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Homodyne detection as a near-optimum receiver for phase-shift-keyed binary
communication in the presence of phase diffusion
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We address binary optical communication channels based on phase-shift-keyed coherent signals in the presence
of phase diffusion. We prove theoretically and demonstrate experimentally that a discrimination strategy based
on homodyne detection is robust against this kind of noise for any value of the channel energy. Moreover, we
find that a homodyne receiver beats the performance of a Kennedy receiver as the signal energy increases and
achieves the Helstrom bound in the limit of large noise.
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I. INTRODUCTION

In a binary quantum communication channel the sender
encodes the logical symbols 1 and 0 on two states of a
physical system described by the density operators !̂1 and !̂0,
respectively. In order to retrieve the logical information, the
receiver should discriminate between the two signals, which,
in general, may be not orthogonal, due to the encoding process
itself (!̂1 and !̂0 may refer to nonorthogonal states) or because
of the noise during the propagation stage [1]. In this case,
an unavoidable probability of error Pe = 1

2 [P (1|0) + P (0|1)]
appears, where P (j |k) is the probability of inferring the
symbol j when the signal sent over the channel was meant
for k and we assume that the two states are sent with
equal probability. The minimum error probability allowed
by quantum mechanics is given by the Helstrom bound
[1] PQ = 1

2 (1 − 1
2 Tr|!̂0 − !̂1|), where |A| =

√
A†A. Optimal

discrimination of nonorthogonal states is a crucial topic for the
effective implementation of quantum communication channels
and, as a consequence, different strategies have been employed
to attack the problem in different situations [2–4].

In the following, we address binary communication chan-
nels with phase-shift-keyed (PSK) signals [5,6], i.e., channels
where the information is encoded on two coherent states
|ψ1〉 = |α〉 and |ψ0〉 = |−α〉 (without lack of generality we
can assume α ∈ R, α > 0). In this case, the Helstrom bound
is rewritten as PQ = 1

2 [1 −
√

1 − |〈ψ0|ψ1〉|2], i.e.,

PQ = 1
2 [1 −

√
1 − exp (−4N )], (1)

where N = |α|2 is the average number of photons contained
in each signal; it will be referred to as the signal energy
throughout the paper. A detection strategy achieving this level
of error probability is said to be an optimum receiver.

Quantum state discrimination strategies for PSK signals is
an active field of research since it encompasses the read-out
problem, and it is an important tool to assess the performances
of quantum limited measurements in optical communication,
e.g., for deep-space missions [7]. On the one hand, in
the high-energy regime, a near-optimum receiver based on
photodetection, the so-called Kennedy receiver, was proposed
long ago for coherent signals propagating in an ideal channel
[8,9]. The Kennedy receiver has been also extended [10–12]

and, in particular, an optimum receiver based on an adaptive
scheme has been recently experimentally realized [13]. On
the other hand, strategies based on homodyne detection have
great practical advantages [14] and for this reason their perfor-
mances have been analyzed in realistic situations. In particular,
receivers based on homodyne detection have been theoretically
[15–17] and experimentally investigated [18] in the presence
of losses and phase-insensitive thermal noise. More generally,
these receivers have been proved to represent the optimum
Gaussian strategy for the discrimination of the PSK coherent
signals [19] and it has been also demonstrated that it possible
to emulate adaptive processes by means of postprocessing and
Bayesian analyses [20]. Hybrid [21] and displacement-based
[22] detectors also have been implemented to decrease the
error probability, with application to M-ary communication
channels [23].

Communication schemes based on coherent signals may
be useful in scenarios in which quantum resources (as single
photons and entanglement) cannot be fully exploited, as
in free-space communication. In this paper we analyze a
source of noise, namely, phase diffusion, which is detrimental
for coherent-signal-based channels. At the same time, this
provides a relevant example of non-Gaussian noise. We
demonstrate experimentally the robustness of the homodyne
receiver against phase noise. Moreover, we find that in
the presence of phase noise, the homodyne receiver beats the
performances of the Kennedy receiver as the signal energy
increases and/or the noise is larger than an intensity-dependent
threshold value. Finally, we show that homodyne detection
achieves the Helstrom bound in the limit of large noise.

II. PHASE DIFFUSION

Any phase diffusion process coming from a nondissipative
interaction with a bosonic environment may be described by
a suitable phase-diffusion master equation [24]. The overall
effect of phase diffusion on a coherent state !̂α = |α〉〈α| is
described by the map [25]

!̂α → !̂′
α =

∫

R
dφ g(φ,δ)|αeiφ〉〈αeiφ|, (2)
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where g(φ,δ) is a normal distribution of the variable φ
with zero mean and standard deviation δ. At the end of
a channel affected by phase diffusion the receiver is faced
with the problem of discriminating between !̂′

α and !̂′
−α . In

order to calculate the corresponding Helstrom bound, one
has to diagonalize the traceless operator & = !̂′

α − !̂′
−α whose

expansion in the photon-number basis reads

& =
∞∑

n,m=0

αn+m

√
n! m!

e−α2−[(n−m)2/2]δ2
[1 − (−1)n−m]|m〉〈n|.

This can be done numerically after a suitable truncation of the
Hilbert space, which is determined by the average number of
photons of the two signals. The Helstrom bound for different
values of the signal energy N and the diffusion coefficient δ is
reported in Fig. 3 together with the experimental data for the
homodyne receiver. For small values of the coherent amplitude
we may truncate & at low dimension, achieving the analytic
expression

PQ(δ) ) 1
2 (1 − αe−δ2/2), (3)

whereas in the limit δ * 1 of large noise we have

PQ(δ) ) 1
2 [1 − gQ(α)e−δ2/2], (4)

where gQ(α) is a decreasing function of the amplitude.

III. KENNEDY RECEIVER IN THE PRESENCE
OF PHASE NOISE

In the ideal case, a near-optimum strategy is provided by
the Kennedy receiver [8] based on photodetection: The signal
mode â excited in either |α〉 or |−α〉 interferes with a reference
mode b̂ excited in the coherent state |β〉 at a beam splitter (BS)
with transmissivity τ = cos2 ϕ and a photodetector detects the
light at one output. The overall evolved state reads Uτ |±α〉 ⊗
|β〉 = |±

√
τα +

√
1 − τβ〉 ⊗ |

√
τβ ∓

√
1 − τα〉, where Ûτ

is the evolution operator associated with the BS. If we choose
β = α

√
τ/

√
1 − τ , take τ → 1, and consider only the first

output port, then we have the input-output relation |±α〉 →
|±α + α〉. Therefore, a natural discrimination strategy is to
associate the absence of light (the vacuum) with the symbol
0, i.e., |−α〉, and the detection of any number of photons with
the symbol is 1, i.e., |α〉. This strategy also implies a nonzero
probability of inferring the wrong symbol, which is determined
by the conditional probabilities [16]

P (0|1) = lim
τ→1

Tr[Ûτ !̂α ⊗ !̂βÛ †
τ *̂0 ⊗ Î] = e−4N, (5a)

P (1|0) = lim
τ→1

Tr[Ûτ !̂−α ⊗ !̂βÛ †
τ *̂1 ⊗ Î] = 0, (5b)

where we introduced the projectors *̂0 = |0〉〈0| and *̂1 =
Î − *̂0, describing an on-off detector detecting the absence or
the presence of photons, respectively. The overall probability
of error (still assuming the two signals sent with the same
probability) is

PK = P (0|1) + P (1|0)
2

= exp(−4N )
2

. (6)

It is worth noting that, in the limit N * 1, PK ≈ 2PQ, i.e., the
Kennedy receiver based on photodetection is nearly optimal.

In the presence of phase diffusion, Eqs. (5) become

Pδ(0|1) =
∫

R
dφ g(φ,δ) exp[−4α2 cos2(φ/2)], (7a)

Pδ(1|0) = 1 −
∫

R
dφ g(φ,δ) exp[−4α2 sin2(φ/2)], (7b)

and

PK (δ) = 1
2 [Pδ(0|1) + Pδ(1|0)],

which can be easily evaluated numerically. For small values
of the coherent amplitude we have the analytic expression

PK (δ) ) 1
2

(
1 − 4α2e−2δ2)

, (8)

whereas in the limit δ * 1 of large noise we have

PK (δ) ) 1
2

[
1 − gK (α)e−2δ2]

, (9)

where gK (α) is a decreasing function of the amplitude.

IV. HOMODYNE RECEIVER IN THE PRESENCE
OF PHASE NOISE

Let us now focus on a different strategy based on
homodyne detection: The receiver measures the quadrature
x̂ψ = 2−1/2(â†eiψ + âe−iψ ), where ψ = arg[α] (in our case
ψ = 0 or π ) and associates the symbol 1 (0) with a positive
(negative) outcome. In the presence of losses and thermal
noise but without phase noise, this strategy has been proven
to beat the photodetection strategy in either the low- or the
high-energy regime [16]. In the presence of phase diffusion
we have the following conditional probabilities (the noiseless
case is recovered in the limit δ → 0):

Qδ(0|1) =
∫ 0

−∞
dx pδ(x; α),

(10)

Qδ(1|0) =
∫ +∞

0
dx pδ(x; −α),

where

pδ(x; ±α) =
∫

R

dφ√
π

g(φ,δ)e−(x∓
√

2α cos φ)2
(11)

is the homodyne probability, namely, the probability of
obtaining as outcome x addressing the quadrature x̂0 given
the input |±α〉. The overall probability of error thus is written

PH (δ) = 1
2 [Qδ(0|1) + Qδ(1|0)] (12)

and can be easily evaluated numerically. For small values of
the coherent amplitude we have the analytic expression

PH (δ) ) 1
2

(

1 − α

√
2
π

e−δ2/2

)

, (13)

whereas in the limit δ * 1 of large noise we have

PH (δ) ) 1
2

[
1 − gH (α)e−δ2/2], (14)

where gH (α) is a decreasing function of the amplitude with
gH (α) < gQ(α) and gH (α) approaching gQ(α) for increasing
amplitude.
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FIG. 1. (Color online) Schematic diagram of the experimental
apparatus. The primary source is a He:Ne laser, then split into two
paths, the local oscillator (LO) and the signal, by means of a half-
wave plate (HWP) and a polarizing beam splitter (PBS). The phase
modulation (PM) is obtained by a piezo connected to a computer
(PC). The amplitude modulation (AM) of the coherent signals is
controlled by a KDP and a PBS. The homodyne receiver is composed
of a balanced beam splitter (BS) and a balanced amplifier detector
based on a silicon photodiodes (D1 and D2). M1 is a mixer used to
set the amplitude modulation by a computer, whereas M2 is a mixer
used to demodulate the signal @4MHz.

FIG. 2. (Color online) Panels on the left show homodyne traces
for the quadrature x̂φ , of the coherent signals |α〉 [red (light gray)]
and |−α〉 [blue (dark gray)] for increasing noise (from top to bottom,
δ = 0, 0.7, and 1.4 rad) in the case of N = α2 = 1.0. Panels on the
right show homodyne traces for the quadrature x̂0 versus the detection
time. The horizontal line refers to the threshold for the discrimination
strategy: If the dots fall above (below) that line, the signal is chosen
to be 1 (0).

V. EXPERIMENT

The experimental apparatus we used to investigate the
performance of the homodyne receiver in the presence of
phase diffusion is sketched in Fig. 1. The output beam of a
He:Ne laser is split into two paths, the local oscillator (LO
in Fig. 1) and the signal, by means of a suitable combination
of a half wave plate (HWP) and a polarizing beam splitter
(PBS). The phase modulation (PM) is obtained by a piezo
connected to the computer (PC), which sends a voltage
signal with a frequency of 1 kHz corresponding to the phase
diffusion. The amplitude modulation (AM) of the coherent
signals is controlled by a suitable combination of a potassium
dihydrogen phosphate (KDP) crystal and a PBS [26]. The
actual homodyne receiver is composed by a 50:50 BS and a
balanced amplifier detector based on silicon photodiodes (D1
and D2). In order to experimentally determine the probability
of error, for a fixed value of the signal energy N = α2, we
performed ten runs with 5 × 103 shots each, randomly chosen
between |α〉 and |−α〉.

VI. DATA ANALYSIS AND DISCUSSION

In Fig. 2 we report the data of our experiments for different
values of the noise parameter. In the left panels we show the ho-
modyne traces for the quadrature x̂φ , of the coherent signals |α〉
[red (light gray)] and |−α〉 [blue (dark gray)] as a function of φ
and for increasing level of noise. In the right panels we report
homodyne data for the optimal quadrature x̂0 versus the detec-
tion time. The horizontal line refers to the threshold for the dis-
crimination strategy: If the dots (i.e., the homodyne outcomes)
fall above (below) that line, the signal is inferred to be 1 (0).

In Fig. 3 we report the behavior of the probabilities of error
PQ(δ), PK (δ), and PH (δ) as functions of the phase diffusion

FIG. 3. (Color online) A log-linear plot of the homodyne proba-
bility of error (red circles) as a function of the diffusion parameter δ

for different values of the signal energy N . Each point corresponds
to the average of ten acquisitions of 5 × 103 values with a phase
diffusion frequency of 1 kHz. The errors bars correspond to the
standard deviation of the mean. The theoretical predictions PH (δ)
(solid red line) is reported for comparison. We also show the error
probability PK (δ) of a Kennedy receiver (dashed blue line) in the
same experimental conditions and the Helstrom bound PQ(δ) (dotted
green line).
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FIG. 4. Threshold value δth of the diffusion coefficient δ as a
function of the signal energy N . The meaning of the threshold value is
the following: If δ ! δth, then the homodyne receiver shows a smaller
error probability than does the Kennedy receiver (gray region); if
δ < δth, then the opposite holds (white region).

coefficient δ and for different values of the input energy N . As
one may expect, the presence of the phase noise dramatically
affects the performance of the Kennedy receiver: It is worth
noting that as the input energy increases, a small amount
of phase noise is enough to increase by several orders of
magnitude the probability of error PK . In contrast, the strategy
based on the homodyne detection is quite robust with respect to
the phase noise. As is apparent from the plots, for δ " 0.2 the
value of PH is almost constant. In addition, PH approaches
the quantum mechanical limit given by the Helstrom bound
PQ as δ increases, as anticipated by the asymptotic expansions
in Eqs. (4) and (14). In general, as the signal energy and the

noise increase, the homodyne receiver becomes more effective
than the Kennedy receiver. This behavior is illustrated in Fig. 4,
where we plot the threshold δth ≡ δth(N ) on the diffusion coef-
ficient δ as a function of the signal energy N : At any fixed value
of N , if δ ! δth then the homodyne receiver exhibits a smaller
error probability than does the Kennedy receiver in the same
experimental conditions, in agreement with Eqs. (9) and (14).

VII. CONCLUSION

We have addressed PSK binary optical communication in
the presence of phase diffusion, i.e., a detrimental noise for
schemes based on coherent signals. We demonstrated experi-
mentally that a discrimination strategy based on homodyne
detection is robust against this kind of noise. In addition,
we have also demonstrated that homodyne receivers beat the
performances of Kennedy receivers as long as the noise is
larger than an energy-dependent threshold. Finally, we have
shown that homodyne receivers achieve the Helstrom bound on
the error probability in the limit of large noise and for any value
of the signal energy. Our results help clarify the fundamental
limits of quantum communications and show that receivers
that perform near the quantum limit in noisy conditions are
realizable with current technology [27].
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