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We give a detailed analysis of an indirect method used to obtain the photon distribution of a single-mode
field using only on/off avalanche photodetectors. The method is based on measuring the field at different
quantum efficiencies and then inferring the photon distribution by maximum-likelihood estimation. We address
the case when only a limited range of quantum efficiency is available and when these values are not precisely
known. The convergence of the method and its robustness against fluctuations are illustrated by means of
numerically simulated experiments.
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I. INTRODUCTION

In this Brief Report, we address a simple method to obtain
the photon distribution without directly counting photons. In
this scheme, repeated preparations of the signal are revealed
through avalanche photodetectors(APD’s) at different quan-
tum efficiencies. The resulting on/off statistics is then used to
reconstruct the photon distribution through maximum-
likelihood estimation. Since the model is linear and the pho-
ton distribution is a set of positive numbers, then the maxi-
mum of the likelihood functional can be found iteratively by
the expectation-maximization(EM) algorithm [1,2]. The
method does not require long time stability and involves only
simple optical components. The number of experimental runs
depends on the signal under investigation, roughly increasing
with its nonclassicality.

The idea of inferring photon distribution through on/off
detection at different efficiencies has been already analyzed
theoretically[3], and implemented to realize a multichannel
fiber loop detector[4]. Here we analyze the reconstruction
when only a subset of values 0,hmin,h,hmax,1 of the
quantum efficiency is available, and discuss in detail the sta-
tistical properties of the method: convergence and robustness
against fluctuations in the value of the quantum efficiencies.

Given a single-mode state%=on,m%nmunlkmu we are inter-
ested in the photon distribution, i.e., in the set of positive
numbers%n;%nnù0. We assume to have at disposal APD’s,
which can only discriminate the vacuum from the presence
of radiation, with a certain quantum efficiencyh. This kind
of measurement is described by a two-value probability
operator-valued measure(POVM)

Poffshd = o
n=0

`

s1 − hdnunlknu, Ponshd = I − Poffshd. s1d

Therefore the detector does not click with a probability

poffshd = Trh%Poffshdj = o
n=0

`

s1 − hdn%n. s2d

From now on we suppress the subscript “off” and always
meanpoff when we writep. The “off” probabilities for a set
of N detectors measuring the same quantum state with dif-
ferent quantum efficiencies are then

pnshnd = o
n

s1 − hndn%n sn = 0,1, . . . ,Nd. s3d

If we know all of thehn’s values, Eq.(3) is a linear system
with unknownsh%nj. In practice, it is not necessary to have
at disposal many detectors with different quantum efficien-
cies, since a suitable tuning ofh can be obtained by optical
filters or even through an interferometric setup.

Suppose now that the%n’s are negligible forn. n̄ and
that we are able to measure the signal withN= n̄ different
h’s. In this case Eq.(3) is a linear system of the formp
=V ·%, where p=hp0,p1, . . . ,pn̄−1jT and %
=h%0,%1, . . . ,%n̄−1jT, and the coefficients matrixV (for hi

Þh j ∀ i , j) is a nonsingular Vandermonde matrix of ordern̄.
Unfortunately, the reconstruction of%n by matrix inversion
cannot be used in practice since it would require an unrea-
sonable number of experimental runs[3]. This problem can
be circumvented by considering Eqs.(3) as a statistical
model for the parameters%n to be solved by maximum-
likelihood (ML ) estimation. We assumeN. n̄ and define

pn ; pnshnd, Ann ; s1 − hndn, s4d

so that Eq.(3) can be rewritten as

pn = o
n

Ann%n. s5d

The solution of this linear and positive(LINPOS) model can
be obtained using the EM algorithm[1,2]. By imposing the
restrictionon%n=1, one obtains the iterative solution

%n
si+1d = %n

sido
n

Ann

o
l

Aln

fn

pnfh%n
sidjg

, s6d

where%n
sid is the value of%n evaluated at theith iteration,fn

are the experimental frequencies of the “off” events in the
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run with h=hn and pnfh%n
sidjg are the probabilitiespn calcu-

lated using the reconstructed distributionh%n
sidj at the ith it-

eration.
The EM algorithm is known to converge unbiasedly to the

ML solution. The confidence interval on the determination of
the element%n can be given in terms of the variance

sn = sNFnd−1/2, s7d

N being the total number of measurements,Fn the Fisher’s
information [6],

Fn = o
n

1

qn
S ]qn

]%n
D2

, s8d

and

qn =
pn

o
n

pn

=
on

Ann%n

onn
Ann%n

are the renormalized probabilities ofno-click with quantum
efficiencyhn. N0=onnAnn%n is the global fraction of no-click
events(irrespective of the quantum efficiency).

Notice that Eq.(6) provides a solution once an initial
distribution h%n

s0dj is chosen. In our simulated experiments
we start from the uniform distribution%n

s0d=s1+n̄d−1 in
f0,n̄g. Other choices, the only constraint being%n

s0dÞ0, ∀n,
do not dramatically influence the convergence properties of
the algorithm.

II. MONTE CARLO SIMULATED EXPERIMENTS
AND DISCUSSION

We have performed several numerical simulations in or-
der to check the accuracy and reliability of this method by
varying the different parameters. Since the solution of the
ML estimation is obtained iteratively, the most important as-
pect to keep under control is its convergence. As a measure
of convergence we use the total absolute error at thekth
iteration,

«skd = o
n=0

N

uen
skdu, s9d

where

FIG. 1. Reconstruction of the photon distribution of a coherent
state withka†al=5.20: reconstructed distribution(left); normaliza-
tion factorSskd=on%n

skd−1 and total error«skd of Eq. (9) as functions
of nit (right). The confidence interval has been evaluated using Eq.
(7). We setnx=nit =105. We useN=50 different quantum efficien-
cies with a minimum efficiencyhmin=0.02. The maximum effi-
ciency:(a) hmax=0.99;(b) hmax=0.5. The Hilbert space is truncated
at n̄=20.

FIG. 2. Reconstruction of the photon distribution of a squeezed
state withz=0.99 andka†al=0.5. Notice that a larger number of
iterations is needed in comparison with the coherent signal’s case.
We set nx=106 and nit =53106. The maximum efficiency is(a)
hmax=0.99; (b) hmax=0.7. The other parameters are the same as in
Fig. 1.

FIG. 3. Reconstruction of the photon distribution of the super-
position of Fock statesucl=s2/3d1/2u2l+s1/3d1/2u7l. We set nx

=104 andnit =53106. The maximum efficiency is:(a) hmax=0.99;
(b) hmax=0.5. The other parameters are the same as in
Fig. 1.
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en
skd = pn − pnfh%n

skdjg = pn − o
n=0

n̄−1

s1 − hndn%n
skd. s10d

The total error«skd measures the distance of the probabilities
pnfh%n

skdjg, as calculated at thekth iteration, from the actual
experimental probabilities. As a measure of accuracy we
adopt the fidelity

Gskd = o
n

Î%n%n
skd s11d

between the reconstructed distribution and the theoretical
one.

The simulated experiments we performed concern coher-
ent states ual=Dsadu0l (Fig. 1), squeezed statesua ,zl
=DsadSszdu0l (Fig. 2), and superposition of two Fock states
(Fig. 3), whereDsad=exphaa†−āaj is the displacement op-

erator andSszd=exph 1
2sza†2− z̄a2dj is the squeezing operator.

Squeezed states have been parametrized through the total
average photon numberka†al= uau2+ uzu2/ s1−uzu2d and the

squeezing fractionj=1−uau2/ ka†al: j=1 corresponds to a
squeezed vacuum, whilej=0 to a coherent state. The error
bars are calculated using Eqs.(7) and (8).

The algorithm converges quite fast for coherent states, as
shown in Fig. 1, while for squeezed states(Fig. 2) the num-
ber of needed iterations is larger(see the left plot of Fig. 4).
In Fig. 3 we show the reconstruction for the unbalanced su-
perpositions of Fock states, namelyucl=s2/3d1/2u2l
+s1/3d1/2u7l.

Moreover, in Figs. 1–3(right) we report«skd versus the
number of iterations for different signals. As it is apparent
from the plots, the total error is a good marker for the con-
vergence of the algorithm, while the normalization factor
Sskd=on%n

skd−1 (ideally zero at each step) is not. Notice, how-
ever, that the minimum of the total error could not always
coincide with the maximum fidelity of reconstruction; in-
deed, fidelity is not the cost function maximized by ML es-
timation[5]. We have numerically observed that this problem

FIG. 4. Fidelity Gskd versus the number of iterations: for a
squeezed state withka†al=1.0 and different squeezing fractionsj
(left), and for a squeezed state withka†al=1.0,j=0.75 and different
numbersN of h’s values(right). In both casesnx=105.

FIG. 5. Fidelity Gskd versus the number of iterations for a
squeezed state withka†al=1.5 andz=0.75. Each line represents a
different simulated run withnx=105 (left) andnx=106 (right). The
other parameters are the same as in Fig. 1.

FIG. 6. Reconstruction of the photon distribution for different
signals and fluctuatinghn: (a), sa8d coherent state withka†al
=5.20;(b), sb8d squeezed state withka†al=0.50 andj=0.99. We set
a=2 in Eq. (12) and: (a), sa8d nx=nit =105; (b), sb8d nx=106 and
nit =53106. The maximum efficiency is(a), (b) hmax=0.99; sa8d
hmax=0.5; sb8d hmax=0.7. The other parameters are the same as in
Fig. 1.
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can be circumvented by using a number of iterations,nit,
approximately equal to the number of data for eachhn, nx.
We have no precise explanation for this phenomenon, and
provide it as a heuristic prescription leading to best perfor-
mances for a large class of quantum signals.

Concerning the values of the quantum efficiency, we used
N values of h uniformly distributed in fhmin,hmaxg with
hmin.0 and hmax,1. In principle, a different distribution
(not uniform) may influence the performances of the algo-
rithm. We found, however, that both convergence and accu-
racy are not much affected by a different choice, which may
become relevant only if the spacing between the efficiency
values becomes smaller. It should be noticed that the algo-
rithm works well also whenhmax is considerably smaller
than unit (see Figs. 1–3): this is a relevant feature of the
method in view of its experimental implementations in dif-
ferent working regimes.

In experiments where we have noa priori information on
the state under investigation it could happen that part, or
even most, of the photon distribution%n lies outside the re-
construction region(from 0 to n̄). In this case we have
checked that the algorithm is able to reconstruct accurately
the norm of the included part, such that a simple check of the
distribution norm allows us to optimizen̄ (and in turnN) in
few steps. This is a remarkable feature of the algorithm,
since in general a largeN improves convergence but does not
guarantee better accuracy(right plot of Fig. 4), which is
achievable by increasing the number of experimental data for
eachh, nx, as shown in Fig. 5.

A question may arise about the robustness of the method
against fluctuations in the value of thehn, i.e., whether or not
their precise knowledge is needed. In order to check robust-
ness we have performed simulated experiments where, dur-
ing the run, the quantum efficiency may fluctuate. In particu-
lar, we assumed eachhn uniformly distributed in the range
sh̄n−s ,h̄n+sd, where

s =
h̄max− h̄min

aN
sa . 0d, s12d

h̄n being the expected value. The valuea=2 corresponds to
each hn fluctuating in an interval as large as the spacing
sh̄n+1−h̄nd around its expected value. The values ofpn

change accordingly during the run. Our results are summa-
rized in Fig. 6. The reconstruction is not dramatically af-
fected by fluctuations, though errors bars are slightly larger.
We conclude that the method is robust against fluctuations.

III. CONCLUSIONS

We analyzed in details an iterative algorithm to infer the
photon distribution of a single-mode radiation field using
only avalanche photodetectors. The method is accurate and
statistically reliable for a large class of Gaussian(coherent
and squeezed) and non-Gaussian states(superpositions and
mixtures of knl states), provided that on/off photodetection
may be performed at different quantum efficiencies. The
scheme involves only simple optical components, and allows
reconstruction with APD quantum efficiency considerably
smaller than unit. The convergence of the method, and its
robustness against fluctuations of quantum efficiency have
been demonstrated numerically, by means of Monte Carlo
simulated experiments.
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