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We address the class of positive operator-valued measures (POVMs) for qubit systems that are
obtained by coupling the signal qubit with a probe qubit and then performing a projective
measurement on the sole probe system. These POVMs, which represent the simplest class of
qubit POVMs, depends on 3þ 3þ 2 ¼ 8 free parameters describing the initial preparation of the
probe qubit, the Cartan representative of the unitary coupling, and the projective measurement
at the output, respectively. We analyze in some detail the properties of the POVM matrix
elements, and investigate their values for given ranges of the free parameters. We also analyze in
detail the tradeo® between information and disturbance for di®erent ranges of the free para-
meters, showing, among other things, that (i) typical values of the tradeo® are close to optimality
and (ii) even using a maximally mixed probe one may achieve optimal tradeo®.

Keywords: Quantum measurements; information/disturbance tradeo®; Naimark theorem.

1. Introduction

A common task in quantum technology is that of extracting information about the
state of a physical system without destroying the information itself, i.e. possibly
leaving part of it for another users. This is usually accomplished through indirect
measurement, i.e. coupling the system of interest with a probe system and per-
forming measurements on the probe.1 The information on the system is thus provided
by the probe and the system is not destroyed, though its state may be changed after
the measurement. This measurement strategy may be described in terms of the sole
system, neglecting the probe, by tracing out the probe degrees of freedom. This
procedure returns a positive operator-valued measure (POVM) on the Hilbert space
of the system, which describes both the statistics of the outcomes and the state
reduction due to the measurement.2–6 For qubit systems, the simplest class of
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POVMs involves another qubit as probe and depends on 3þ 3þ 2 ¼ 8 free para-
meters, which describe the initial preparation of the probe qubit, the unitary operator
which describes the interaction between the two qubits, and the projective mea-
surement at the output, respectively.

In this paper, we address the properties of this class of POVMs as a function of the
free parameters. In particular, in order to obtain information about their typical
values, the distribution of POVMs' matrix elements is analyzed for random choices of
the free parameters in di®erent ranges. Besides, we analyze in some detail the tradeo®
between information and disturbance, showing that typical values of the tradeo® are
close to optimality and that even using a maximally mixed probe one may still
achieve optimal tradeo®.

The paper is structured as follow. In Sec. 2, we describe in details the measurement
scheme and the range of variation of the free parameters. In doing this, we review the
Cartan decomposition of two-qubit unitaries and provide the characterization of the
POVM elements, the so-called e®ects.7–9 In Sec. 3, we analyze the distribution of the
POVM matrix elements as a function of the free parameters. In Sec. 4, the quanti-
¯cation of information and disturbance is brie°y reviewed and the corresponding
distribution of ¯delities is studied as a function of the free parameters. Section 5
closes the paper with some concluding remarks.

2. The Measurement Scheme

Let us consider the following scheme of measurement, which exploits a probe qubit in
order to gain information on a signal qubit. In the ¯rst stage, the probe qubit is prepared
in a known state and then the signal and the probe are coupled by a unitary operator.
Finally, a projective measurement is performed on the sole probe system (see Fig. 1).

The unitary operator U works on C2 # C2, and we assume its determinant to be
equal to 1, in order to have U 2 SUð4Þ. We refer to the Hilbert space of the system as
HS , while the Hilbert space of the probe is HP . The state of the probe !P 2 SðHP Þ in
the Bloch representation may be written as

!P ¼ 1

2
ðIþ r & ¾Þ;

Fig. 1. (Color online) Schematic diagram of a general measurement scheme exploiting a probe qubit in
order to gain information on a signal qubit prepared in an unknown state !S . In the ¯rst step, the probe
qubit is prepared in a known state !P , then the signal and the probe are coupled by the two-qubit unitaryU
and, ¯nally, a projective measurement described by the projection-valued measure fP ; I' Pg is performed
on the sole probe qubit.
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where ¾ ¼ ð"1;"2;"3Þ is the vector of Pauli matrices and the Bloch vector r ¼
ðr1; r2; r3Þ is given by

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
sin $ cos%; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
sin $ sin%; r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
cos $;

where # 2 ½1=2; 1) is the purity of the probe system, and $ 2 ½0;&), % 2 ½0; 2&Þ.
The projective measurement, performed on the probe system, is described by

P ¼ j'ih'j, where j'i ¼ cos (
2 j0iþ ei) sin (

2 j1i and ( 2 ½0;&) and ) 2 ½0; 2&Þ. Since the
probe is a qubit, then the projective measurement is composed by P and I' P .

The unitary operator U 2 SUð4Þ depends on 15 parameters. In order to reduce
this number, we use the Cartan decomposition, which allows us to replace U with the
operator V , working on both system and probe, depending on just three parameters,
plus four local unitary operators, namely R1;R2;S1;S2 2 SUð2Þ9:

U ¼ ðR1 #R2ÞV ðS1 # S2Þ:

The operator V is given by:

V ¼ exp 'i
1

2
ð(1 ' (2Þ"1 þ

1

2
ð(1 þ (2Þ"2 þ (3"3

" #$ %
;

where"i ¼ 1=2 "i # "i and the parameters (i should satisfy the following constraints:

'& * (1 * 0; ð1aÞ

0 * (2 * '(1; ð1bÞ

(1 þ (2 * 2(3 * 0: ð1cÞ

Moreover, if (3 ¼ 0, then (1 ' (2 + '&. Clearly, the Cartan decomposition does
not reduce the number of parameters of U , since each local operator depends on three
parameters. However, as we will see, for our purposes, the local operators could be
neglected.

The measurement scheme given above can be described by a POVM on the
Hilbert space HS. The operators which compose a POVM are often referred to as
e®ects. An e®ect represents an apparatus with dicotomic outcome (yes/no). There-
fore, each e®ect of a POVM is connected to a single outcome of the apparatus, and
gives the probability that its outcome occurs.10,11 The e®ects composing this POVM
are given by the following equation (Naimark Theorem)12:

# ¼ TrP ½ðI# !P Þ U † ðI# P Þ U ): ð2Þ

Notice that, since the PVM on the probe system is fP ; I' Pg, then the POVM onHS

is composed by two e®ects, i.e. f#; I' #g, and it is fully characterized by the matrix
elements of #. The Cartan decomposition of U may be exploited to rewrite Eq. (2) as

follows # ¼ S †
1 TrP ½ðI# S2!P S

†
2Þ V † ðI#R†

2PR2ÞV )S1. The local operators R2 and

S2 are rotations in the qubit space HP and may be easily eliminated by a suitable
reparametrization of the probe state !P and the projector P. The rotation S1 cor-
responds to an operation performed on the system qubit before the measurement, and

Probing qubit by qubit

1461012-3

In
t. 

J. 
Q

ua
nt

um
 In

fo
rm

. 2
01

4.
12

. D
ow

nl
oa

de
d 

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

M
IL

A
N

 o
n 

10
/2

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



it does not a®ect the properties of the POVM itself.13 We thus assume, without loss of
generality, to have S1 ¼ I. Overall, the e®ect # 2 BðHSÞ may be written as

# ¼ TrP ½ðI# !P Þ V † ðI# PÞ V ): ð3Þ

In the Pauli basis, we have # ¼ a0 Iþ a & ¾, with a ¼ ða1; a2; a3Þ, where a0 ¼ 1
2 Tr½#)

and a ¼ 1
2 Tr½#¾). These coe±cients depend on the eight free parameters (1, (2, (3,

#, $, %, ( and ). The analytic expression of the coe±cients of # is given in
Appendix A, and will be used in Sec. 3 to characterize the properties of the POVM as
a function of the free parameters.

3. Characterization of ¦

As mentioned above, the operator # fully describes the POVM and, in turn, the
measurement scheme. # is an e®ect, i.e. a bound operator, which is positive, and
hence self-adjoint, and with its eigenvalues are smaller that 1. Sometimes these
conditions are synthetically expressed as 0 * # * I which, after straightforward
calculations, may be shown equivalent to the following constraints:

0 * jaj * 1=2; ð4aÞ
jaj * a0 * 1' jaj; ð4bÞ

where jaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ a2

2 þ a2
3

p
and ða0; aÞ 2 R4. If a0 ¼ jaj ¼ 1=2, then # is a projector,

i.e. an extremal point of the set of e®ects.
We now study in some detail the distribution of the parameters a0 and jaj within

the physical region determined by Eq. (4). First of all, we check whether, taking at
random the values of the free parameters in their whole ranges, we obtain a uniform
distribution in the physically allowed region. This is indeed the case, as it can be seen
by looking at the medium gray points in the three panels of Fig. 2.

Fig. 2. (Color online) The distributions of fa0; jajg inside the allowed region given by Eq. (4) (individ-
uated by the red line) for di®erent ranges of the free parameters. In all the plots, the medium gray points
correspond to the POVMs obtained with all the free parameters chosen at random in their whole ranges of
variation. The light gray points and the black ones corresponds to POVMs obtained choosing the free
parameters at random in restricted ranges. In the left panel, we show the POVMs corresponding to
di®erent ranges for #: light gray points are for # 2 ½0:5; 0:7), while the black ones corresponds to
# 2 ½0:5; 0:51). The center panel describes both the situations in which the range of all the parameters (i

tends to 0 and in which the range of (1 tends to '&, the range of (2 tends to & and the one of (3 tends to 0
(see text). The right panel shows the case in which the range of (1 tends to '&, the range of (2 tends to 0
and the one of (3 tends to '&=2.
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Let us now analyze how the purity # of the probe system a®ects the properties of
the POVMs: in the left panel of Fig. 2, light gray points are obtained by selecting # in
the range ½0:5; 0:7), while the black ones are obtained using a range ½0:5; 0:51). As it is
apparent from the plot, the coe±cient a0 is quite sensitive to the purity and its range
is narrowing for decreasing purity. This behavior can be understood by looking at the
analytic form of coe±cient a0,

a0 ¼
1

4
ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
fð(1;(2;(3; $;%;(; )ÞÞ;

where fð(1;(2;(3; $;%;(; )Þ 2 ½'2; 2). When # ¼ 1, a0 2 ½0; 1), while for # ¼ 1=2 the
only allowed value is in fact a0 ¼ 1=2.

The distribution of the coe±cients of # also depends on the parameters (1, (2 and
(3 of the unitary operation. Looking at the central panel of Fig. 2, medium gray
points are again obtained for the free parameters randomly chosen in their whole
range, whereas light gray points are given for (1 2 ½'&=3; 0) and black ones for
(1 2 ½'&=10; 0). Notice that any constraint on (1 is also limiting the ranges of the
other two parameters (2 and (3, through the conditions given in (1). As it is apparent
from the plot by shrinking the range of the parameter (1, the range of jaj is
also shrinking. The limiting case is (1 ! 0 (and thus (2;(3 ! 0), corresponding to
jaj ! 0 and a0 2 ½0; 1), i.e., to the trivial case V ¼ I# I and # ¼ TrP ½!P P )IS.

Consider now the case in which the range of (2 is narrowed up to the point &: the
constraints given for the (i's force the range of (1 to'& and the range of (3 to 0. This
case is again described by the central panel Fig. 2, but now the light gray points are
obtained taking (1 2 ½'&;'3=4&), (2 2 ½3=4&;'(1) (notice that the ranges of (1 and
(2 are chosen in order to always keep (3 * 0). The black points now correspond to
(1 2 ½'&;'9=10&) and (2 2 ½9=10&;'(1). It is worth noting that, when (1 ¼ '&,
(2 ¼ & and (3 ¼ 0, then V ¼ i "x # "x and # ¼ iTrP ½!P "xP"x)IS.

Let us now consider the right panel Fig. 2. Here, we analyze the distribution of the
coe±cients fa0; jajg when the range of (3 is narrowed to the point '&=2. Due to the
constraints, the ranges of (1 and (2 tend to a single point (1 ¼ '& and (2 ¼ 0. The
light gray points correspond to (1 2 ½'&;'3=4&), (2 2 ½0;'(1=3) and (3 2
½ð(1 þ (2Þ=2; '&=6), whereas black points are for (1 2 ½'&;'9=10&), (2 2 ½0;'(1=9)
and (3 2 ½ð(1 þ (2Þ=2;'&=3). It is clear that the distribution of the coe±cients tend
to shrink to the region close to a0 ¼ 1=2 and jaj ¼ 1=2. We remark that an e®ect with
a0 ¼ jaj ¼ 1=2 is a projector. In fact, for (1 ¼ '&, (2 ¼ 0 and (3 ¼ '&=2, the op-
erator V is the swap operator and # reduces to j'ih'j.

Finally, we mention that the parameters $, %, ( and ) modify the range of the
coe±cients ai's, but their changes do not in°uence neither a0 nor jaj.

4. Tradeo® Between Information and Disturbance

If we perform the measurement of an observable on a system prepared in a state
which is not an eigenstate of the measured observable, the post-measurement state is
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di®erent from the initial state of the system, i.e. the system has been disturbed. At the
same time, the outcome of the measurement provides some amount of information
about the state of the system under investigation before the measurement. A question
thus arises on whether one may quantify the overall information that can be extract
from a measurement as well as the disturbance introduced by the same
measurement.1,14–20

Consider the case in which a system in a generic pure state j i undergoes a
measurement described by a POVM, composed by the e®ects Ek's. The post-
measurement state conditioned on the occurrence of the outcome k is given by

j ki ¼
ffiffiffiffiffiffi
Ek

p
ffiffiffiffiffi
pk

p j i;

where pk is the probability distribution of the outcomes k's for the state j i.
Therefore, the disturbance introduced from the measurement is given by the ¯delity

of disturbance F ¼
R
d 

P
kpkjh kj ij2 where the integral is made on all the possible

initial state (e.g. for qubit, giving a parametrization on the Bloch sphere, we have
d ¼ d$d% sin $). Notice that, if F is equal to 1, then the measurement is not dis-
turbing the system. When the outcome of the measurement is k, we may infer that
the initial state was j%ki, where fj%hig is an arbitrary set of states. Therefore,
measuring the observable, we obtain some information. The gained information is

given by the ¯delity of information G ¼
R
d 

P
kpkjh j%kij2. For the qubit POVM of

Eq. (2) the above expressions reduce to

F ¼ 1

6
ð2þ jTr½

ffiffiffiffi
#

p
)j2 þ jTr½

ffiffiffiffiffiffiffiffiffiffiffiffi
I' #

p
)j2Þ;

G ¼ 1

6
ð2þ h%0j#j%0iþ h%1jI' #j%1iÞ:

The ostensible freedom in the choice of the set of states j%ki's is removed by
maximizing the ¯delity of information G. Then, each state j%ki has to be the
eigenstate of the e®ect Ek with the maximum eigenvalue. Upon exploiting Eq. (2),
one may show that F and G have to satisfy the following relation1

F ' 2

3

& '2

þ 4 G' 1

2

& '2

* 1

9
ð5Þ

which expresses quantitatively the tradeo® between information and disturbance in
quantum measurement on a qubit. A POVM leading to ¯delities F and G saturating
the above inequality is said to be optimal.

In order to understand whether there is some typical value of the tradeo®, we have
performed a study of the distribution of the pairs fG;Fg for POVMs obtained for
di®erent distributions of the free parameters. In particular, we have considered the
same ranges used in the previous section for # and the (k's. The results are shown in
Fig. 3, where again, the medium gray points are obtained by taking at random the
free parameters into their whole range of variation.
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In the left panel of Fig. 3, the distribution of fG;Fg is shown for di®erent ranges of
the purity # of the probe system. In particular, light gray points are taken for
# 2 ½0:5; 0:7), while the black ones are taken for # 2 ½0:5; 0:51). As it is apparent from
the plot, by narrowing the range of #, the resulting POVMs become closer and closer

to the optimal ones. In the limiting case of # ¼ 1
2 all the resulting POVMs have a

tradeo® falling on the optimal curve of Eq. (5), i.e., all the POVMs are optimal. In
order to have a more detailed picture, the histograms of their distribution are shown
in Fig. 4: in the left panel, the POVMs are generated by choosing at random the
parameters into their whole ranges. The histogram displays a distribution with a
maximal value at the point G ¼ 1=2 and F ¼ 1, i.e. POVMs that neither gain in-
formation, nor disturb the state of the system. Moreover, it is apparent that not all
the produced POVMs are optimal. The second histogram is obtained by taking at
random # between 0:5 and 0:75; in this case the distribution is di®erent from zero for
values of F and G near the optimal limit. In the right histogram, the distribution is

Fig. 4. (Color online) The distribution of the POVMs as a function of G and F . The ¯rst histogram on
the left has been obtained by taking # into its whole range. The second one for # 2 ½0:5; 0:75). The last one
for # ¼ 1=2.

Fig. 3. (Color online) Tradeo® between the information ¯delity G and the disturbance ¯delity F for
di®erent ranges of the free parameters. In the three panels on the left, the medium gray points correspond
to POVM obtained by choosing the free parameters in their whole range, whereas the light gray points and
the black ones to POVMs for restricted ranges of some parameters. The solid red line denotes the optimal
tradeo®, i.e. the values saturating the inequality in Eq. (5). In the most left panel, we show the distribution
of G and F for di®erent ranges of the probe purity: light gray points correspond to # 2 ½0:5; 0:7) and the
black ones to # 2 ½0:5; 0:51). The second plot shows results for di®erent ranges of (1: the light gray points
corresponds to (1 2 ½'&=3; 0) and the black ones for (1 2 ½'&=10; 0). The same distributions are obtained
for (1 2 ½'&;'3=4&), and (2 2 ½3=4&;'(1) (light gray points), and (1 2 ½'&;'9=10&) and (2 2
½9=10&;'(1) (black points). In the third panel, the light gray points corresponds to (1 2 ½'&;'3=4&),
(2 2 ½0;'(1=3) and (3 2 ½ð(1 þ (2Þ=2;'&=6), whereas black points are for (1 2 ½'&;'9=10&), (2 2
½0;'(1=9) and (3 2 ½ð(1 þ (2Þ=2;'&=3). The last panel on the right shows the ¯delities obtained using a
Cnot gate to couple signal and probe, as a function of the population parameter $ of the probe.
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taken for # ¼ 1=2: all the POVMs are optimal, but the distribution has a peak at the
point G ¼ 1=2, F ¼ 1. Overall, the emerging picture is that even using a maximally
mixed probe, it is possible to saturate the optimal tradeo®. On the other hand, in this
case the typical POVM is the non-informative one # ¼ I. Still, it is possible to ¯nd
POVMs with G ¼ F ¼ 2=3, that is a measurement which extracts maximal infor-
mation from the system and introduces a maximal disturbance. The two-qubit
operator that gives this kind of POVMs is the swap operator V ð'&; 0;'&=2Þ.

In the other panels of Fig. 3, we show how the distribution of the ¯delities fG;Fg
is a®ected by the ranges of (1, (2 and (3. In particular, the second panel refers to the
case in which the range of the parameter (1 is progressively shrinking to the single
point (1 ¼ 0. As previously said, the constraints on the parameters (i's force the
other two parameters (2 and (3 to narrow their ranges into the single point
(2 ¼ (3 ¼ 0. The light gray points are taken for (1 2 ½'&=3; 0) and black ones for
(1 2 ½'&=10; 0). The behavior of the distribution is quite clear: it collapses into the
point G ¼ 1=2 and F ¼ 1, when (i's ! 0. We recall that the corresponding POVMs
are proportional to the identity IS.

The second panel of Fig. 3 also describes the trend of the distribution when the
range of (2 is narrowed to the point &. Again, the constraints force the range of (1 to
'& and the range of (3 to 0. In this case, the light gray points are obtained
taking (1 2 ½'&;'3=4&), (2 2 ½3=4&;'(1), while the black ones are taken for (1 2
½'&;'9=10&) and (2 2 ½9=10&;'(1).

The third panel of Fig. 3 refers to the case in which the range of (3 is gradually
reduced to the point '&=2, and therefore (1 ! '& and (2 ! 0. The light gray points
are taken for (1 2 ½'&;'3=4&), (2 2 ½0;'(1=3) and (3 2 ½ð(1 þ (2Þ=2;'&=6), while
blackpoints stay for(1 2 ½'&;'9=10&),(2 2 ½0;'(1=9) and(3 2 ½ð(1 þ (2Þ=2;'&=3).
The distribution of fG;Fg collapses into the point F ¼ G ¼ 2=3. In fact, for (1 ¼ '&,
(2 ¼ 0 and (3 ¼ '&=2, we obtain a projective measurement, giving as more informa-
tion as possible about the system, at the price of introducing a considerable disturbance.

Finally, in the right panel of Fig. 3, we show the ¯delities obtained by using a Cnot

gate to couple the system and the probe qubit and then measuring "3 on the probe. In
particular, we have considered the ¯delities obtained by varying the $ parameter of the
probe: the red portion of the curve corresponds to $ 2 ½0;&=8), the blue one to
$ 2 ½&=8;&=4), green is for $ 2 ½&=4; 3=8&), and magenta for $ 2 ½3=8&; &=2). As it is
apparent from the plot, we con¯rm the known optimality14,15 of the resulting POVMs.
Notice that, since the Cartan decomposition has been used to obtain the coe±cients of
the e®ect#, we need to ¯nd the operatorV ð(1;(2;(3Þ connected to theCnot gate. After
straightforward calculation, we ¯nd that Cnot ¼ ðR1 #R2Þ V ð' &

2 ;
&
2 ; 0Þ ðS1 # S2Þ

where, as shown before, the local operators do not modify neither F nor G.

5. Conclusions

In this paper, we have addressed the properties of the class of two-value qubit
POVMs f#; I' #g that are obtained by coupling the signal qubit with a probe qubit
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and then performing a projective measurement on the sole probe system. These
POVMs represent the simplest class of qubit POVMs and depends on 3þ 3þ 2 ¼ 8
free parameters describing the initial preparation of the probe qubit, the Cartan rep-
resentative of the unitary coupling, and the projective measurement at the output,
respectively.Wehave obtained the analytic expression of the coe±cients ða0; a1; a2; a3Þ
of the e®ect # in the Pauli basis and have used these expressions to understand which
parameters are relevant to speci¯c properties of the POVMs. In particular, for the
distribution of fa0; jajg we found that the relevant parameters are the purity # of the
probe system and the parameters de¯ning the Cartan representative of the unitary
coupling. We have also analyzed in details the tradeo® between information and dis-
turbance for di®erent ranges of the free parameters, showing, among other things, that
(i) typical values of the tradeo® are close to optimality and (ii) even using a maximally
mixed probe one may achieve optimal tradeo®, though the typical POVM is the non-
informative one # ¼ I.
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Appendix A. The Matrix Elements the E®ect ¦ in the Pauli Basis

The e®ect # ¼ a0Iþ a & ¾ has the following coe±cient:

a0 ¼ 1

4
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
cos( cos $ ðcos(1 þ cos(2Þ þ 2 cos(3 sin( sin $

((

cos
(1 þ (2

2

( )
cos ) cos%þ cos

(1 ' (2

2

( )
sin ) sin%

( )))

a1 ¼ 1

4
2 cos ) sin( sin

(1 þ (2

2

( )
sin(3

(

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
cos( ðsin(1 ' sin(2Þ sin $ sin%

(

' 2 cos(3 cos $ sin( sin
(1 ' (2

2

( )
sin )

))

a2 ¼ 1

4
2 sin( sin

(1 ' (2

2

( )
sin(3 sin )

(

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
2 cos(3 cos ) cos $ sin( sin

(1 þ (2

2

( )(

' cos( cos% ðsin(1 þ sin(2Þ sin $Þ
)

a3 ¼ 1

4
cos( ðcos(2 ' cos(1Þ

(

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2#' 1

p
sin( sin(3 sin $ cos

(1 ' (2

2

( )
cos% sin )

(

' cos
(1 þ (2

2

( )
cos ) sin%

))

Probing qubit by qubit
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