PHYSICAL REVIEW A 70, 055801(2004)

Photon statistics without counting photons
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We give a detailed analysis of an indirect method used to obtain the photon distribution of a single-mode
field using only on/off avalanche photodetectors. The method is based on measuring the field at different
guantum efficiencies and then inferring the photon distribution by maximume-likelihood estimation. We address
the case when only a limited range of quantum efficiency is available and when these values are not precisely
known. The convergence of the method and its robustness against fluctuations are illustrated by means of
numerically simulated experiments.
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I. INTRODUCTION *
. . . . Poti(7) = Tr{ell ()} = E (1-n"en. (2
In this Brief Report, we address a simple method to obtain n=0

the photon distribution without directly counting photons. In
this scheme, repeated preparations of the signal are reveal
through avalanche photodetectgfd?D’s) at different quan- : . .
tum efficiencies. The resulting on/off statistics is then used tc?f N ?etect(t)rs m(fefgs_urm_g the s?rzne quantum state with dif-
reconstruct the photon distribution through maximum- erent quantum efniciencies are then
likelihood estimation. Since the model is linear and the pho- p(7,) = 2 (1-75)"¢, (»=0,1,...N). (3)
ton distribution is a set of positive numbers, then the maxi- n

mum of the likelihood functional can be found iteratively by . .
If we know all of the »,’s values, Eq(3) is a linear system

the expectation-maximizatiofEM) algorithm [1,2]. The ith unk ST = h
method does not require long time stability and involves onlyVith unknowns{e,}. In practice, it is not necessary to have

simple optical components. The number of experimental run&t disposal many detectors with different quantum efficien-
depends on the signal under investigation, roughly increasing/€S» Since a suitable tuning af can be obtained by optical
with its nonclassicality. iiters or even through an mterferome’;np setup.

The idea of inferring photon distribution through on/off = SUPPose now that the,s are negligible forn>n and
detection at different efficiencies has been already analyze‘iﬁ‘,at we are able to measure the signal witkn different
theoretically[3], and implemented to realize a multichannel 77S- In this case Eq(3) is a linear system of the formp
fiber loop detectof4]. Here we analyze the reconstruction =" @ where — p={po,ps, ... Py} and ¢
when only a subset of values<Onyn< 7< Jmax<1 Of the ~ =1€0:01, ... O, and the coefficients matrix (for 7
quantum efficiency is available, and discuss in detail the sta# 7; Ui.]) is & nonsingular Vandermonde maitrix of oraer
tistical properties of the method: convergence and robustnesénfortunately, the reconstruction @f, by matrix inversion
against fluctuations in the value of the quantum efficiencies¢@nnot be used in practice since it W0U|d' require an unrea-

Given a single-mode state=3, 0,/n){m we are inter- sona_ble number of experlment_al rufg. This problem can
ested in the photon distribution, i.e., in the set of positiveP® Circumvented by considering Eqe3) as a statistical
numberso, = 0,,=0. We assume to have at disposal APD’s, model for the parameterg, to be solved by maximum-
which can only discriminate the vacuum from the presencdkelihood (ML) estimation. We assuré>n and define

gaom now on we suppress the subscript “off” and always
meanp,; when we writep. The “off” probabilities for a set

of radiation, with a certain _quantum efficieney This kind N p,=p,(7), An=(1-7)" (4)
of measurement is described by a two-value probability .
operator-valued measu(eOVM) so that Eq(3) can be rewritten as
P, =2 A (5)
n

or(7) = 20 (L=m)"xn), Toy(m) =1-Tloi(7). (1) The solution of this linear and positiveINPOS) model can
" be obtained using the EM algorithfd,2]. By imposing the
restriction>,0,=1, one obtains the iterative solution

- - A f

((+) = (O _“n v

on =o' o (6)
" " S ALPLeN)]
N

Therefore the detector does not click with a probability
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run with »=17, and p,,[{Qn }] are the probabilitiep,, calcu- 100 o0 [¥107
Iatetd using the reconstructed distributife|"} at theith it- Z:Z Bestmates| | I\ T :Z
eration. : O Theory el T
. . . \
The EM algorithm is known to converge unbiasedly to the °4° 20 | ;
ML solution. The confidence interval on the determination of °2 M e
the elemenp, can be given in terms of the variance ool — Mo om0 |00 R .
opl0 1 28 456789, lterations x20000
@)
— -1/2
- (A/Fn) ’ (7) 1.00 15 ”
0.80 10 ‘.}x10
N being the total number of measuremeriig the Fisher's o | |
information[6], oo o
0.0 o : - :
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1 aqv ooo Al ale ma — |05 Iterations x20000
Eq— @ (8) o 0 12345878 09]
v n (o) '
and FIG. 2. Reconstruction of the photon distribution of a squeezed

state with{=0.99 and(a'a)=0.5. Notice that a larger number of
iterations is needed in comparison with the coherent signal’s case.

D, EnAan We setn,=10f and n;=5x10P. The maximum efficiency iga)
q,= = Dmax=0.99; (D) 7ma=0.7. The other parameters are the same as in
E Py Evn AvnQn Flg 1.
14
. I . . II. MONTE CARLO SIMULATED EXPERIMENTS
are Fhe renormalized prob_ab|I|t|es pb-click \{wth quantum AND DISCUSSION
efficiency 7,. Ng=2,,A,n0 is the global fraction of no-click ) ) ) )
events(irrespective of the quantum efficiency We have performed several numerical simulations in or-

Notice that Eq.(6) provides a solution once an initial der to check the accuracy and reliability of this method by

distribution {¢\”} is chosen. In our simulated experiments \l\//la[ylng the different parameters. Since the solution of the
0 _ 2 estimation is obtained iteratively, the most important as-

we start from the uniform distributiorp,”=(1+n)™ in  hact to keep under control is its convergence. As a measure

[0,n]. Other choices, the only constraint belgﬁ)géo Un,  of convergence we use the total absolute error atkthe

do not dramatically influence the convergence properties aeration,

the algorithm.

N
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FIG. 1. Reconstruction of the photon distribution of a coherent 01 234586789 lterations x20000
-1.0

state with(aa)=5.20: reconstructed distributiaieft); normaliza- (Q?'ZO
tion factors¥==,0%-1 and total erroe™® of Eq. (9) as functions

of ny (right). The confidence interval has been evaluated using Eq. FIG. 3. Reconstruction of the photon distribution of the super-
(7). We setn,=n;=10°. We useN=50 different quantum efficien- position of Fock statedy)=(2/3¥32)+(1/3)¥47). We setn,

cies with a minimum efficiencyym,=0.02. The maximum effi- =10* andn;=5x 10°. The maximum efficiency iS(@) 7may=0.99;
ciency:(a) 7max=0.99;(b) 7ma=0.5. The Hilbert space is truncated (b) 7ym2=0.5. The other parameters are the same as in
atn=20. Fig. 1.
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FIG. 4. Fidelity G¥ versus the number of iterations: for a
squeezed state witta'a)=1.0 and different squeezing fractiogs
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squeezing fractiort=1-|a|?/(a'a): ¢=1 corresponds to a
squeezed vacuum, whilg&=0 to a coherent state. The error
bars are calculated using Eqg) and(8).

The algorithm converges quite fast for coherent states, as
shown in Fig. 1, while for squeezed statésg. 2) the num-
ber of needed iterations is largeree the left plot of Fig. B
In Fig. 3 we show the reconstruction for the unbalanced su-
perpositions of Fock states, namelyy)=(2/3)*?2)
+(1/3)Y27).

Moreover, in Figs. 1-3right) we reporte® versus the
number of iterations for different signals. As it is apparent
from the plots, the total error is a good marker for the con-
vergence of the algorithm, while the normalization factor
SW==,0%-1 (ideally zero at each stgfs not. Notice, how-
ever, that the minimum of the total error could not always
coincide with the maximum fidelity of reconstruction; in-
deed, fidelity is not the cost function maximized by ML es-
timation[5]. We have numerically observed that this problem

1
K _ KT — K
&'=p,-plie=p,~ X A-n)f. (10 o= o e
n=0 0.20 1 | x10 s
N 4.0 (k)
0.15 O Estimated | £
The total errore™® measures the distance of the probabilities oo OTheoy || |\
p [{Q<k)}] as calculated at thkth iteration, from the actual '05 ' ——
experimental probabilities. As a measure of accuracy we '00 00 , : :
adopt the fidelity _0'05 0 2 4 6 8 10 12 14 16 18 20 ¥ heratons xdoo
—_— @) '
G(k) 2 Vo (k (11) 0.25 2.0 1
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one. 0.10 R
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(Fig. 3), whereD(a)=explaa’—aa} is the displacement op- &
erator ancB(g)—exp{E(ga”— a?)} is the squeezing operator. oso | 60 {/\x10"
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FIG. 5. Fidelity G¥ versus the number of iterations for a
squeezed state witta'a)=1.5 and/=0.75. Each line represents a
different simulated run witm,=10 (left) andn,=10° (right). The
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FIG. 6. Reconstruction of the photon distribution for different
signals and fluctuatingy,: (a), (a') coherent state with(a'a)
=5.20;(b), (b') squeezed state witta'a)=0.50 andt=0.99. We set
a=2 in Eq.(12) and:(a), (&) n,=n;=10; (b), (b’) n,=1C° and
ng=5x10%. The maximum efficiency i%a), (b) 7ma=0.99; (&')
Nmax=0.5; (b") 7max=0.7. The other parameters are the same as in
Fig. 1.
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can be circumvented by using a number of iteratiams, Tmax— Trmin

approximately equal to the number of data for eaghn,. =" N (@a>0), (12)

We have no precise explanation for this phenomenon, and

provide it as a heuristic prescription leading to best perfor-;, being the expected value. The valag2 corresponds to

mances for a large class of quantum signals. each , fluctuating in an interval as large as the spacing
Concerning the values of the quantum efficiency, we useq;, . -7 ) around its expected value. The values mf

N values of » uniformly distributed in[ 7min, 7mad With  change accordingly during the run. Our results are summa-

7min=0 and 7,5<1. In principle, a different distribution j;64"in Fig. 6. The reconstruction is not dramatically af-

(not uniform may influence the performances of the algo-fecteq by fluctuations, though errors bars are slightly larger
rithm. We found, however, that both convergence and accuy, y Tuctuations, oug W9ty ‘arger.

racy are not much affected by a different choice. which may e conclude that the method is robust against fluctuations.
become relevant only if the spacing between the efficiency
values becomes smaller. It should be noticed that the algo-
rithm works well also whens. is considerably smaller IIl. CONCLUSIONS
than unit(see Figs. 1-8 this is a relevant feature of the
method in view of its experimental implementations in dif-
ferent working regimes.

In experiments where we have agriori information on

the state under investigation it could happen that part, o ; o
even most, of the photon distributia, lies outside the re- and squeezgdand non-Gaussian statésuperpositions and

construction regionfrom O to ). In this case we have mixtures of(n) statey, prqvided that on/off ph.o'Fodejtection
checked that the algorithm is able to reconstruct accurateljP@y be performed at different quantum efficiencies. The
the norm of the included part, such that a simple check of thécheme involves only simple optical components, and allows
distribution norm allows us to optimize (and in turnN) in  reconstruction with APD quantum efficiency considerably
few steps. This is a remarkable feature of the algorithmsmaller than unit. The convergence of the method, and its
since in general a largd¥ improves convergence but does not robustness against fluctuations of quantum efficiency have
guarantee better accuracgyight plot of Fig. 4, which is  been demonstrated numerically, by means of Monte Carlo
achievable by increasing the number of experimental data fasimulated experiments.
eachn, n,, as shown in Fig. 5.

A question may arise about the robustness of the method
against fluctuations in the value of thg, i.e., whether or not ACKNOWLEDGMENTS
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We analyzed in details an iterative algorithm to infer the
photon distribution of a single-mode radiation field using
only avalanche photodetectors. The method is accurate and
§tatistically reliable for a large class of Gauss{@oherent
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