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Abstract: Quantum secure direct communication (QSDC) is an evolving quantum communica-
tion framework based on transmitting secure information directly through a quantum channel,
without relying on key-based encryption such as in quantum key distribution (QKD). Optical
QSDC protocols, utilizing discrete and continuous variable encodings, show great promise for
future technological applications. We present the first table-top continuous-variable QSDC proof
of principle, analyzing its implementation and comparing the use of coherent against squeezed
light sources. A simple beam-splitter attack is analyzed by using Wyner wiretap channel theory.
Our study illustrates the advantage of squeezed states over coherent ones for enhanced security
and reliable communication in lossy and noisy channels. Our practical implementation, utilizing
mature telecom components, could foster secure quantum metropolitan networks compatible
with advanced multiplexing systems.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In response to the fundamental concern of security in information and communication systems,
quantum communication (QC) offers a solution based on quantum mechanical laws, e.g., the
no-cloning theorem, the uncertainty principle, and Bell’s theorem [1,2]. While quantum key
distribution (QKD) is an advanced information-security solution for private key negotiation
between legitimate parties over the quantum channel, quantum secure direct communication
(QSDC) is another advantageous QC approach, which was proposed in 2002 [3] to allow the
direct transmission of secret messages without setting up a private-key session beforehand
[2]. QSDC protocols are mainly categorized into entanglement-based (i.e., two-step [4]) and
single photon—based (such as the DL04 [5]) schemes. Also, a one-step QSDC approach based
on one round of signal distribution via hyperentanglement has been proposed [6]. Moreover,
measurement-device-independent protocols for QSDC have been developed, which can eliminate
the loopholes associated with imperfect measurement devices [7,8]. Even more, device-
independent QSDC protocols have been recently proposed to remove all possible attacks related
to imperfect devices [9—11]. The security proof of QSDC protocols has been presented for a
two-way protocol in noisy and lossy channels [12]. Additionally, the security of DL0O4 and
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entanglement-based QSDC protocols has been analyzed using Wyner’s wiretap channel theory,
and their secrecy capacity has been calculated [13,14]. More recently, in conditions compatible
with real-world experimental settings, the security of QSDC has also been numerically analyzed
by considering all practical imperfections, such as detector efficiency mismatch, side-channel
effect, and source imperfections [15].

Hitherto, QC schemes have been developed over optical fiber and free-space channels, based
on discrete-variable (DV) and continuous-variable (CV) systems. For DV systems, bits are
typically encoded on the discrete-valued parameter of photons (e.g. their polarization), and
single-photon detectors are employed. On the other hand, in CV approaches which were first
proposed by Ralph [16], information is encoded (as a Gaussian modulation or a discrete alphabet)
into the quadratures X; and X, of quantized electromagnetic fields, which can be accessed
through shot-noise-limited homodyne or heterodyne detection techniques. As their variance is
constrained by the uncertainty relation AX;AX, > 1/4, with coherent states being minimum
uncertainty states (i.e. AX; = AXp = 1/2), X; and X, cannot be simultaneously measured with
full accuracy for any given quantum state. Thus, the eavesdropper can’t read both quadratures
without degrading the state. CV methods benefit from their independence of single photon
sources and detectors, and their implementation with off-the-shelf components working at room
temperature. This affords exciting possibilities to develop robust metropolitan quantum networks
built upon mature technologies inherited from classical communications, hence promising
low-cost implementations [1,17,18]. Specifically, CV-QKD protocols have matured over the last
two decades from proof-of-concept laboratory experiments [19] to different stages of development
towards real-life implementations such as in-field demonstrations [20], network integrations
[18,21], and very long distance connections [22].

An important class of quantum optical resources that have been proposed for implementing
CV-QC protocols with higher security (than coherent states) are squeezed states, in which the noise
is reduced below the (vacuum) shot-noise along one of two orthogonal field quadratures (while
being greater than the shot-noise along the other quadrature, according to the uncertainty relation).
This anti-noise property thereby increases the precision of measurements along its orthogonal
direction. The reduction in noise is particularly advantageous for the legitimate receiver aware
of the squeezing direction [23-26]. Theoretically, squeezed-state CV configurations can be
more tolerant in purely lossy channels and enable enhanced robustness against highly noisy ones
[27,28]. These benefits were experimentally demonstrated [29,30], and composable security
was achieved for combining different cryptographic applications in a unified and systematic way
[31,32]. Furthermore, the advantages of CV protocols using squeezed states against different
kinds of attacks (individual, collective, and coherent) have been discussed in more detail in Refs.
[24,25,27-32].

QSDC has been successfully realized heretofore in DV encodings based on the DL04 [13,33-36]
and EPR [37,38] protocols in both free-space and optical fiber channels. Except for the latter
experimental realization [38], where quantum memories based on atomic ensembles have been
exploited, other works circumvented the quantum memory requirement by delaying the photonic
qubits using fiber coils. Recently, with an outlook to large-scale quantum communication
networks, the feasibility of a 15-user QSDC network has also been demonstrated [39]. Motivated
by the low cost, excellent integrability with existing optical communication systems, and easy
implementation from state preparation to measurement, coherent state CV-QSDC has been
proposed as a complementary approach and its security against various attacks has been proved
[40]. To exploit the enhanced noise properties of quadrature-squeezed light, CV-QSDC protocols
based on squeezed states have also been put forward, allowing for extracting the weak signals in
highly lossy channels [40-44]. Recently, an experimental work, which realized a CV-QSDC
protocol based on Gaussian mapping, proposed a parameter estimation scheme for signal
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classification under the actual channels [45]. Nevertheless, none of the CV-QSDC protocols
employing squeezed quantum states have been implemented to date.

In this work, we propose a novel practical CV-QSDC scheme to investigate how and if squeezed
light can outperform when compared with coherent states. We realized a proof-of-principle
experiment entirely based on optical fibers using homodyne detection. Analyzing the two
cases where the transmitter (Alice) or receiver (Bob) possesses a squeezed state source, we
analytically and numerically study the two versions of the protocol, symmetric and asymmetric,
by considering beam splitter attacks. Furthermore, we study the effect of squeezing level and
consider two scenarios regarding the relative phase of coherent states, as phase-locked and
randomized. Due to practical implementation issues, we choose the asymmetric protocol for the
experimental verification, applying amplitude squeezing, i.e., squeezing along the quadrature
direction perpendicular to the phase of the (phase-locked) coherent states. In addition to this
proof-of-principle demonstration of CV-QSDC protocol, we reveal the benefit of squeezed
states over coherent ones for achieving higher secrecy against a beam splitter attack and better
performance in lossy channels.

2. Results

Building upon the key ideas of Ref. [4] and Ref. [40], we propose new schemes for CV-QSDC,
which allow for practical realizations in a table-top experimental setup. In the following, we
present the CV-QSDC protocols, as well as an analysis of their numerical and experimental
performances.

2.1. Protocols

In this section, we illustrate the protocols: We describe modified versions of the protocol proposed
by Ref. [40] to increase its experimental feasibility and performance. Two distinct schemes
are examined and labeled henceforth as “symmetric” and “asymmetric”. In both versions, the
quantum channel used by the sender and the receiver is memoryless. This legitimate channel
can be used in both directions (experimentally, this can be implemented e.g. with circulators).
Another memoryless channel will also be considered: the wiretap channel. This represents the
channel between the legitimate users and the eavesdropper.

2.1.1. Symmetric protocol

This scheme is illustrated in Fig. 1, the label “symmetric” refers to the case where squeezing
is applied in the initialization by Bob and the feature travels in both directions of the channel,
from Bob to Alice and from Alice to Bob. In the “asymmetric” version elaborated in this paper,
the squeezing will instead be traveling from Alice to Bob in one direction only. The difference
between the two protocols is shown in Fig. 2. The symmetric protocol proceeds along the
following steps:

(1) Bob, a legitimate information receiver, prepares a sequence of n coherent states |@;) with
amplitude and phase |«;| and 6,, (i € {1, ...,n} = I), respectively, both chosen randomly
from uniform distributions to maximize unpredictability. He then applies squeezing to
those states so that the uncertainty of the squeezed state S(z)|a;) is below the vacuum
level when measured along %y, = cos(0q,;)X + sin(f,,)p. We employ a fixed amount of
squeezing z with a squeezing direction perpendicular to the direction of the coherent states,
to maximize the precision of the subsequent measurements, while in Ref. [40] squeezing
was randomized.

(2) Bob sends the prepared n states S(z)|a;) (i € I) to Alice via a quantum channel.
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(3) Alice uses an optical switch to randomly select a subset J C I of the incoming states as
control states and measures them via homodyne detection. She sends the indexes {j € J}
to Bob via a classical communication channel, whereas she injects the message states (the
remaining states) into an optical delay or a quantum memory.

(4) Bob shares the information |a;| and 6,, (j € J) for the control states via the classical
channel with Alice, who verifies the correspondence between her results and this data
to evaluate the losses in the quantum channel, thus checking for eavesdropping. If the
measured values correspond to a tolerable limit, then they continue; otherwise, she discards
the protocol, and they start again.

(5) Alice chooses another subset L C I\ J of states from the remaining states and encodes her
message my € R on them by applying an attenuation of y/my4. In Ref. [40], a displacement
operation was used instead. However, implementing displacement is experimentally costly,
as another laser is required as well as very precise phase control over the original state and
the one to be added. The remaining states K = ((/ \ J) \ L) are used as decoy states. The
decoy states allow checking for statistics influenced by channel properties (such as Eve),
that would, e.g., reduce the squeezing amplitude. Moreover, they are useful to disorient
Eve about the message.

(6) Alice sends all the 7 \ J states to Bob via the same quantum channel.

(7) Bob performs homodyne measurement on the incoming states along the squeezed quadrature
direction, thus optimizing his uncertainty, and he checks for eavesdropping by comparing
to the corresponding |ax| (k € K) values for the decoy states. For this, Alice communicates
their indices via a classical communication channel. Bob also verifies that the uncertainty
on measurements is compatible with the initially applied squeezing. In fact, the statistics
are the same for all states as they were all submitted to the same amplitude squeezing.

(8) Bob can retrieve the message in the other states by dividing the amplitude of the message
states by the amplitude |@;| of the initial states and thus obtaining the message encoded in
the corresponding retrieved attenuation values.

2.1.2. Asymmetric protocol

In this new version of the protocol, coined “asymmetric”, Alice applies the squeezing to the
message states after encoding the message, instead of Bob applying it to all the states and at the
beginning of the protocol. In this way, the squeezing feature travels only in one direction in the
legitimate channel. As Alice does not know the 6, (the phases of coherent states sent by Bob),
her squeezing will in general not be along the perpendicular direction. However:

* Alice or Bob can agree on a fixed direction (for example, 6,, = 0 Vi and S(z) along %), which
is also easier to implement, not requiring fast phase control. This case was implemented
experimentally as shown in Fig. 3 and Fig. 7 (in the Materials and Methods section).

* Alice can communicate the squeezing direction to Bob after the states have traveled the
quantum channel and they checked for eavesdropping, and Bob applies the protocol of Ref.
[40].

As explained in the Discussion section, the first solution for this asymmetric protocol is
experimentally more convenient to be implemented, and security is not compromised. In the
following subsections, we present a security analysis for the case of a beam splitter attack: Eve
uses a beam splitter to intercept states in both uses of the quantum channel. Other types of attacks
will be considered in the Discussion section. If Alice and Bob use the same quantum channel in
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Fig. 1. Illustration of the proposed symmetric protocol inspired by Ref. [40]. Alice and
Bob send quantum states through a quantum channel (green arrows) and exchange classical
information through a classical channel (orange arrows). Bob sends random squeezed
states to Alice, they check for an eavesdropper with control states chosen by Alice and
exchanging classical communication. If the results are compatible, Alice encodes a message
by displacement (or attenuation), leaving some untouched decoy states, and Bob then reads
the message by homodyne detection subtracting the initial amplitudes.

two different directions, Eve uses one beam splitter in the middle of the channel. If they use two
different channels, we consider Eve to be bound to use two different beam splitters with the same
optimal transmissivity.

2.2. Numerical security analysis

In our numerical simulations we consider three different cases: Alice applies squeezing to
coherent states all aligned with one another (see the first case of section 2.1.2, asymmetric
protocol); Bob applies squeezing to coherent states all aligned with one another; Bob applies
squeezing to coherent states with random phases (see section 2.1.1, symmetric protocol). Our
security analysis is then based on the calculation of the secrecy capacity. In fact, according
to Wyner’s wiretap channel theory [46], a positive secrecy capacity C, implies that reliable
transmission at rates up to Cy is possible in approximately perfect secrecy. Effectively achieving
this maximum rate, however, requires additional strategies, such as optimizing the encoding,
tailoring the input distribution to the channel when feasible, improving the decoding process, and
employing appropriate error-correction techniques. The following methods have been used in
the literature: (de)encoding based on quantum error correction [47], secure coding based on the
universal hashing families [13], frequency coding schemes [33], and privacy amplification in
Gaussian-mapping based protocols [44].
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Fig. 2. Illustration of the symmetric (top) and asymmetric (bottom) protocols. In the
symmetric protocol, Bob (blue) initializes his quantum states by applying both attenuation
and squeezing, then sends them to Alice (yellow) via a quantum channel, which is subject to
losses (orange beam splitter) and to a beam-splitter attack by Eve (grey). Alice encodes her
message via attenuation and uses the channel back to communicate to Bob, again subject to
losses and eavesdropping. In the asymmetric case (bottom), Bob only initializes the states
via attenuation and Alice applies squeezing.

In our analysis, we focus on the calculation of the secrecy capacity as an upper bound
on achievable communication rates and as a comparative metric for evaluating the potential
performances of the different implementations.

The secrecy capacity is defined as:

C, = max[I(A, B) - I(A,E)] (1)
PA

where I(A, B) and I(A, E) are the mutual information between Alice and Bob and between Alice
and Eve, respectively. Moreover, in the calculation of I(A, E) we ought to consider the best
conditions for Eve, that is to say, the worst-case scenario for Alice and Bob. The Gaussian
formalism (see Methods) allows the representation of Gaussian states, which include coherent
states and squeezed states, Gaussian operations — such as the application of squeezing, the effect
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Fig. 3. Experimental setup for implementing the asymmetric protocol in case of a beam
splitter attack. In this setup, Bob and Alice are indicated by blue and yellow background
rectangles, respectively, while Evel and Eve?2 (she intervenes twice, see cases (a) and (c)
of Fig. 7(top)) are shown as beam-splitters In this scenario, Bob sees Eve’s interventions
as losses, she acts with two beam splitters of transmissivity ng (the first one can also be
modeled with a variable optical attenuator (VOA)). The measurement system includes the
polarization controller (PC), isolator (ISO), and homodyne detector (HD), which itself
consists of a 50/50 beam splitter and balanced detector (BD). The initialization is applied
by Bob through a VOA. Before that, he generates the pulses with an intensity modulator
(IM), after propagating the continuous waves of the laser through ISO and PC. 99% of these
pulses go to the local oscillator branch, which together with a piezoelectric (PZT) phase
shifter (PS) and a PC, generates the phase control circuit. To generate the squeezed states by
Alice, 90% of the continuous waves are propagated through the squeezer, a PZT PS, and PC,
before coupling to the signals via a 99/1 beam splitter. Alice measures some of the states
Bob sent, as control states, with a switch.

of beam splitters and displacement — and measurements including homodyne detection [48]. In
this way, experimental results can be predicted, as all the elements of the experimental setup
fall within the set of Gaussian operations. More details about this formalism are reported in the
Materials and Methods section, while for detailed calculations please refer to the Supplement 1.

Concerning the cases in which the phases are all equal to zero, analytical calculations suffice and
are confirmed by numerical simulations, which means that the asymptotic formulas correspond
to the case with a finite number of states.

Alice implements the squeezing:

0.01n‘2§niVar(x\/mA)
Lisym(A, B) =1 2
Y| ( ) 0g, (% (1 _ 0.9977E77L(1 _ Z2))
0.017(1 — ne)n; Var(xy/my)
Lisym(AE) =1 3)
(4. E) = log, (% (1=0.99(1 — ne)ne(1 - Zz)))

Cs asym = Iasym(A, B) - Iasym(A, E) (€]
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Fig. 4. Comparison between different protocol implementations for varying ng. (a) Alice
applies squeezing to coherent states at fixed phase, (b) Bob applies squeezing to coherent
states, again without randomness in their phase, (c) Bob applies the squeezing and uses
random coherent states’ phase. Solid lines represent the case with only coherent states,
while dotted lines refer to applying a squeezing of —3 dB. Red curves represent the mutual
information between Alice and Eve, blue curves represent the mutual information between
Alice and Bob, and purple curves indicate the secrecy capacity of the protocol. In the case
of a constant coherent state’s phase, the squeezing effect is more effective when it is applied
by Alice. The case of the random coherent state phase gives null information to Eve but is
more difficult to be implemented.

Bob implements the squeezing:

fom(A.B) = log ( 0.01n2n? Var(x+/my) ) )
ym(A, B) = log,
. 1 (1= 0997203 Var(ma)(1 - 22))
Lom(ALE) = log 0.01n§n§Var(x\/mA) ©
e 2\ 4 (1= 0.995(1 - np)n? Var(ma)(1 - 22))

Cs sym = Isym(A’ B) - Isym(Aa E) @)

In these equations, 7 is the transmissivity of Eve’s beam splitter, 77, indicates the transmissivity
of the beam splitter representing losses, x is the variable corresponding to the initial quadrature
values along the X direction (put by Bob, randomly), m4 represents the variable corresponding to
the message sent by Alice, and z is the squeezing value: z = 100aueezing(@B)/10) The values of 0.01
and 0.99 correspond to 7yq and 1 — 154, with 7754 being the transmissivity of the beam splitter that
mixes the signal with a vacuum squeezed state to get a squeezed signal. All the numerical results
are presented in Fig. 4: the mutual information between Alice and Bob, the one between Alice
and Eve, and the associated secrecy capacity. All quantities are plotted for varying transmissivity
ng of Eve’s beam splitters. In the three cases, a squeezing of —3 dB is applied to the coherent
states to be compared to the case where only coherent states are used. According to the analytical
formulas, Alice and Bob’s mutual information is monotonically increasing with 77z, which means
that more light goes to the legitimate sender and receiver. Additionally, the mutual information
between Alice and Eve is null for g = 0 and 7z = 1 as Eve cannot retrieve the message if she
does not intercept any information in one of the two directions of communication. In fact, when
Bob sends the quantum states to Alice, Eve intercepts a fraction of light equal to 4/1 — g and
when Alice sends them back to Bob with the encoded message, Eve then intercepts a fraction
VIEV1 — g, where /g is the fraction that has arrived to Alice from Bob. By comparing the
plots in Fig. 4, it can be noticed that for the phase-locked coherent states, the effect of squeezing



Research Article Vol. 33, No. 14/14 Jul 2025/ Optics Express 28925 |

Optics EXPRESS N

12

10

Mutual Information and Secrecy Capacity
o

0.5 0.6 0.7 0.8 0.9 1.0
Transmittance ng
—— (A, B) coherent ---- I(A, B) -1dB squeezing —-— I(A, B) -5dB squeezing - I(A, B) -10dB squeezing
— IAE) ---- I(A,E) —= IAE) e I(A,E)
— G - G —— G e Cs

Fig. 5. Numerical prediction of the effect of different squeezing levels in the experimentally
implemented scheme (i.e., Alice implements squeezing and there is no randomness in the
phase of the coherent states used). The solid lines denote the case where only coherent states
are used; the dashed, dash-dotted, and dotted lines show results for —1dB, —5dB, and —10dB
of squeezing, respectively. We can see a saturation effect reducing the impact of squeezing
while approaching —10dB. Red curves denote the mutual information between Alice and
Eve, blue curves denote the mutual information between Alice and Bob, and purple curves
denote the secrecy capacity of the protocol.

is stronger when applied by Alice, as the squeezed states are less subjected to losses. Thus, the
asymmetric configuration achieves higher secrecy for the channel. Also, the last plot shows that
randomness reduces the mutual information between Alice and Eve to nearly zero, since in this
simulation Eve has no information on the optimal measurement direction.

Figure 5 displays the numerical predictions for different values of squeezing. It is possible to
observe a saturation effect, with —5 dB of squeezing being already a nearly optimal value, implying
no need to resort to large, current-record squeezing levels of —15 dB. In our proof-of-principle
implementation, we were able to implement a squeezing of about —1 dB. Analytical formulas
as well as numerical simulations show that for both the symmetric and asymmetric protocols,
the secrecy capacity is positive for 7z = 0.5, which is true for all squeezing values z as well as
all collective losses 7, (that act in the same way on Eve and on Bob). In a worst-case scenario,
all losses that Bob experiences are intercepted by Eve, this is equivalent to 7, = 0 and Bob
experiencing ng of transmission. The protocol is then secure (positive secrecy capacity) only for
losses equivalent to g = 0.5, i.e. —3dB. With ultra-low loss optical fibers, 3dB are equivalent to
20 km of transmission distance.

2.3. Experimental results

We implemented the asymmetric scheme where Alice applies the squeezing to her states, and
all states are aligned along the same direction (phase-locked), that is to say, they have the same
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Fig. 6. Experimental results and corresponding analytical calculations. The lines represent
the analytical calculations: the dotted lines denote the expectations for a squeezing of —1dB,
while solid lines denote the case without squeezing (coherent states). The experimental
results are denoted by circles in case of —1 dB of squeezing and by crosses in the absence of
squeezing. Colors denote different quantities: the mutual information between Alice and
Eve (red), the mutual information between Alice and Bob (blue), and the secrecy capacity
of the protocol (purple). Error bars are evaluated by error propagation and the boot-strap
method, and are smaller than the size of the symbols.

phase and are equally projected by the homodyne detection along, without loss of generality, X.
The quantum channel and the other elements of the scheme consisted of an optical fiber system
with amplitude coding. In fact, in Ref. [40] it is proposed that both the random initialization of
Bob and the message are coded by displacement on coherent states: |@;) (a; € C) and |m4(1 + 1))
(my € R). However, by choosing to fix the coherent state’s phase and optimizing the angle
between initialization states and message (equal to O degrees), we can restrict ourselves to |a;)
with @; € R* and | — my) with my € R*, so that we can use attenuators instead of implementing
displacement. More details about the experimental setup will be provided in the Materials and
Methods section.

The experimental results are presented in Fig. 6, compared with the analytical calculations
in the same conditions, with —1 dB of squeezing — the highest level that we were able to
inject considering experimental losses. We observe good agreement between calculations and
experimental results, and we experimentally reveal the advantage of squeezing especially in the
mutual information between Alice and Bob. We also considered the case without squeezing, and
obtained good agreement between theoretical expectations and experimental results.
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3. Discussion
3.1. Attacks

To evaluate the secrecy capacity of the protocol and thus its security, the mutual information
between Alice and Eve must be calculated explicitly. We thus have to specify which kind of
attacks the eavesdropper may use.

The eavesdropper attacks are traditionally divided into three categories: individual, collective,
and coherent. In individual attacks, Eve attacks each of the quantum states traveling through the
channel individually. She attaches an ancilla system to each of the states, applies the same unitary
operation to each composite system, and then measures her part of all the composite systems
separately. Collective attacks are more advanced in the sense that Eve still attaches individual
ancilla systems to each quantum state, but she measures all the states collectively instead of
individually. The most general type, coherent attacks, involves Eve attaching a large ancilla
system to all the quantum states sent by Alice. Eve then applies a global unitary operation to the
entire composite system, and similar to collective attacks, then performs a global measurement on
her part of the system [49]. Among these attacks, in this work, we theoretically and experimentally
focused on the individual attacks (specifically, beam-splitter attack) as a first step towards the
security of this proof-of-principle protocol. The beam-splitter attack can be considered the most
practical attack for Eve, because it is easily implementable, does not need quantum computers nor
quantum memories, and can be mistaken for losses if Alice and Bob do not know their channel
sufficiently well.

Another attack strategy on realistic setups of quantum cryptographic systems is the Trojan
Horse Attack (THA). The main idea of this attack strategy is not to interact with the photons
in transit between Alice and Bob but to probe the devices in Alice’s and Bob’s laboratory by
sending some light into them and collecting the back-reflected signal. In this way, Eve, which
has a laser and detection system, can acquire knowledge of the properties and functionality of the
detectors. The common practical measure to prevent this attack is to add an isolator in Alice’s
and Bob’s laboratory to block Eve’s injected pulse, as an ideal isolator would passively stop any
THA by a complete extinction of Eve’s pulses. A special kind of THA in QSDC protocols is
Invisible Photon Eavesdropping (IPE), in which Eve uses an invisible photon - i.e. a photon to
which Alice’s and Bob’s detectors are insensitive). So, while Alice and Bob cannot detect Eve’s
eavesdropping attack when they check the fidelity of their photons, she can gain full information
about the communication. However, Eve’s invisible photons can be filtered out. An optical
narrow bandwidth isolator performs this filtering process, which we added before Alice’s and
Bob’s detectors in our setup, thereby prohibiting all kinds of THAs in our scheme [50-52].

Among collective ones, an effective attack in QSDC protocols is the Teleportation Attack,
by which Eve can extract half of the secret bits via intercepting by EPR states and employing
the technique of quantum teleportation. This kind of attack will succeed if the security of the
quantum channel is examined only after photon transmissions are all finished. However, in our
protocol, the error rate is checked after photon transmissions to ensure that the quantum channel
is secure before encoding and decoding. Thus, this gap is closed, and this attack is ineffective in
our protocol [53]. The effectiveness of collective attacks, such as the teleportation attack, and
coherent attacks in our scheme will be the subject of more in-depth investigation in future works.

3.2. Comparison of the different protocols

The randomness in the phase of the coherent states that Bob sends has a significant impact on
the information that the eavesdropper can get. This is because, even if Eve measures part of the
light sent by Bob to Alice, her homodyne detection would not give an indication of the correct
phase of the states, as they all have different amplitudes. Even for a fixed phase for all the states,
Eve could not retrieve the exact phase from measurements; however, her reading of the states
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would only be multiplied by a factor cos(0gye — 6), Ogve being the phase shift between the local
oscillator that Eve is using and the signal, and 6 the one that Bob implements. In the previous
calculations, we considered the worst-case scenario, § = fgy. = 0. In Ref. [40] the squeezing
amplitude z was also randomized, but this decreases the mutual information between Alice and
Bob, which is monotonically increasing with z and does not decrease the one between Alice and
Eve. This is because the squeezing acts only on the precision of the measurement (the variance
of the states), not on the mean value; thus, to decrease the reliability of Eve’s measurements, it is
better to always use the maximum available squeezing level.

3.3. Experimental considerations

The protocol we implement uses off-the-shelf optical elements, it works at telecom wavelengths and
does not require single-photon detectors, thus increasing its appeal for future telecommunications
technologies. Furthermore, as the communication is direct there are no problems linked to key
storage. Moreover, it can exploit the advantage brought by squeezed light.

The experimental setup is shown in Fig. 3. With our resources we implemented separately the
case where Alice measures (the control states), the case where Eve measures for the first time
(between Bob and Alice), for the second time (between Bob and Alice), and the final case where
Bob measures (the message and decoy states). To differentiate these situations (see Fig. 7 (top))
the balanced detector must be placed after the component representing the last action before the
measurement. Experimentally, having Bob implement the squeezing is not convenient as it is
destroyed by channel losses and components, such as the attenuators, used by Alice to encode the
message.

In the final experimental setup, Alice and Bob use two different quantum channels. However,
circulators could also be used to reduce the number of legitimate channels to one, in this case,
Eve should use a single beam splitter to measure the states in the two directions. Concerning the
local oscillator, needed by all actors to perform the homodyne detection, a clock could be used
by Alice and Eve to create a "local local oscillator" [54]. This situation supposes that Eve gets all
the classical information that Alice and Bob exchange (the clock is part of it) and is equivalent to
Bob sending his local oscillator signal to Alice and Eve, as implemented. The studied protocols
can be used with discrete alphabets, creating bins of attenuation values, but also to transmit
continuous signals, for instance, audio signals or sensor readings, directly interfacing sensors,
and readout devices.

Concerning the delay for allowing classical communication, in experimental 2-way direct
communication protocols it was already implemented via fiber-based delay lines [13,33,34,37],
quantum memories [38], or quantum-memory-free via secure coding [35,55,56]. Hence, for
our future practical works, we will implement our protocol variants based on the mentioned
approaches.

3.4. Conclusions

In summary, we have studied the feasibility of a practical continuous-variable quantum secret
direct communication system, with either coherent or squeezed light sources, based on security
analysis using Winer’s wiretap channel theory. According to analytical and numerical calculations
for different configurations (including the position of the squeezer, level of squeezing, and relative
phase of coherent states), we implemented a practical protocol as an asymmetric scheme with —1
dB squeezing level and phase-locked coherent states. We verified the protocol over an optical
fiber channel in the presence of a beam-splitter attack, while achieving higher secrecy in case
of a squeezed source over the coherent one. The squeezed source also shows an increased
robustness against lossy and noisy channels. The attenuation-based encoding of this protocol
makes it more practical than an already proposed scheme based on displacement [40]. Since
this proof-of-principle demonstration of a QSDC protocol relies on CV encoding, which does
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Fig. 7. (top) schematic representation of the different measurements done in case of a beam
splitter attack: Eve uses a beam splitter between Bob and Alice and measures (a), Alice
measures the control states (b), Eve uses again a beam splitter but between Bob and Alice
and measures (c), Bob measures the decoy and message states (d). (bottom) Experimental
setup to implement the mentioned measurements by Eve, Alice, and Bob.

not require single-photon detectors, it can be rendered compatible with existing mature classical
communication systems. By controlling the phase, the measurement of quantum quadrature will
be easier than more sophisticated single photon detections. Thus, in case of the availability of
low-noise fibers, this keyless QSDC protocol provides an efficient candidate, complementary to
QKD, for the development of quantum networks built upon wavelength division multiplexing
systems.

4. Materials and methods

4.1. Gaussian formalism

Light quantization allows us to define quadrature operators X and p that verify canonical
commutation relations. This puts us in the continuous variable description, which would require
the adoption of an infinite-dimensional Hilbert space. However, for our security analysis, the
restriction to Gaussian states is adopted, using the Gaussian formalism described in Ref. [48].
This is because our system is coupled linearly with the environment, and the overall Hamiltonian is
at most quadratic; in fact, the modeling of quantum dynamics through second-order Hamiltonians
is very common for quantum light fields, as the higher terms are inconspicuous and negligible.
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Gaussian states pg are completely determined by the vector of first moments 7 and the covariance
matrix o. For a single degree of freedom as in our case:

Var(x)  Cov(x,p)
Cov(x,p)  Var(p)

= _ = =T N Ay T
r= (x’p) = (<x>p(;7 <p>pc) s, O =
For a coherent state |) with @ = |a|e:

7 = (V2Re(@), V2Im())T; & = Ovacuum =

S DI
=

Gaussian operators are then easily applied to quantum Gaussian states. In this paper, the
following operators were used:
Single-mode squeezing

z 0
7+ S(z)7 and o — S(z)0S(z)T with S(z) = , z€][0,1]in our case
0

Two-mode beam splitter

7+ S(6)7 and o — S(0)0-S(6)"

withq
cos 8 0 sin @ 0
0 cosf 0 sin @
S(9) =
—sin@ 0 cos 6 0
0 —sind 0 cos @

where cos? @ = 1, 7 is the transmissivity of the beam splitter.

For measurement, we consider homodyne detection, which projects the quantum state along a
specific direction X4 = cos ¢ + sin ¢p. In fact, the state is mixed with a strong coherent state
(local oscillator) at a balanced (7 = 0.5) beam splitter, then the detected intensities at the outputs
are subtracted, and the results are indeed proportional to the projection on the desired quadrature,
¢ depending on the dephasing between the signal to be measured and the local oscillator [48].

4.2. Quantum information theoretical tools

To quantify the security of the proposed protocols, we utilized elements of classical and quantum
information theory. Given two random variables X and Y with supports X and Y, we define the
following quantities:

* Entropy: H(X) = — X cx px(x) log px(x)
* Conditional entropy: H(Y|X) = — X cx yey Px.y(x,y)log pyx(v]x)
* Mutual information: I(X;Y) = H(X) - HX|Y) = H(Y) — H(Y|X)

* Channel capacity: C = sup, (y I(X;Y)
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The logarithms are in base two to quantify information in bits. These expressions are derived
from Refs. [57] and [58]. We applied the Wyner wire-tap channel model [46], assuming
transmission over a discrete, memory-less channel subject to wiretapping. This implies the
existence of a secrecy capacity C,;>0 such that reliable transmission at rates up to C; is possible
with approximately perfect secrecy. Naming X, Y, and Z the random variables representing the
message, what the receiver gets, and what the eavesdropper understands, according to Wyner, we
can write:

Cy = I(X;Y) - I(X; Z)]

For numerical simulations and experimental results, we used the Shannon-Hartley theorem to
calculate the mutual information:

I(X;Y) =log(1 + S/N)

where S is the mean of the received signal and N is the noise. We consider a normalized
bandwidth of 1 to calculate the quantities in number of bits per channel use.

4.3. Numerical Environment

Analytical calculations were performed to evaluate Cy, using the uncertainties of the - matrices
of the quantum states for noise N, and the mean vector 7 for signal S. However, to model a finite
number of measurements and randomness, symplectic operations were directly implemented in
Python 3.8.3. The signal-to-noise ratio S/N was then replaced by the inverse of the quadratic
error in the reading of the message, which was also done for the experimental analysis.

4.4. Experimental Setup

To experimentally investigate the asymmetric protocol in the presence of a beam splitter attack, we
followed the indicated diagram in Fig. 7 (top) and implemented the setup shown in Fig. 7 (bottom)
to perform measurements by Eve, Alice, and Bob. In all cases, a CW laser with wavelength
A = 1560 nm was used to create squeezed light, serving as the local oscillator for the homodyne
detections and the signals. The laser output was first split with a beam splitter of transmissivity
n = 90%, allowing the more powerful branch to pass through a squeezer, which required powers
of the order of 500 mW. Squeezed light was then generated using two lithium niobate crystals,
resulting in approximately —3 dB of squeezed vacuum [59]. Alice’s experimental application of
squeezing differed slightly from the theoretical symplectic operation proposed by Ref. [48]. In
our setup, Alice applied squeezing by mixing her coherent quantum states of the form 7 = (x, p)”,
10 Z

with an approximately null squeezed state 7 = (0,0), o = ) through a
0 1 0 z~

beam splitter with transmissivity 17,q = 99%, resulting in:

g =

i ’ 1{0.01 +0.992 0
7 =(0.1x,0.1p)"; o == , z€][0,1]
2 0 0.01 + 0.9972

Thus, obtaining a bright state that has a reduced variance along the x direction, although with
a reduced amplitude (a factor 1/10, which corresponds to —10dB of losses). Concerning the
other branch of the 90/10 beam splitter it represents Bob’s laser, with which he generates both
his signal (the n quantum initial coherent states) and the local oscillator for homodyne detection.
Pulsed coherent states (50 ns) are created and initialized with different amplitudes thanks to a
lithium niobate electro-optic intensity modulator (IM) driven by a function generator (FG) and a
variable optical attenuator (VOA), respectively. Concerning the local oscillator, in the experiment
all actors have at their disposal the one created by Bob, which would be the worst case. To



Research Article

Optics EXPRESS

vary Alice’s attenuations (i.e. her message), we applied different tensions to Variable Optical
Attenuators. Eve is represented by a VOA (from Bob to Alice) and a beam splitter (from Alice to
Bob), this is because we separated the four measurement scenarios, so in order to modulate Eve
first effect on the communication, we used directly a VOA. In the second case, a VOA would have
destroyed the squeezing as it introduces phase noise and the decoy states would have revealed
Eve’s presence. This is because their variance would have been modified (they all follow the same
statistics as the squeezing amplitude is always the same). Concerning the homodyne detector,
it is a commercial model with a bandwidth of 400 MHz, allowing us to use pulses at 10 MHz
(50% duty cycle), and its clearance, for a local oscillator of around 2.5 mW, is approximately 11.
The clearance is defined as the ratio between the variance of the homodyne signal measuring the
vacuum (but P g = 2.5 mW) and the electronic noise (variance at P g = 0 mW).

The efficiency of the photodetectors of the homodyne is 91+0.5% for both, while the quantum
efficiency of the homodyne is 50+5%. This discrepancy is mainly due to electronic noise,
the non-perfect polarization alignment, and temporal overlap between the local oscillator and
signal pulses. Homodyne measurement enables the evaluation of a quantum state’s projection
in phase space with respect to the local oscillator axis. As a result, it is highly sensitive to
variations in the relative phase between the desired signal (quantum states with fixed phase
and amplitude squeezing) and the local oscillator. Unfortunately, during our proof-of-principle
experiment, phase oscillations were unavoidable due to experimental conditions, which also
caused oscillations in the squeezing direction. To successfully address this challenge, we
employed piezoelectric phase shifters, as illustrated in Fig. 3. We applied ramp signals to rapidly
scan through these phases and subsequently selected measurements corresponding to a null phase
and amplitude squeezing. However, it’s important to note that our approach has limitations in
achieving high communication rates and an active phase stabilization system or a local local
oscillator approach is required for a practical implementation of the protocol. To evaluate the
performance of the protocol (as shown in Fig. 6), we used for each experimental point 16000
pulses, with an alphabet of four letters for Alice and four different possible initialization values
for Bob, distributed uniformly. This corresponds to 1000 pulses (0.1 ms) for each combination
of Bob’s initialization value and Alice’s letter of the alphabet, which allowed us to retrieve the
mean value and error. These values would correspond to fixed voltages applied to the VOAs.
The data supporting the findings of this study are available upon request. Interested researchers
may contact the authors directly for access to the data.
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