
qk= !ak+ak

†" /%2 and pk= !ak−ak
†" /%2i with commutation re-

lations given by #qj , pk$= i" jk. Upon introducing the vector
R= !q1 , p1 , . . . ,qd , pd"T, the CM "&"#!$ and the vector of
mean values X&X#!$ of a quantum state ! are defined as
%kj =

1
2 'RkRj +RjRk(− 'Rj('Rk( and Xj = 'Rj(, where 'O(

=Tr!!O" is the expectation value of the operator O. A quan-
tum state !G is said to be Gaussian if its characteristic func-
tion is Gaussian, that is, ##!G$!#"=exp!− 1

2#T"#+XT#",
where # is the real vector #
= !Re $1 , Im $1 , . . . ,Re $d , Im $d"T. Once the CM and the
vectors of mean values are given, a Gaussian state is fully
determined. For a system of d bosonic modes the most gen-
eral Gaussian state is described by d!2d+3" independent
parameters.

The von Neumann entropy of a quantum state is defined
as S!!"=−Tr!! ln !". The von Neumann entropy is non-
negative and equals zero if and only if ! is a pure state. In
order to quantify the non-Gaussian character of a quantum
state ! we employ the quantum relative entropy !QRE"
S!! )&"=Tr#!!ln !− ln &"$ between ! and a reference Gauss-
ian state &. As for its classical counterpart, the Kullback-
Leibler divergence, it can be demonstrated that 0'S!! )&"
() when it is definite, i.e., when supp !$ supp &. In par-
ticular S!! )&"=0 if and only if !&&. This quantity, though
not defining a proper metric in the Hilbert space, has been
widely used in different fields of quantum information as a
measure of statistical distinguishability for quantum states
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#20,21$. Therefore, given a quantum state ! with finite first
and second moments, we define its nG as "#!$=S!! )&",
where the reference state & is the Gaussian state with X#!$
=X#&$ and "#!$="#&$, i.e., the Gaussian state with the same
CM " and the same vector X of the state !. Finally, since &
is Gaussian, then ln & is a polynomial operator of the second
order in the canonical variables which, together with the fact
that & and * have the same CM, leads to Tr#!&−!"ln &$=0
#22$, i.e., S!! )&"=S!&"−S!!". Thus we have

"#!$ = S!&" − S!!" , !1"

i.e., nG is the difference between the von Neumann entropies
of & and !. In turn, several properties of the non-Gaussian
measure "#!$ may be derived from the fundamental proper-
ties of the QRE #20,21$. In the following we summarize the
relevant ones by the following lemmas.

Lemma 1. "#!$ is a well-defined non-negative quantity,
that is, 0'"#!$() and "#!$=0 if and only if ! is a Gauss-
ian state.

Proof. Non-negativity is guaranteed by the non-negativity
of the quantum relative entropy. Moreover, if "#!$=0 then
!=& and thus it is a Gaussian state. If ! is a Gaussian state,
then it is uniquely identified by its first and second moments
and thus the reference Gaussian state & is given by &=!,
which, in turn, leads to "#!$=S!! )&"=0.

Lemma 2. "#!$ is a continuous functional.
Proof. It follows from the continuity of trace operation

and QRE.
Lemma 3. "#!$ is additive for factorized states:

"#!1 ! !2$="#!1$+"#!2$. As a corollary we have that if
!2 is a Gaussian state, then "#!$="#!1$.

Proof. The overall reference Gaussian state is the tensor
product of the relative reference Gaussian states, &=&1 ! &2.
The lemma thus follows from the additivity of QRE and the
corollary from Lemma 1.

Lemma 4. For a set of states *!k+ having the same first and
second moments, then nG is a convex functional, that is,
"#,kpk!k$',kpk"#!i$, with ,kpk=1.

Proof. The states !k, having the same first and second
moments, have the same reference Gaussian state & which in
turn is the reference Gaussian state of the convex combina-
tion !=,kpk!k. Since conditional entropy S!! )&" is a jointly
convex functional with respect to both states, we have
"#,kpk!k$=S!,kpk!k )&"',kpkS!!k )&"=,kpk"#!k$. "

Notice that, in general, nG is not convex, as may easily be
proved upon considering the convex combination of two
Gaussian states with different parameters.

Lemma 5. If Ub is a unitary evolution corresponding to a
symplectic transformation in the phase space, i.e., if Ub
=exp!−iH" with H at most bilinear in the field operator, then
"#Ub!Ub

†$="#!$.
Proof. Let us consider !!=Ub!Ub

†, where U is at most
bilinear in the field mode; then its CM transforms as "#!!$
=+"#!$+T, + being the symplectic transformation associ-
ated with U. At the same time the vector of mean values
simply translates to X!=X+X0. Since any Gaussian state is
fully characterized by its first and second moments, then the
reference state must necessarily transform as &!=Ub&Ub

†, i.e.,
with the same unitary transformation U. The lemma follows

from invariance of QRE under unitary transformations.
Lemma 6. nG monotonically decreases under a partial

trace, that is, "[TrB#!$]'"#!$.
Proof. Let us consider !!=TrB#!$. Its CM is the subma-

trix of "#!$ and its first moment vector is the subvector of
X#!$ corresponding to the relevant Hilbert space. As before,
also the new reference Gaussian state must necessarily trans-
form as &!=TrB#&$. The QRE monotonically decreases under
a partial trace and the lemma is proved.

Lemma 7. nG monotonically decreases under Gaussian
quantum channels, that is, "#EG!!"$'"#!$.

Proof. Any Gaussian quantum channel can be written as
EG!!"=TrE#Ub!! ! &E"Ub

†$, where Ub is a unitary operation
corresponding to a Hamiltonian at most bilinear in the field
modes and where &E is a Gaussian state #23$. Then, by using
Lemmas 3, 5, and 6 we obtain "#EG!!"$'"#Ub!! ! &E"Ub

†$
="#!$. "

In turn, Lemma 7 provides a necessary condition for a
channel to be Gaussian: given a quantum channel E, and a
generic quantum state !, if the inequality "#E!!"$'"#!$ is
not satisfied, the channel is non-Gaussian.

Let us now consider a single-mode !d=1" system and
look for states with the maximum amount of nG at fixed
average number of photons N= 'a†a(. Since "#!$=S!&"
−S!!", we have to maximize S!&" and, at the same time,
minimize S!!". For a single-mode system the most general
Gaussian state can be written as !G
=D!,"S!-".!nt"S†!-"D†!,", D!," being the displacement op-
erator, S!-"=exp! 1

2-a†2− 1
2-*a2" the squeezing operator, , ,-

!C, and .!nt"= !1+nt"−1#nt / !1+nt"$a†a a thermal state with
nt average number of photons. Displacement and squeezing
applied to thermal states increase the overall energy, while
entropy is an increasing monotonic function of the number of
thermal photons nt and is invariant under unitary operations;
thus, at fixed energy, S!&" is maximized for &=.!N". There-
fore, the state with the maximum amount of nG must be a
pure state #in order to have S!!"=0$ with the same CM "
= !N+ 1

2 "I of the thermal state .!N". These properties indi-
viduate the superpositions of Fock states -/N(=,k,k-n+ lk(
where n00, lk01k−1+3 or lk=0, with the constraint N
= 'a†a(, i.e., n+,k-,k-2lk=N= *det "#.!N"$+1/2− 1

2 . These rep-
resent maximally non-Gaussian states, and include Fock
states -/N(= -N( as a special case. Let us consider now
d-mode quantum states with fixed average number of pho-
tons ,k=1

d Tr!ak
†ak!"=N=,knk. In this case also maximally

non-Gaussian states are pure states; the CM being equal to
that of a multimode classical state &=R!k.!mk"R†, ,kmk
=N, where we denote by R a generic set of symplectic pas-
sive operations !e.g., beam splitter evolution" which do not
increase the energy. In order to maximize S!&"
=,kS(.!mk") we have to choose mk=N /d for every k, as, for
example, factorized states of the form -1N(= -/N/d(!d, whose
reference Gaussian states are &= #.!N /d"$!d, are maximally
non-Gaussian states at fixed N. Of course for the multimode
case there are other more complicated classes of maximally
non-Gaussian states that include also entangled pure states.
Finally, we observe that the maximum value of nG is a
monotonically increasing function of the number of photons
N.
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Gaussian states are extremal for several functionals in
quantum information #11$. In the following we consider two
relevant examples, and show how extremality properties may
be quantified by the non-Gaussian measure "#!$. Let us first
consider a generic communication channel where the letters
from an alphabet are encoded onto a set of quantum states !k
with probabilities pk. The Holevo bound represents the upper
bound to the accessible information, and is defined as #!!"
=S!!"−,kpkS!!k" where !=,kpk!k is the overall ensemble
sent through the channel. Upon fixing the CM !and the first
moments" of !, we rewrite the Holevo bound as #!!"
=S!&"−"#!$−,kpkS!!k", where & is the Gaussian reference
of !. This highlights the role of the nG "#!$ of the overall
state in determining the amount of accessible information: at
fixed CM the most convenient encoding corresponds to a set
of pure states !k, S!!k"=0, forming an overall Gaussian en-
semble with the largest entropy. In other words, at fixed CM,
we achieve the maximum value of # upon encoding encod-
ing symbols onto the eigenstates of the corresponding Gauss-
ian state #24$. If the alphabet is encoded onto the eigenstates
of a given state !, we have #!!"=S!&"−"#!$. This suggests
an operational interpretation of nG "#!$ as the loss of infor-
mation we get by encoding symbols on the eigenstates of !
rather than on those of its reference Gaussian state.

Let us now consider the state !AB describing two quantum
systems A and B and define the conditional entropy
S!A -B"=S!!AB"−S!!B". Let us fix the CM of !AB and thus
also that of !B, and consider the reference Gaussian states
&AB and &B. We may write S!A -B"=SG!A -B"− !"#!AB$
−"#!B$" where SG!A -B"=S!&AB"−S!&B", i.e., the condi-
tional entropy evaluated for the reference Gaussian states &AB
and &B. Then, upon using Lemma 6 we have "#!AB$−"#!B$
00 and thus S!A -B"'SG!A -B", i.e., the maximum of con-
ditional entropy at fixed CM is achieved by Gaussian states.
In classical information theory the conditional entropy
H!X -Y"=H!X ,Y"−H!Y", where von Neumann entropies are
replaced by Shannon entropies of classical probability distri-
butions, is a positive quantity and may be interpreted #25$ as
the amount of partial information that Alice must send to
Bob so that he gains full knowledge of X given his previous
knowledge from Y. When quantum systems are involved the
conditional entropy may be negative, negativity being a suf-
ficient condition for the entanglement of the overall state
!AB. This negative information may be seen as follows #26$
for a discrete variable quantum system. Given an unknown
quantum state distributed over two systems, we can discrimi-
nate between two different cases. If S!A -B"00, as in the
classical case, it gives the amount of information that Alice
should send to Bob to give him the full knowledge of the
overall state !AB. When S!A -B"(0 Alice does not need to
send any information to Bob, and moreover they gain
−S!A -B" ebits. If we conjecture that this interpretation can
be extended to the CV case, the relation S!A -B"'SG!A -B"
ensures that, at fixed CM, non-Gaussian states always per-
form better: Alice needs to send less information, or, for
negative values of the conditional entropy, more entangle-
ment is gained. Moreover, since negativity of conditional
entropy is a sufficient condition for entanglement #27$, we
have that for any given bipartite quantum state !AB, if the
conditional entropy of the reference Gaussian state &AB is

negative, then !AB is an entangled state. Though being a
weaker condition than the negativity of S!A -B", this is a
simple and easily computable test for entanglement which is
equivalent to evaluating the symplectic eigenvalues #28$ of
the involved Gaussian states.

Since the amount of nG of a state affects its performance
in quantum-information protocols a question naturally arises
as to whether this may be engineered or modified at will. As
concerns Gaussification, Lemma 7 assures that Gaussian
maps do not increase nG. In turn, the simplest example of a
Gaussification map is provided by dissipation in a thermal
bath #16$, which follows from bilinear interactions between
the systems under investigation and the environment. On the
other hand, a conditional iterative Gaussification protocol
has been recently proposed #29$ which cannnot be reduced to
a trace-preserving Gaussian quantum map. It requires only
the use of passive elements and on-off photodetectors. Given
a bipartite pure state in the Schmidt form, -/!k"(
=,n=0

) ,n,n
!k" -n ,n(, the state at the !k+1"th step of the protocol

has the same Schmidt form as ,n,n
!k+1"=2−n,r=0

n ! n
r ",r,r

!k",n−r,n−r
!i" .

We have considered the initial non-Gaussian superposition
-/!0"(= !1+$2"−1/2!-0,0(+$-1,1(" which is asymptotically
driven toward the Gaussian twin-beam state -/(
=%1−$2,n=0

) $n-n ,n(. We have evaluated the nG at any step
of the protocol, for every value of $.

The results are reported in Fig. 1. For the first steps, the
nG decreases monotonically for almost all values of $ !only
at the third step, for $.1, is the state more non-Gaussian
than at the previous steps". Notice that with increase of the
number of steps the nG may also increase, e.g., for $.1, "
reaches very high values and the maximum value increases.
On the other hand, the overall effectiveness of the protocol is
confirmed by our analysis, since the range of values of $ for
which ".0 increases at each step of the protocol. In other
words, though not being a proper Gaussian map, the condi-
tional protocol of #29$ indeed provides an effective Gaussi-
fication procedure.

Conditional de-Gaussification procedures have been re-
cently proposed and demonstrated #5,6,8,10$. Here we rather
consider the unitary de-Gaussification evolution provided by
self-Kerr interaction U2=exp#−i2!a†a"2$ #30,31$, which does
not correspond to a symplectic transformation and leads to a
non-Gaussian state even if applied to a Gaussian state. We
have evaluated the nG of the state obtained from a coherent
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FIG. 1. nG after some steps of the conditional Gaussification
protocol of Ref. #29$ considering as the initial state the non-
Gaussian superposition -/!0"(= !1+$2"−1/2!-0,0(+$-1,1(". !Left"
black solid line, initial state; black dashed line, step 1; gray solid
line, step 2; gray dashed line, step 3. !Right" Black solid line, initial
state; black dashed line step 5; gray solid line, step 10; gray dashed
line, step 20.
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state -,( undergoing Kerr interaction. The results are re-
ported in Fig. 2 as a function of the average number of pho-
tons !up to 109 photons" and for different values of the cou-
pling constant 2. As is apparent from the plot, nG is an
increasing function of the number of photons and the Kerr
coupling 2. For 2.10−2, the maximum nG achievable at
fixed energy is quite rapidly achieved. For more realistic
values of the nonlinear coupling, i.e., 2'10−6, non-Gaussian
states may be obtained only for a large average number of
photons in the output state. In fact, to obtain entanglement,
experimental realizations #30,31$ involve pulses with an av-
erage number of the order of 108 photons, which are needed
to compensate the almost vanishingly small Kerr nonlineari-
ties of standard glass fiber.

We finally notice that a good measure for the non-
Gaussian character of quantum states allows us to define a
measure of the non-Gaussian character of a quantum opera-
tion. Let us denote by G the whole set of Gaussian states. A
convenient definition for the nG of a map E reads "#E$
=max!!G"#E!!"$, where E!!" denotes the quantum state ob-
tained after the evolution imposed by the map.

In conclusion, we have introduced a measure to quantify
the non-Gaussian character of a CV quantum state based on
quantum relative entropy. We have analyzed in detail the
properties owned by this measure and its relation with some
relevant quantities in quantum information. In particular, a
necessary condition for the Gaussian character of a quantum
channel and a sufficient condition for entanglement of bipar-
tite quantum states can be derived. Our measure is easily
computable for any CV state and allows us to assess nG as a
resource for quantum technology. In turn, we exploited our
measure to evaluate the performances of conditional Gaussi-
fication toward twin-beam and de-Gaussification processes
driven by Kerr interaction.
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FIG. 2. nG of coherent states undergoing Kerr interaction as a
function of the average number of photons and for different values
of the coupling constant 2. Black dashed line, 2=10−2; black dotted
line, 2=10−4; solid black line, 2=10−6. The gray solid line is the
maximum nG at fixed number of photons.
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