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Abstract 

We analyze the detection of the phase of a single mode of the field with respect to a local oscillator, with the aim of 
optimizing the sensitivity as a function of the radiation intensity. We found that ideal scaling of sensitivity versus input 
energy is achieved for the open double homodyne detector in the limit of unit quantum efficiency. 

1. Introdwtion 

Despite the problem of phase detection having a long history, only recently it has been applied to actually 
feasible phase-detectors (see for example Refs. [ 1,2], and references therein). The relevance of the topic lies 
in the possibility of interferometric detection of minute variations of environmental parameters through the 
induced phase shift on the incident light beam. The optimization of such measurements versus the radiation 
intensity is of interest, because back-action effects due to radiation pressure pose severe limits to the energy 
carried by the input field. 

The most appropriate approach to describe phase detection in the quantum domain is the quantum estimation 
theory of Helstrom [ 31. The detection apparatus is described by means of a probability operator measure 
(POM) dp( 4) , which provides the probability distribution of the phase outcomes for the field in the state p 
according to the formula 

dP(#) =‘Ww%4d>l . ($1 

Actually, every POM corresponds to a conventional observable which acts on a larger Hilbert space describing 
also the apparatus degrees of freedom. At a purely abstract level the quantum estimation theory provides the 
following POM for an ideal apparatus, 

(2) 

The best r.m.s. sensitivity 64 in this case is achieved by weakly squeezed states [2], giving the ultimate 
quantum limit 
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Fig. 1. Outline of the double homodyne detector (closed scheme), 

Fig. 2. Equivalent scheme for a photodetector with quantum efficiency 17 < 1. 
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(3) 

The ideal apparatus does not correspond to any feasible detection scheme. Therefore, the problem of optimizing 
phase detection is twofold. On the one hand, feasible detection schemes have to be devised, and their instrumental 
POM evaluated. On the other hand, optimal states have to be sought, in order to establish the ultimate sensitivity 
of each considered scheme. We consider that in any feasible detection, the phase corresponds to the polar angle 
between two measured photocurrents, say Zi and 22, which, in turn, trace two conjugated field-quadratures, say 
aa = ;(a++~) and a,/2 = ii(a + - a). This is a consequence of the circular topology of the phase itself which, 
despite being a single bounded real parameter, nonetheless needs the specification of a pair of real quantities 
[ 41. Detection of a couple of quadratures can be achieved by means of a double homodyne detector. The 
outcomes of the detector are points distributed in the complex plane cy = Zr + iZ2 G pe’4 and the marginal 
distribution integrated over radius is the desired phase probability. 

In Section 2 we analyze the joint measurement of conjugated quadratures, which is experimentally achieved by 
a double homodyne detector in the closed scheme (see Fig. 1). For a quantum efficiency r] of the photodetectors 
this scheme measures the Wigner function ’ W I_2,r-~(cr,6), and thus in the limit of VJ = 1 it corresponds to 
a measurement of the Husimi distribution function W-t (cy, &) [ 51. This distribution is positive definite, and 
hence its marginal distribution defines a genuine phase probability for any quantum state of radiation. However, 
phase sensitivity is nonideal, and is bounded by SC#J N ii- 2/3 For rl < 1 the phase distribution becomes broader, . 

with a corresponding degradation of sensitivity. The latter is again described by the same power law dependence, 
however with a greater multiplicative constant factor. The optimal states are weakly squeezed coherent states, 
with a squeezing fraction which is an increasing function of 7. 

’ The generalized Wigner distribution function W, ( P, 6) in the phase space is defined as W,( a, 5) = s d2Aexp(aX - GA 

+$sJAJ*) Tr[pexp(ha+ - Xa)J/n-*. 
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Fig. 3. Outline of the double homodyne detector (open scheme). 

In Section 3 the double-homodyne scheme is considered in its open version, corresponding to independent 
measurements of the two conjugated quadratures (see Fig. 3). The apparatus now detects the Wigner function 
Wr_+ (LY, Ly), but only when the inputs are in a coherent or squeezed state, The phase sensitivity is improved, 
corresponding to the bound 84 N ii-’ for 7 = 1. Hence, the open scheme reaches the ideal sensitivity for suited 
squeezed states and unit quantum efficiency. For nonunit quantum efficiency the detector measures a smoothed 
phase probability, which however, remains sharper than the corresponding one that is achieved by the closed 
scheme for the same v. Again the optimal states are weakly squeezed, with squeezing fraction increasing versus 
77. For v $ 0.5 the open scheme detects the same smoothed Wigner functions as in the closed scheme, and the 
same results are recovered. 

2. Double ~om~yne: dosed sebeme 

The double balanced homodyne detector provides a way for simultaneously measuring a couple of quadratures 
for one mode of the field. The schematic diagram of the set-up is reported in Fig. 1. There are four 50-50 
beam splitters and four photocounters, whereas a 7r/2 phase shifter is inserted in one arm. The mode carrying 
the measured phase is a, and a stable reference for the phase is provided by the local oscillator (LO) which 
is synchronous with a and is prepared in a highly excited coherent state 1.~). We consider the general case 
of nonunit quantum efficiency 7) < 1 at photodetectors [ 11, which can be simply represented as an additional 
beam splitter of transmissivity 7 in front of each detector (see Fig 2). Each experimental event consists of 
a simultaneous detection of the two difference-photocurrents Ii = q(n6 - ns) and ZZ = q(n4 - as), whose 
“reduced” versions Zt = Ii /r] 1.~ ( and Zz = 22/q Iz 1 trace a pair of field-quadratures. The reduced currents are 
expressed in terms of input field as follows, 

=2 = a4+=12 + U4+w/2 + t/c 1 - ?)/ri t W34+.,1/2 - W4#+,-#) , (4) 
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where wi (i = 1) 4) represent the additional vacuum modes simulating the efficiency of the ith photodetector. 
The POM of the apparatus is obtained upon tracing over the probe Hilbert space 7ip (including all vacuum 
modes plus the highly excited coherent LO), thus obtaining the operator which acts on the system space ‘Ns 
only, 

2 

d,+a,&) = -$ 
O” dh O” dv J J 27t ~TrdP~@lsex~[i~(I~ -Rea)+i~(~~-Imrw)l). 

--oo -CC 

After some calculations, and changing variables, A = $( ip - v), Eq. (5) can be rewritten as follows, 

(5) 

In Eq. (6) D(n) = exp( Auf - kz) is the displacement operator. For unit qu~tum efficiency Eq. (6) becomes 

whereas for 7) < 1 one obtains the Gaussian convolution of the POM for 77 = 1, 

(8) 

After tracing the detector POM with the density matrix of the detected field, one obtains the probability 
distribution of the outcomes of the apparatus, 

dP:(a,&) =Tr[pd&(cr,d)] = W,_2,r-1(~,C)$ . 

The phase-POM is just the marginal POM integrated over the modulus [(Y(, namely 

(9) 

00 

d&4’) = 2 
J J 

dp P 
d2/\. 
Texp[pe+ A - pe -3 A + ;( 1 - 277-‘)lh7]D(A) 

0 @ 

d# m =- 
2a c 

n,m=a 

eap[i(n _ *)cfi].~l”+~)/~ r(f(nn:my) + ‘)a*“(1 _ q)‘+“a” , 
. . 

which corresponds to the marginal phase distribution 

co 

The r.m.s. phase sensitivity is given by 

( 10) 

(11) 

(12) 
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and has to be optimized over all states with the constraints of fixed normalization and mean energy, namely 

Tr(p) = 1 , Tr(pn) = ii . (13) 

The case 9 = I has been already treated in Ref, [ 2 1, More generally, for 77 < 1 the phase sensitivity is given 
by the closed formula (states with zero mean phase have been chosen for simplicity) 

sf$~ = $2 + 2 c A~,~(~)~~.~ , (14) 
tz#m 

where A,,(q) is the real symmetric matrix (see also Ref. [ 61) 

For pure states pn,m = cncm with c,, E Rf, the minimization of (14) with constraints (13) is carried out by the 
method of Lagrange multipliers, which reduces the problem to that of minimizing the function 

F({c,);A,Blii)=~~+2CA,,,c,c,+A Fc2-1 
n+m 

(., n (16) 

with respect to the coefficients {c,), A and p being the Lagrange multipliers. The variational problem (16) is 
equivalent to the diagonalization of the quadratic symmetric form 

[M(P,rl) -+A11 -c=O, c z (C(),CI,...) , 

where now the matrix M(,% q) = {M,,,(~, 7)) is given by 

(17) 

Mn,m(p, rI) = 2AnmCvl) + M&m . (18) 

Eq. ( 17) can be solved numerically, after a suitable truncation of the Hilbert space dimension. One can see that 
the absolute minimum corresponds to the minimum eigenvalue A = id, whereas the average number A becomes 
a decreasing function of the running parameter /3 E [0, I J. In order to avoid the problem of nonvanishing tails 
of the number dis~ibution near the border of the truncated Hilbert space, we have considered only average 
values ii << dim ;Ft,/Z. 

The optimal states are weakly squeezed states, and the co~esponding lower bound for phase sensitivity is 
given by 

(19) 

where K( 71) runs from 1 .OO f 0.01 to 1.46 f 0.01 for 77 varying from ~7 = 1 .OO to Q = 0.5, In Fig. 4 we report 
the phase sensitivity and the squeezing fraction of the corresponding optimal states as a function of the average 
energy for various values of r]. 

3. Double homodyne: open scheme 

The double homodyne detector in its open scheme [7] is depicted in Fig. 3. The detector needs two identical 
input states, with a stable reference for the phase provided by a highly excited coherent local oscillator (LO). 
There are three beam splitters, four photodetectors, and a 7r/2 shifter inserted in one arm, such that the scheme 
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Fig. 4. Optimal phase sensitivity and corresponding fraction of squeezing photons (closed double homodyne detector) versus total average 
number of photons ii for different values of 7. (Notice that actually the log-log dependence of S& versus A is not perfectly linear: this 
small effect is due to truncation of the Hilbert space dimension. The power law in F!q. (19) corresponds to the maximum slope.) 

becomes equivalent to two independent single homodyne measurements - one with the LO shifted by 7r/2 - 

each working on a separate input (or, in other words, the scheme corresponds to two independent measurements 
of conjugated quadratures which are successively performed on a single input prepared twice in the same state 

p). In this case the reduced photocurrents are 

- = a4+n/2 + ‘&?r/2 + ~h%$+lr,2 - w4&r/2) , (20) 

with the same meaning of the wi as for Eq. (4). Due to the independence between photocurrents, the POM of 
the apparatus is calculated as follows, 

d/_$(a,ii) = $ m dp 

s 
GTTp{pP @ 1s cxp[icL(Zl - Rea)l} 

M dv 

s 
~“%{pP @ lsexp[iv(& - Ima>]) 

--m --M 
(21) 

and, following the lines of the previous section, one obtains 

d&a,cu) = d2a Re A)o o(Re AI 8 I Im h/2 ,,/2(Im Al . (22) 

In Eq. (22) Ix)& represents the eigenvector of the quadrature a4, namely 

Ix)+ = (2/r) l/4 e-x2 O3 H”MX) _’ 

c n=O &g e ‘nd 14. (23) 

The probability distribution of the detector is now obtained by tracing the POM with the two identical density 
matrices of the input fields 
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Fig. 5. Optimal phase sensitivity and corresponding fraction of squeezing photons (open double homodyne detector) versus total average 
number of photons ii for different values of v. (The same comments of Fig. 4 hold. Here, notice also that the weak curvature of the log-log 
plot 84: versus R is negative only for T = 1.) 

dPf(cu,&) =Tr[p@p dp;(ac,fi)l . (24) 

For input states which are coherent or squeezed, the probability given by Eq. (24) coincides with the Wigner 
function for v = 1, whereas it is a Gaussian convolution of the Wigner function for q < 1 [ 81. The states 
should be squeezed in the direction of one of the two quadratures, corresponding to a real squeezing parameter. 
In this case, in fact, the Wigner function is factorized into the product of the two independent probabilities of 
the quadratures. More generally, for r) < 1, the Gaussian convolution is a generalized Wigner function with 
ordering parameter s = 1 - q-t, Choosing for simplicity states with zero mean phase (namely with real positive 
amplitude /3) one has 

W,(a,i?) = 
1 (Rea - /3)2 (Imcu)2 

2gfl1 so-2s 2& -r’ > 
s=l-l/77, (25) 

where the variances gis are 

af, = $(e2r --s) , c& = $ (e-2r --s) . 

The marginal phase probability is given by 

P,“(4) = 
1 

4?TCQfT&K(4) exp 

(26) 

&Z 

1 +eA(+) dm(l + $ / dt e-“)] , (27) 

0 

where 

X4) = 
(ii - sinh2 r)~-& 

2a:, f @;, + 4, tan2 4) ’ 
(28) 

(29) 
1 

K(4) = 5 
cos2 4 + sin2 4 
- - 

6 & 
. 
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Fig. 6. Exponent y of phase sensitivity S#,, - ii-7 versus quantum efkiency of photodet~to~. 

The phase sensitivity is optimized numerically by varying the fraction of squeezing photons ii, at fixed total 
average photon number ii. The optimal SC#J versus ii is plotted in Fig. 5 for different values of 7, giving also 
the corresponding optimal fraction fi,/ii of squeezing photons. The phase sensitivity obeys the power law 

sqq N fi-Y(V) , 

where the exponent y versus v is plotted in Fig. 6. For decreasing ~7 the sensitivity is degraded: one has 
approximately y N 1 - ?,rG for q > 0.5, whereas for 7 < 0.5 one has y 2~ 3 (with small variations) 
similar to the exponent pertaining the closed scheme. Only a few percent of squeezing photons are needed 
for optimal sensitivity, and less squeezing photons for less efficient detectors. The best ~nsitivity is obviously 
attained for unit qu~tum efficiency. In this case the power law is given by 

(31) 

Eq. (31) differs from the ultimate sensitivity (3) by a factor two. 
Before ending this section some remarks on the probability of the currents of the open scheme are in order. 

We have seen that for 77 = 1 the probability is the Wigner function of the field when input states are squeezed in 
the direction of one of the two quadratures. This is due to the special analytic form of the Wigner function for 
these states, which is factorized as the product of the two probabilities for each quadrature (for general input 
states this is no longer true, and the Wigner function is generally nonpositive definite). The marginal phase 
probability of the Wigner function can be sharper than the ideal one, but generally it is itself not positive definite. 
For squeezed states it is positive, and has a central peak which is sharper and n~ower than the co~esponding 
ideal one. The r.m.s. phase sensitivity, however, is larger than the ideal value, due to the enhanced tails of the 
distribution near the edges of the phase window: this mechanism is illustrated in Fig. 7. 

4. Conclusions 

We have analyzed the detection of the phase of a single mode of the field that corresponds to the polar 
angle between two real photocurrents. For double homodyne detectors the two photocurrents are proportional 
to a couple of conjugated quadratures of the field. We considered both the cases of joint measurements (closed 
scheme) and independent measurements (open scheme). For 7~ = 1 the former has a probability distribution 
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Fig. 7. Comparison between the marginal phase probability of the Wigner function and the ideal phase distribution for a squeezed state 
with amplitude (Y = 0.25 and squeezing factor r = 0.5. The solid line is the marginal Wigner distribution and the dotted one represents the 
ideal distribution. The central peak is sharper and narrower for the marginal Wigner distribution which, however, exhibits higher tails than 
the ideal dis~bution at the edges of the [ -R, ~1 phase window. 

equal to the Q-function, whereas the latter provides the Wigner function, but only for squeezed states with 
squeezing in the direction of one of the detected quadratures. For q < 1 the probabilities are Gaussian 
convoluted, corresponding to generalized Wigner functions, and resulting in an additional detection noise. 
The phase probability is the marginal distribution of the Wigner function. We optimized the phase sensitivity 
S+ for these probabiliti~ for fixed average photon number ji. We found that the open scheme (inde~ndent 
m~urements of the conjugated quadratures) achieves the best sensitivity, with the same power law 84 - ii-’ 
of ideal phase detection. This scheme of detection, however, works only for squezed states. On the other hand, 
the closed scheme (joint measurement) is a genuine phase detector - i.e. valid for any arbitrary input states, 
but has a sensitivity which is much degraded. The closed scheme does not reach the ideal power law even for 
T= 1, because for any v it has the corresponding sensitivity of the open scheme at 7,3/2: this “effective quantum 
efficiency” of the closed scheme is due to the added noise related to the joint me~urement of both quadratures 

191. 
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