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Abstract. A two-step interaction scheme involvingχ(2) andχ(3) nonlinear media is
suggested for the generation of Schrödinger cat-like states of a single-mode optical field. In
the first step, a weak coherent signal undergoes a self-Kerr phase modulation in aχ(3) crystal,
leading to a Kerrkitten, namely a microscopic superposition of two coherent states with
opposite phases. In the second step, such a Kerr kitten enters aχ(2) crystal and, in turn, plays
the role of a quantum seed for stimulated phase-sensitive amplification. The output state in
the above-threshold regime consists in a quantum superposition of mesoscopically
distinguishable squeezed states, i.e. an optical cat-like state. The whole setup does not rely on
conditional measurements, and is robust against decoherence, as only weak signals interact
with the Kerr medium.
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1. Introduction

One of the most striking features of quantum mechanics
is perhaps the superposition principle. According to this
principle, we cannot speak of an objective state of a
physical system prior to a measurement. Rather, we
should admit that a quantum system may be described
as a superposition of classically (mesoscopically or
macroscopically) distinguishable states. Such kind of states
are often called Schrödinger cat states, following the original
gedankenexperiment to obtain a superposition of a live and
a dead cat [1].

Many proposals have been made for the generation of
Schr̈odinger cat-like states in different systems. Among
these, we mention vibrating molecules or crystals [2, 3],
trapped ions [4] and Bose condensates [5]. Experimental
realization of cat-like states has been reported in the case of
trapped ions [6].

A number of schemes have also been suggested with
the aim of generatingoptical Schr̈odinger cats, namely
superpositions of mesoscopically distinguishable states of
the radiation field [7,8]. Among these, we mention schemes
based on conditional measurements performed on entangled
states [10–13], nonlinear birefringence [14], or on self-Kerr
phase modulation taking place inχ(3) nonlinear crystals

[15,16]. In the framework of cavity QED, it has been shown
that conditional measurement on atoms exiting a high-Q
cavity may force, in a cat-like state, the radiation inside the
cavity [10]. The state collapse due to photodetection has also
been suggested as a source of cat-like states, both in a back-
action evading scheme [11], and on a mode exiting a beam
splitter fed by a squeezed vacuum state [13,17].

Among these proposals, interaction schemes based on
the Kerr effect have a specific advantage: they do not rely
on conditional measurements. Actually, Kerr-based schemes
were suggested earlier for the generation of cat states [15].
In a Kerr medium, the state evolution is governed by the
interaction Hamiltonian

ĤK = λ(a†a)2, (1)

whereλ is a coupling constant proportional to the nonlinear
susceptibility of the medium. A coherent input signal|α〉
evolves according to|ψc〉 = exp{−iĤKt}|α〉, so that for a
time interaction equal tot = π/(2λ) the output state is given
by

|ψc〉 = 1√
2

[e−iπ/4|α〉 + eiπ/4| − α〉]

= 1√
2

[e−iπ/4D̂(α) + eiπ/4D̂(−α)]|0〉, (2)
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Figure 1. Schematic diagram of the scheme suggested for the
generation of optical Schrödinger cat-like states. A strong
coherent signal, provided by a stable laser source, impinges onto
the nearly transparent beam splitter BS. As a result, the main part
of the signal remains untouched, and continues, after frequency
doubling (SHG), to form the pumping mode of the DOPA. The
second output from the beam splitter BS consists of a very weak
coherent signal, which interacts with the Kerr medium and evolves
to a superposition of coherent states. Such a microscopic
superposition enters the DOPA, and it is amplified to a
superposition of mesoscopically distinguishable states.

D̂(α) = exp{αa† − ᾱa} being the displacement operator.
The state in equation (2) describes a superposition of two
coherent states with opposite phases. As far as|α| becomes
a large quantity the two components become mesoscopically
distinguishable states of the radiation field. Unfortunately,
realistic values of Kerr nonlinear susceptibilities are quite
small, thus requiring a long interaction time, or equivalently
a large interaction length. As a consequence, losses become
significant, and the resulting decoherence [18–21] may
destroy the quantum superposition in equation (2). For these
reasons, Kerr-based schemes are not generally considered to
be realistic [8]. However, as will be shown in section 2,
in the case of weak input signals the effects of losses are
not so critical, and the output state approaches the ideal
superposition of equation (2). In this case, the superposition
is only microscopic (Kerrkitten), as the two components
cannot be considered classically distinguishable. However,
such a Kerr kitten may serve as a quantum seed [9],
which leads to a Schrödinger cat-like state after suitable
amplification.

In this paper, we pursue this idea and consider the
setup depicted in figure 1: a nearly transparent beam splitter
is fed by a strong coherent signal provided by a stable
laser source. After the beam splitter the main part of the
signal remains untouched, and continues, after doubling of
frequency, to form the pumping mode of a degenerate optical
parametric amplifier (DOPA). The other output from the
beam splitter consists of a very weak coherent signal, which
is allowed to interact with the Kerr medium, thus evolving
to a superposition of coherent states. Such a microscopic
superposition enters the DOPA, and it is amplified to
a superposition of mesoscopically distinguishable states,
namely a Schr̈odinger cat-like state. As we will show in the
following, the whole scheme is robust against decoherence.
This is due mainly to the fact that only a weak signal
interacts with the Kerr medium, and, correspondingly, only
a microscopic superposition stimulates the amplification
process.

The paper is structured as follows: in the next section
the dynamics of a Kerr medium in presence of losses is
analysed, and its effectiveness in producing a Kerr kitten
is demonstrated. In section 3 we study the phase-sensitive

amplification of a Kerr kitten by DOPA. Effects of losses
are taken into account, and the appearance of cat-like states
at the output is demonstrated. In section 4 we consider the
amplification of the actual Kerr output (which slightly differs
from an ideal kitten), and we prove that the treatment of
section 3 provides a reliable description of the amplification
process. Section 5 closes the paper by summarizing the
results.

2. Kerr interaction with weak signal

The dynamics of a Kerr medium in the presence of losses is
governed by the master equation

d%̂

dt
= −i[ĤK, %̂] + 0[a%̂a†− 1

2a
†a%̂ − 1

2 %̂a
†a], (3)

whereĤK is the interaction Hamiltonian of equation (1), and
0 denotes the damping rate of the optical cavity. In terms of
the Fock matrix elements%p,q = 〈p|%̂|q〉 equation (3) can
be re-expressed as follows:

%̇p,q = −i
λ

0
(p2 − q2)%p,q +

√
(1 +p)(1 +q)%1+p,1+q

− 1
2(p + q)%p,q, (4)

where the overdot denotes the derivative with respect to the
rescaled timeτ = 0t . We solve equation (4) with the signal
initially in a coherent state%0 = |α〉〈α|, and look for a
solution of the form

%p,q(τ ) = αpᾱq√
p!q!

Ap,q(τ ). (5)

Inserting equation (5) in (4) we arrive at the following
equation:

Ȧp,q(τ ) = − 1
2(p + q)1Ap,q(τ ) + |α|2A1+p,1+q(τ ), (6)

which should be solved with the initial conditionAp,q(0) =
exp{−|α|2}, and where1 is given by

1 = 1 +
2iλ

0
(p − q). (7)

Equation (6) suggests a solution of the form

Ap,q(τ ) = exp{− 1
2(p + q)1τ − |α|2Bp,q(τ )}, (8)

whereBp,q(τ ) only depends on the differencep − q. By
substituting equation (8) into (6) we arrive at the simple
relation Ḃp,q(τ ) = − exp{−1τ }, which, with the initial
conditionBp,q(0) = 1, leads to the solution

Bp,q(τ ) = 1

1
(e−1τ − 1) + 1, (9)

and thus

Ap,q(τ ) = exp

{
−1

2
(p + q)1τ − |α|2

[
1− 1− e−1τ

1

]}
.

(10)
Finally, the matrix elements are obtained by substitution of
equation (10) into equation (5).
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Figure 2. The fidelityF(τ ) as a function of the rescaled timeτ and for a ratio between nonlinear coupling and loss parameter equal to
λ/0 = 10. In (a), (b) and (c) we show the fidelity for the initial coherent amplitude equal to|α| = 1, 2, 3, respectively. In (d) we show the
maximum fidelity as a function of the amplitude of the input signal.

This solution should be compared with the ideal cat state
ν̂ = |ψc〉〈ψc| of equation (2), whose density matrix elements
are given by

νn,m = 1

2
e−|α|

2 αnᾱm√
n!m!

[1 + i(−1)n][1 − i(−1)m]. (11)

In order to make such a comparison, we consider the fidelity

F(τ ) = Tr{%̂(τ )ν̂} = 〈ψc|%̂(τ )|ψc〉, (12)

between the ideal ‘cat’ density matrix and the state coming
from realistic evolution. The fidelity ranges from zero to
unity asν̂ actually describes a pure state.

In figure 2 we show the behaviour ofF(τ ) as a function
of the rescaled timeτ for realistic values of the loss parameter
and nonlinear coupling, and for different values of the initial
coherent amplitude. The fidelity oscillates as a function of
τ , and the maximumFM individuates the optimal working
regime for the generation of superpositions. The value
of FM decreases as a function of the input amplitudeα,
approximately asFM ' exp{−|α|2/8}, so thatFM > 0.95
only for |α| 6 1. This means that cat states of the form
(2) can be reliably generated only for weak signals at the
input, namely that the Kerr interaction can be successfully
employed to produce the optical kitten, i.e. superposition of
weakly excited coherent states. It should also be mentioned
that the Kerr effect is inherently a weak process. Therefore,
in order to make it appreciable in the quantum limit of weak
coherent signals, short pulses should be used.

3. Phase-sensitive amplification of a Kerr kitten

A DOPA consists of aχ(2) nonlinear optical crystal cut
for type-I phase matching. The crystal couples a signal
modea, at frequencyωa, with a pump modec at double
frequencyωc = 2ωa. Each photon in the pump mode

produces a photon pair in the signal mode, thus leading to
phase-sensitive amplification, sub-Poissonian statistics, and
squeezing [22]. In the rotating wave approximation, and
under phase-matching conditions, the effective Hamiltonian
of a DOPA can be written as

ĤS = 1
2λ(z̄a

†2 + za2), (13)

λ being a coupling constant proportional to the nonlinear
susceptibility, andz the amplitude of the pump mode. The
evolution operatorÛS = exp{−iĤSt} coincides with the
squeezing operator̂S(ζ ) = exp{ 12(ζ 2a†2) − ζ̄ 2a2}, where
ζ = √λ|z|τei(π−φz)/2; φz being the phase of the pumping
mode.

Let us consider the DOPA fed by the Kerr kitten exiting
the χ(3) medium. The output state from the DOPA can
be easily evaluated by means of equation (2) and using the
following formula for squeezing and displacement operators:

Ŝ(ζ )D̂(α) = D̂(µα + νᾱ)Ŝ(ζ )

µ = cosh|ζ |, ν = sinh|ζ |e2i argζ .
(14)

In particular, as both signal and pump mode originated from
the same source, we can take bothζ = r andα = x0 as real
numbers. In this case the output state is given by

|ψout〉 = 1√
2
Ŝ(r)[e−iπ/4D̂(x0) + eiπ/4D̂(−x0)]|0〉

= 1√
2

[e−iπ/4|x0er , r〉 + eiπ/4| − x0er , r〉], (15)

|α, r〉 = D̂(α)Ŝ(r)|0〉 being a squeezed coherent state
of amplitude α and squeezing parameterr. Besides
squeezing, the DOPA amplifies the coherent amplitude of
the two components by the relevant factor er , making them
mesoscopically distinguishable. Therefore, the state in
equation (15) approaches a cat-like state of a single-mode
radiation field in the limit of large amplification gain.
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In order to also prove the effectiveness of the process
in realistic situations, we proceed by taking into account the
effect of losses. In this case, the dynamics of the DOPA
is governed by a master equation of the form (3), withĤK
replaced byĤS . Such an equation can be converted into a
Fokker–Planck differential equation for the Wigner function
of the signal mode, which is defined as follows:

W(x, y) =
∫
R

dµ
∫
R

dν exp{−2i(νx−µy)}Tr{%̂D̂(µ+iν)}.
(16)

Using the differential representation of all the operators in (3),
the Fokker–Planck equation forW(x, y) reads as follows:

∂τWτ (x, y) = [ 1
8∂

2
xx + 1

8∂
2
yy +γx∂xx+γy∂yy]Wτ(x, y), (17)

where differentiation is with respect to the rescaled time
τ = 0t , and the quantitiesγx andγy are given by (κ = λ|z|)

γx = 1

2

(
1− 2κ

0

)
, γy = 1

2

(
1 +

2κ

0

)
. (18)

The solution of equation (17) can be written as

Wτ(x, y) =
∫
R

dx ′
∫
R

dy ′W0(x
′, y ′)Gτ (x|x ′)Gτ (y|y ′),

(19)
whereW0(x, y) is the Wigner function of the input signal,
and the Green functionsGτ(xj |x ′j ), j = x, y are given by

Gτ(xj |x ′j ) =
1√

2πσ 2
j

exp

[
− (xj − x

′
je
−γj τ )2

2σ 2
j

]
(20)

σ 2
j =

1

8γj
[1− exp(−2γj τ )]. (21)

The initial Wigner function, corresponding to the Kerr kitten,
is given by

W0(x, y) = 1

π
e−2y2

[e−2(x−x0)
2

+ e−2(x+x0)
2

−2e−2x2
sin(4x0y)], (22)

whereas the evolute Wigner function at timeτ is obtained
through equation (19). After a tedious but straightforward
integration one has

Wτ(x, y) = 1

2

exp
{
− y2

262
y

}
√

2π62
y

×
exp

{
− (x−x0e−γx τ )2

262
x

}
√

2π62
x

+
exp

{
− (x+x0e−γx τ )2

262
x

}
√

2π62
x

− 2
exp

{
− x2

262
x

}
√

2π62
x

exp

{
−2x2

0

σ 2
y

62
y

}
sin

(
x0y

62
y

e−γyτ
) ,

(23)

where the62
j , j = x, y are given by

62
x = σ 2

x +
1

4
e−2γxτ = 1

8γx

[
2κ

0
e−2γxτ − 1

]
62
y = σ 2

y +
1

4
e−2γyτ = 1

8γy

[
2κ

0
e−2γyτ + 1

]
.

(24)

Figure 3. Contour plot of the factorO = exp(−γyτ )/62
y in the

oscillatory term of the Wigner function as a function of the
interaction timeτ and the amplifier gain 2κ. Bothτ andκ are in
units of cavity dampingγ . The factorO increases withκ and
decreases withτ , whereas the region of maximum values is
approximately located aroundτ ∼ (2κ)−1.

The evolute Wigner function in equation (23) should be
compared with the ideal oneW0(xe−r , yer ), corresponding
to amplification without losses, i.e. to the quantum
superposition|ψout〉 in equation (15). Such a comparison
deserves some comments. Formally, in the limit 2κ/0 �
1, when the DOPA works well above threshold,Wτ(x, y)

approachesW0(xe−r , yer ). However, such a requirement
is not sufficient from the physical point of view, as the
further requirement of a short interaction time should also be
fulfilled. This is in order for two reasons. On the one hand,
one should avoid saturation effects and, on the other hand,
the interaction time should match the duration of the input
pulse. As already mentioned, the kitten pulses coming from
theχ(3) medium are unavoidably short, in order to make Kerr
interaction appreciable in the quantum limit of weak signals.
We estimate an effective value for the interaction time on
the basis of the following argument. The quantum features
that make the output signal distinguishable from a statistical
mixture are governed by the oscillatory term in the Wigner
function (23). In turn, such a term consists of two factors.
The damping factor exp(−2x2

0σ
2
y /6

2
y) varies monotonically

with κ and τ , rapidly approaching the saturation value
exp(−4x2

0). On the other hand, the oscillations depend
on the factorO = exp(−γyτ)/62

y which modulates the
argument of the sine function. The behaviour of such a
factor as a function ofκ and τ is shown in figure 3: the
maximum value at fixed gain is obtained forτ ∼ (2κ)−1,
which represents an optimized choice for the time interaction.
The same condition qualitatively states how far the state
can be amplified without destroying its quantum features.
Remarkably, the dependence ofO on the interaction time is
not dramatic. Therefore, a slightly larger interaction time
does not substantially modify the picture, while allowing for
amplification of the two components to mesoscopic scale.

4. Phase-sensitive amplification of the Kerr output

In the previous section we demonstrated the appearance
of cat-like states at the output of a DOPA fed by a Kerr
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kitten. However, one should take into account that the output
from the Kerr medium, and thus the input for the DOPA, is
actually described by the density matrix of equations (5) and
(10), which may slightly differ from the ideal Kerr kitten of
equation (2). Although for small amplitude the two states are
very close, as proved in section 2, one may still argue that the
amplification via the DOPA could make this small difference
significant. The purpose of this section is to prove that this
is not actually the case, and that the solution of the previous
section reliably describes the dynamics of the proposed setup.
Indeed, we will prove that the system is not hyper-sensitive
to the initial condition, i.e. it does not exhibit any chaotic-like
behaviour.

For sake of convenience, let us slightly change our
notation and denote byW c

τ (x, y) the Wigner function of
equation (23), namely the Wigner function of the output state
from the DOPA, as obtained by evolving the ideal Kerr kitten
of equation (2). Analogously, we denote byW k

τ (x, y) the
Wigner function of the output state obtained by evolving the
real output from the Kerr medium, which may be expressed
as

W k
τ (x, y) =

∫
R

dx ′
∫
R

dy ′W k
0 (x
′, y ′)Gτ (x|x ′)Gτ (y|y ′),

(25)
whereW k

0 (x
′, y ′) is the Wigner function of the state exiting

the Kerr medium. We compare the two output in term of their
fidelityFτ , which, in turn, may be expressed in terms of their
Wigner functions

Fτ =
∫
R

dx
∫
R

dy W c
τ (x, y)W

k
τ (x, y). (26)

Inserting equations (19) and (25) into equation (26) we have

Fτ =
∫
R

dx1

∫
R

dy1

∫
R

dx2

∫
R

dy2W
c
0(x1, y1)

×W k
0 (x2, y2)Kτ (x1, x2)Kτ (y1, y2), (27)

where

Kτ(x1, x2) =
∫
R

dx Gτ (x|x1)Gτ (x|x2)

= 1√
4πσ 2

x

exp

{
− (x1− x2)

2

4σ 2
x eγxτ

}
(28)

Kτ(y1, y2) =
∫
R

dy Gτ (y|y1)Gτ (y|y2)

= 1√
4πσ 2

y

exp

{
− (y1− y2)

2

4σ 2
y eγyτ

}
. (29)

By separating the integral over thex1, y1 variables we may
write

Fτ =
∫
R

dx2

∫
R

dy2W
k
0 (x2, y2)Hτ (x1, x2), (30)

where

Hτ(x2, y2) =
∫
R

dx1

∫
R

dy1W
c
0(x1, y1)

×Kτ(x1, x2)Kτ (y1, y2). (31)

In the regime of short interaction time, we have

Kτ(x1, x2) ' 1

πτ
exp

{
− (x1− x2)2

τ

}
Kτ(y1, y2) ' 1

πτ
exp

{
− (y1− y2)2

τ

}
,

(32)

such that, using equations (22) and (32), we have

Hτ(x2, y2) = 1

π(2τ + 1)
e−

2y2
2

2τ+1

×
[
exp

(
−2(x2 − x0)

2

2τ + 1

)
+ exp

(
−2(x2 + x0)

2

2τ + 1

)
− 2 exp

(
−−4x2

0τ

2τ + 1

)
exp

(
− 2x2

2

2τ + 1

)
sin

(
4x0y2

2τ + 1

)]
= W c

0(x2, y2) +
∂Hτ (x2, y2)

∂τ

∣∣∣∣
τ=0

τ + O[τ 2]. (33)

Finally, upon inserting equation (33) into (30) we arrive at

Fτ = F0 + τK + O[τ 2], (34)

whereF0 is the fidelity between the two inputs (very close to
unity, as proved in section 2) andK is a bounded constant†.
Equation (34) shows that the departure from the initial fidelity
is linear in the interaction time, and thus negligible in the
relevant working regime pertaining to the scheme.

5. Summary

In this paper we have suggested a two-step scheme, involving
self-Kerr phase modulation and phase-sensitive parametric
amplification, in order to generate cat-like states of a single-
mode optical field. In the first step a weak coherent signal
passes through a Kerr medium, leading to a superposition
of weakly excited coherent states. The small amplitude
of the signal assures that decoherence does not play a
significant role. On the other hand, as the Kerr effect is
inherently a weak process, this also requires one to work
with short pulses. The Kerr kitten is then used to stimulate
phase sensitive amplification in a DOPA, such that the
output state approaches a superposition of mesoscopically
distinguishable squeezed coherent states, i.e. a cat-like
state of radiation field. Also, this second step is robust
against decoherence, provided the amplifier operates in the
above-threshold regime with a short interaction time. An
effective value for the interaction time has been obtained by
maximizing the oscillatory term in the Wigner function.
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† By expandingHτ (x2, y2) for small interaction time we have

K =
∫
R

dx2

∫
R

dy2W
k
0 (x2, y2)

∂Hτ (x2, y2)

∂τ

∣∣∣∣
τ=0

.
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