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Parameter estimation in quantum optics
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We address several estimation problems in quantum optics by means of the maximum-likelihood principle.
We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamil-
tonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of
the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applica-
tions, the Gaussian bound on statistical errors is attained with a few thousand data.

PACS number~s!: 42.50.Ar
ne
o

ec

he

sy
s

to
do

h
a-
t o
th
in
o
c

rv
tio
u

al
-

n
e
n
i
th
ri
e

th
, t
e
th
t

om
n
th

io
-

rac-
n:
ce
nt?

dure

n-
em
trix
tion.
neu-

ion
ics,
ils.
n
. In
f a
eric
e

in-
dy

the
m
ec.

-
n-
Let

f

le
I. INTRODUCTION

In order to gain information about a physical quantity o
should, in principle, measure the corresponding quantum
servable. In cases when the measurement can be dir
implemented the statistics of the outcomes is governed~in
ideal conditions, i.e., neglecting thermal, mechanical or ot
sources of classical noise! only by the intrinsic fluctuations
of the observable, namely by the quantum nature of the
tem under investigation. In practice, however, it is mo
likely that the desired observable does not correspond
feasible measurement scheme, or the physical quantity
not correspond to any observable at all. In such case one
to infer the value of the quantity of interest from the me
surement of a different observable, or generally of a se
observables. In this situation, even in ideal conditions,
indirect parameter estimation gives an additional uncerta
for the estimated value, and the quantum estimation the
@1,2# provides a general framework to optimize the inferen
procedure.

In the recent years, the indirect reconstruction of obse
ables and quantum states has received much atten
Among the many reconstruction techniques, the most s
cessful is quantum homodyne tomography@3#, which, in-
deed, is the only method which has been experiment
implemented@4#. Quantum tomography provides the com
plete characterization of the state, i.e., the reconstructio
any quantity of interest by simple averages over experim
tal data. In many cases, however, one may be interested
in the complete characterization of the state, but only
some specific feature, like the phase or the amplitude of
field. Moreover, one can address the problem of characte
ing an optical device, rather than a quantum state, like m
suring the coupling constant of an active medium or
quantum efficiency of a photodetector. In all these cases
desired parameter does not correspond to a measurabl
servable, and contains only partial information about
quantum state of light involved in the process. Our goal is
link the estimation of such parameters with the results fr
feasible measurement schemes, as homodyne, heterody
direct detection, and to make the estimation procedure
most efficient.

Among all possible procedures for parameter estimat
the maximum-likelihood~ML ! method is, in the sense dis
1050-2947/2000/62~2!/023815~7!/$15.00 62 0238
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cussed below, the most general, and widely usable in p
tice. The ML procedure answers to the following questio
which values of the parameters are most likely to produ
the results which we actually observe in the measureme
This statement can be quantified, and the resulting proce
is the ML estimation of the parameters.

Recently, the ML principle has been applied to the reco
struction of the whole state of a generic quantum syst
@5,6#. In that case the parameters of interest are the ma
elements of the density operator in a suitable representa
Bayesian and ML approaches have been also applied in
tron interferometry@7#.

In this paper, we focus our attention on the determinat
of specific parameters which are relevant in quantum opt
and analyze their ML estimation procedure in some deta

In the next section we briefly review the ML estimatio
procedure as well as the method to evaluate its precision
Sec. III we consider the estimation of the parameters o
Gaussian state and of the coupling constants of a gen
quadratic single-mode Hamiltonian. As we will show, th
two estimation problems are closely related, and ML pr
ciple leads to a fully general solution. In Sec. IV we stu
different schemes of phase estimation, whereas in Sec. V
ML principle is applied to the estimation of the quantu
efficiency of both linear and avalanche photodetectors. S
VI closes the paper by summarizing our results.

II. MAXIMUM-LIKELIHOOD ESTIMATION

Here we briefly review the theory of the maximum
likelihood ~ML ! estimation of a single parameter. The ge
eralization to several parameters is straightforward.
p(xul) be the probability density of a random variablex,
conditioned to the value of the parameterl. The form ofp is
known, but the true value of the parameterl is unknown,
and will be estimated from the result of a measurement ox.
Let x1 ,x2 , . . . ,xN be a random sample of sizeN. The joint
probability density of the independent random variab
x1 ,x2 , . . . ,xN ~the global probability of the sample! is given
by

L~x1 ,x2 , . . . ,xNul!5)
k51

N

p~xkul!, ~1!
©2000 The American Physical Society15-1
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and is called the likelihood function of the given data sam
~hereafter we will suppress the dependence ofL on the data!.
The maximum-likelihood estimatorlML[lML($xk%) ~MLE!
of the parameterl maximizesL(l) for variations of l,
namely it is given by the solution of the equations

]L~l!

]l
50,

]2L~l!

]l2
,0. ~2!

Since the likelihood function is positive the first equation
equivalent to

]L~l!

]l
50, ~3!

where

L~l!5 logL~l!5 (
k51

N

log p~xkul! ~4!

is the so-called log-likelihood function. The form of the M
principle in Eq.~3! is the most often used in practice.

The importance of MLE stems from the following the
rems@8,9#.

~1! Maximum-likelihood estimators are consistent, i.
they converge in probability to the true value of the para
eter for increasing size of the data sample.

~2! The distribution of MLEs tends to the normal distr
bution in the limit of large samples, and MLEs have min
mum variance. For finite samples the variance is gover
by the Crame´r-Rao bound~see below!.

There are also situations in which the MLE gives a po
estimation for a parameter. However, for the distributio
considered here the ML procedure is statistically efficien

In order to obtain a measure for the confidence interva
the determination oflML we consider the variance

sl
25E F)

k
dxkp~xkul!G @lML~$xk%!2l#2. ~5!

Upon defining the Fisher information

F5E dxF]p~xul!

]l G2 1

p~xul!
, ~6!

it is easy to prove@10# that

sl
2>

1

N F
, ~7!

whereN is the number of measurements. The inequality
Eq. ~7! is known as the Crame´r-Rao bound@8# on the preci-
sion of ML estimation. Notice that this bound holds for a
functional form of the probability distributionp(xul), pro-
vided that the Fisher information exists;l and ]lp(xul)
exists;x. When an experiment has ‘‘good statistics’’~i.e., a
data sample large enough! the Crame´r-Rao bound is satu
rated. As we will show in the following, the application o
the ML principle in quantum optics generally corresponds
02381
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estimators for which the Crame´r-Rao bound is attained with
a relatively small number of measurements, i.e., the ML p
cedure provides an efficient estimation of the parameters
Secs. III and IV examples will be examined where the pro
ability p(xul) is Gaussian versusx and not Gaussian versu
the parameterl, whereas in Sec. V an example with discre
measurement outcomes (x50,1) will be also analyzed.

III. GAUSSIAN-STATE ESTIMATION

In this section we apply the ML method to estimate t
quantum state of a single-mode radiation field that is cha
terized by a Gaussian Wigner function. Such kind of sta
represents the wide class of coherent, squeezed and the
states. Apart from an irrelevant phase, we consider
Wigner function of the form

W~x,y!5
2D2

p
exp$22D2@e22r~x2Rem!2

1e2r~y2Im m!2#%, ~8!

and we apply the ML technique with homodyne detection
estimate the four real parametersD, r , Rem, and Imm. The
four parameters provide the number of thermal, squeez
and coherent-signal photons in the quantum state as follo

nth5
1

2 S 1

D2
21D ,

nsq5sinh2r , ~9!

ncoh5umu2.

In terms of density matrix, the state corresponding to
Wigner function in Eq.~8! writes

%5D~m!S~r !
1

nth11 S nth

nth11D a†a

S†~r !D†~m!, ~10!

where S(r )5exp@r(a22a†2)/2# and D(m)5exp(ma†2m*a)
denote the squeezing and displacement operators, res
tively.

The theoretical homodyne probability distribution
phasef with respect to the local oscillator is given by th
Gaussian@11#

p~x,f!5A 2D2

p~e2rcos2f1e22rsin2f!

3expH 2
2D2

e2rcos2f1e22rsin2f

3@x2Re~m e2 if!#2J . ~11!

For nonunit quantum efficiencyh,1 the ideal distribution
~11! is replaced by a convolution with a Gaussian of varian
(12h)/(4h). From Eqs.~4! and ~11! one easily evaluates
5-2
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PARAMETER ESTIMATION IN QUANTUM OPTICS PHYSICAL REVIEW A62 023815
the log-likelihood function for a set ofN homodyne out-
comesxi at random phasef i as follows:

L5(
i 51

N
1

2
log

2D2

p~e2rcos2f i1e22rsin2f i !

2
2D2

e2rcos2f i1e22rsin2f i

@xi2Re~m e2 if i !#2. ~12!

The ML estimatorsDML , r ML , RemML , and ImmML are
found upon maximizing Eq.~12! versusD,r ,Rem, and Imm.

In order to obtain a global estimation of the goodness
the state reconstruction, we evaluated the normalized ove
O between the theoretical and the estimated state

O5
Tr@% %ML#

ATr@%2#Tr@%ML
2 #

. ~13!

Notice thatO51 iff %5%ML . Through some Monte-Carlo
simulations, we always found a value around unity, typica
with statistical fluctuations over the third digit, for number
data samplesN550000, quantum efficiency at homodyn
detectorsh580%, and state parameters with the followin
ranges:nth,3, ncoh,5, andnsq,3. Also with such a small
number of data samples, the quality of the state reconst
tion is so good that other physical quantities that are th
retically evaluated from the experimental values
DML , r ML , RemML , and ImmML are inferred very pre-
cisely. For example, we evaluated the photon number p
ability of a squeezed thermal state, which is given by
integral

^nu%un&5E
0

2pdf

2p

@C~f,nth ,r !21#n

C~f,nth ,r !n11
, ~14!

with C(f,nth ,r )5(nth1
1
2 )(e22rsin2f1e2rcos2f)11

2. The
comparison of the theoretical and the experimental res
for a state withnth50.1 andnsq53 is reported in Fig. 1. The

FIG. 1. Photon-number probability of a squeezed-thermal st
The black histogram for the theoretical, the gray one reconstru
state by means of the maximum-likelihood method and homod
detection. Number of data samplesN550000; quantum efficiency
h580%; number of thermal photonsnth50.1; number of squeez
ing photonsnsq53. The statistical error affects the third decim
digit, and it is not visible in the scale of the plot.
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statistical error of the reconstructed number probability
fects the third decimal digit, and is not visible on the scale
the plot.

The estimation of parameters of Gaussian Wigner fu
tions through the ML method allows one to estimate t
parameters in quadratic Hamiltonians of the generic form

H5aa1a* a†1wa†a1
1

2
ja21

1

2
j* a†2. ~15!

In fact, the unitary evolution operatorU5e2 iHt preserves
the Gaussian form of an input state with Gaussian Wig
function. In other words, one can use a Gaussian stat
probe and characterize an optical device described b
Hamiltonian as in Eq.~15!. Assumingt51 without loss of
generality, the Heisenberg evolution of the radiation moda
is given by

U†a U5ga1da†1m, ~16!

with

g5cos~Aw22uju2!2 i
w

Aw22uju2
sin~Aw22uju2!,

d52 i
j*

Aw22uju2
sin~Aw22uju2!,

~17!

m5
wa* 2j* a

w22uju2
„cos~Aw22uju2!21…

2 i
a*

Aw22uju2
sin~Aw22uju2!.

For an input state% with known Wigner function
W%(b,b* ), the corresponding output Wigner function write

WU%U†~b,b* !5W%„~b2m!g* 2~b* 2m* !d,~b* 2m* !g

2~b2m!d* …. ~18!

Hence, by estimating the parametersg,d,m and inverting
Eqs.~17!, one obtains the ML values fora,w, andj of the
Hamiltonian in Eq.~15!. The present example can be used
practical applications for the estimation of the gain of
phase-sensitive amplifier or equivalently to estimate
squeezing parameter.

IV. PHASE ESTIMATION

The quantum-mechanical measurement of the phas
the radiation field is the essential problem of high sensit
interferometry, and has received much attention in quan
optics@12#. The problem arises because for a single mode
the electromagnetic field there is no selfadjoint operator
the phase, hence a more general description of the p
measurement is needed on the ground of estimation th
@1,2#.

In the following we apply the ML method to differen

e.
d
e
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D’ARIANO, PARIS, AND SACCHI PHYSICAL REVIEW A 62 023815
schemes of phase estimation and evaluate the correspon
sensitivity.

A. Heterodyne detection on coherent state

For a coherent state with amplitudeA eic the probability
density for complex outcomea i at the i th heterodyne mea
surement is given by

p~a i !5
1

p
exp~2ua i2A eicu2!. ~19!

The max-likelihood condition]L/]c50 provides the MLE
for the phasec. One obtainscML5arg(ā), where the over-
line denotes the experimental average over N heterod
outcomes, namelyā5(( i 51

N a i)/N. For small phase-shiftc
.0 the Crame´r-Rao bound gives the constraintsc

>1/A2nN, n being the average photon number (n5A2).

B. Homodyne detection at random phase on coherent state

In this case the homodyne probability for outcomexi at
the i th measurement at phasef i writes

p~xi ,f i !5A2

p
exp$22@xi2A cos~f i2c!#2%. ~20!

The ML condition provides for the estimator ofc the solu-
tion

cML5arctan~x sinf/x cosf!. ~21!

Also in this kind of phase-detection strategy, the variance
the estimator for small phase-shift satisfies

sc
2>

1

2nN
. ~22!

C. Homodyne detection at fixed phase on squeezed states

The use of squeezed states and homodyne detection a
phase corresponding to the squeezed quadrature offer a b
result in terms of sensitivity. Consider the problem of es
mating the phasec in the stateD(A eic)S(r )u0& with A,r
.0. The homodyne probability of outcomeyi for the mea-
surement of the quadratureY5(a2a†)/2i writes

p~yi !5A2 e2r

p
exp@22 e2r~yi2A sinc!2#. ~23!

The MLE for c is then given bycML5arcsin(ȳ/A). For small
phase shiftc.0 the Crame´r-Rao bound provides the rela
tion

sc
2>

1

4N A2e2r
. ~24!

Upon maximizing the productA2e2r versus the total numbe
of photons in the staten5A21sinh2r, one obtains the opti-
mal squeezing
02381
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e2r52A2F11A11
1

4A4G . ~25!

Notice that forA@1, Eq.~25! requires that an equal numbe
of squeezing and coherent photons contributes to the t
average power in the radiation, namelyncoh.nsq.n/2. In
this case Eq.~24! rewrites

sc
2>

1

4N n2
, ~26!

namely one obtains the ideal limit for the sensitivity of pha
estimation@1,2#. The bounds on sensitivity obtained in th
previous examples are saturated within a rather small n
ber of data samples. In Fig. 2 we compare the experime
error obtained by a Monte Carlo simulation of homody
detection on squeezed states using 5000 data samples
the theoretical bound of Eq.~24!. We fixed the total number
of photons at the valuen550, and varied the squeezing fra
tion nsq/n. Notice how experimental and theoretical da
compare very well. We estimated the statistical errors
Figs. 2–4 from the raw data by propagation of the errors
the evaluation ofȳ, namely

sc
25S ]cML

] ȳ
D 2

s ȳ
2 . ~27!

Notice that for large data samples,s ȳ→e22r /4N, and one
recovers Eq.~24!. As shown in Figs. 2–4, our estimation o
errors approaches the Crame´r-Rao bound, hence proving tha
the ML method for the phase estimation is statistically e
cient. At the optimal value of squeezing fraction@see Eq.
~25!#, the behaviorsc}1/n is well reproduced, also at th
small number 5000 of data samples, as shown in Fig. 3.

Unfortunately, the result in Eq.~26! is very sensible to the
effect of less-than-unity quantum efficiencyh of realistic

FIG. 2. Estimation of the statistical error~circles! for the phase-
shift measurement through the maximum-likelihood method o
squeezed state of radiation, for different values of the degree
squeezing. The total number of photon of the state is fixed an
550. The solid line represents the Crame´r-Rao bound on the errors
Only 5000 homodyne data have been used, and the bound is
rated, thus proving the efficiency of the method.
5-4
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PARAMETER ESTIMATION IN QUANTUM OPTICS PHYSICAL REVIEW A62 023815
homodyne detectors. Forh,1, the homodyne probability is
given by a convolution of the ideal distribution in Eq.~23!
with a Gaussian with variance (12h)/4h. In such case, Eq
~24! is replaced by

sc
2>

e22r1
12h

h

4N A2
. ~28!

The optimal value of the squeezing factore22r to minimize
Eq. ~28! at fixed total number of photons is given by th
solution in the intervalI 5@0,1# of the cubic equation

x31S 4A21
12h

h D x22x2
12h

h
50. ~29!

Compare Fig. 2 with Fig. 4, where quantum efficiencyh
50.8 has been used. Indeed, the optimal squeezing frac
rapidly approaches zero asr .A2h for h→0. Such a detri-
mental effect of quantum efficiency is similar to the effect
losses in squeezed-state homodyne communication cha
@13#. However, it can be partially stemmed by adopting
feedback-assisted homodyne detection@14#.

V. ABSOLUTE ESTIMATION OF THE QUANTUM
EFFICIENCY

In principle, in a photodetector each photon ionizes
single atom, and the resulting charge is amplified to prod
a measurable pulse. In practice, however, available phot
tectors are usually characterized by a quantum efficie
lower than unity, which means that only a fraction of t
incoming photons lead to an electric pulse, and ultimately
a ‘‘count.’’ If the resulting current is proportional to the in
coming photon flux we have a linear photodetector. This
for example, the case of the high flux photodetectors use
homodyne detection. On the other hand, photodetectors

FIG. 3. Phase sensitivity vs total number of photons achieva
through homodyne detection on squeezed states and maxim
likelihood estimation, with optimal fraction of squeezing photo
@see Eq.~27!#. Compare the results of a Monte Carlo simulati
with 5000 homodyne outcomes~circles! with the theoretical behav
ior ~solid line!.
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erating at very low intensities resort to avalanche proces
order to transform a single ionization event into a recorda
pulse. This implies that one cannot discriminate betwee
single photon or many photons as the outcomes from s
detectors are either a ‘‘click,’’ corresponding to any numb
of photons, or ‘‘nothing’’ which means that no photons ha
been revealed. In this section we apply the ML principle
the absolute estimation of the quantum efficiency of b
linear and avalanche photodetectors. We suppose to ha
our disposal a known reference state and, from the result
a measurement upon such a state, we infer the value o
quantum efficiency.

Let us first study the case of linear photodetectors. A
reference state we consider a squeezed-coherent state,
sured by homodyne detection. The effect of nonunit quant
efficiencyh on the probability distribution of homodyne de
tection is twofold. We have both a rescaling of the me
value and a broadening of the distribution. For a squee
stateux0 ,r &5D(x0)S(r )u0& with the direction of squeezing
parallel to the signal phase and to the phase of the homod
detection~without loss of generality we set this phase equ
to zero andx0 ,r .0) we have@15#

ph~x!5
1

A2pD2
expF2

~x2hx0!2

2D2 G ,

~30!

D25
1

4
~e22r112h!.

The total number of photons of the state is given byn5x0
2

1sinh2r, whereas the squeezing fraction is defined asg
5sinh2r/n. Apart from an irrelevant constant, the log
likelihood function can be written as

2L~h!5 logD21
1

D2
~x21hx0

222hx0x̄!. ~31!

The resulting MLE is thus given by

FIG. 4. Same as in Fig. 2, but for quantum efficiencyh580%.
Notice how the best sensitivity is achieved for a smaller fraction
squeezing photons.

le
m-
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hML511e22r1
1

x0
2 $12A1164x0

2@x21~11e22r !~x022x̄1x0e22r !x0#%. ~32!
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A set of Monte Carlo simulated experiments confirmed t
the Crame´r-Rao bound is attained. The performances of
ML estimation can be compared to the ‘‘naive’’ estimatio
based only on the measurement of the mean value,

hAV5 x̄/x0. We expect this method to be less efficient, sin
the quantum efficiency not only rescales the mean value,
also spreads the variance of the homodyne distribution in
~30!. In Fig. 5, on the basis of a Monte Carlo simulat
experiment, we compare the ML and the average-va
methods in estimating the quantum efficiency through hom
dyne detection on a squeezed state. The advantages o
method are apparent, especially for the estimation of
values of h. On the other hand, for small values of th
squeezing fraction the two methods have similar perf
mances, except for very low signals, whereas the ML e
mation performs better.

Let us now consider avalanche photodetectors, which
form theON-OFF measurement described by the two-val
probability operator measure

FIG. 5. Estimation of the quantum efficiency of linear photod
tectors through homodyne detection on a squeezed state. Both
report the ratio between the estimated value of the quantum
ciency and the true value, as a function of the true value.~a! Results
obtained using the maximum-likelihood method;~b! results by the
‘‘naive’’ average-value method. The homodyne sample consist
50 blocks of 50 data each, whereas the reference state is a squ
state with mean number of photonsn51 and squeezing fraction
g599% ~nearly a squeezed vacuum!.
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POFF5 (
p50

`

~12h!pup&^pu PON5I2POFF, ~33!

whereI denotes the identity operator. Indeed, for high qua
tum efficiency~close to unity! POFF andPON approach the
projection operator onto the vacuum state and its orthogo
subspace, respectively. With avalanche photodetectors
have only two possible outcomes: ‘‘click’’ or ‘‘no clicks’’
which we denote by ‘‘1’’ and ‘‘0,’’ respectively. The log-
likelihood function is given by

L~h!5~N2Nc!log P0~h!1Nclog@12P0~h!#, ~34!

where P0(h)5Tr@%POFF# is the probability of having no
clicks for the reference state described by the density ma
%, N is the total number of measurements, andNc is the
number of events leading to a click. The maximum ofL(h),
i.e., the MLE for the quantum efficiency, satisfies the eq
tion

P0~hML !512
Nc

N
, ~35!

whose solution, of course, depends on the choice of the
erence state. The optimal choice would be using sing
photon states as a reference. In this case, we have the t
result hML5Nc /N. However, single-photon states are n
easy to prepare@16#, and generally one would like to testh
for coherent pulsesua&. In this case, we haveP0(h)5exp
(2uau2h) and

hML52
1

uau2
logS 12

Nc

N D . ~36!

The Fisher information is given by

F5S ]P0

]h D 2 1

P0
1S ]P1

]h D 2 1

P1

5
1

P0~12P0! S ]P0

]h D 2

, ~37!

and therefore, for a weak coherent reference one has

F5
h2

ehuau221
.

h

uau2
~38!

and

sh.
uau

AhN
. ~39!
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VI. SUMMARY AND CONCLUSIONS

In quantum optics, there are several parameters of g
interest corresponding to quantities that are not directly
servable. Among these, we studied the parameters o
Gaussian state, the phase of a squeezed-coherent state
the quantum efficiency of either linear or single-photon
solving photodetector. In this paper, we have applied
maximum-likelihood method to the determination of the
parameters using feasible detection schemes. In partic
we have considered homodyne detection and ON-OFF p
todetection. In all cases here analyzed, the resulting est
tors are efficient, unbiased and consistent, thus providin
ry
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statistically reliable determination of the parameters of int
est. Moreover, by using the ML method only few thousa
data are required for the precise determination of parame
We stress that the ML procedure used in this paper can
applied to a broad class of estimation process, since it app
to any probability distributionp(xul), as long as its func-
tional form is known and the maximum of the likelihoo
function is unique. In conclusion, for the measurement
parameters pertaining to quantum states or optical devi
the ML procedure should be taken into account, in order
optimize data analysis and thus reducing the experime
efforts.
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