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Photonic realization of a quantum finite automaton
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We describe a physical implementation of a quantum finite automaton that recognizes a well-known family
of periodic languages. The realization exploits the polarization degree of freedom of single photons and their
manipulation through linear optical elements. We use techniques of confidence amplification to reduce the
acceptance error probability of the automaton. It is worth remarking that the quantum finite automaton we
physically realize is not only interesting per se but it turns out to be a crucial building block in many quantum
finite automaton design frameworks theoretically settled in the literature.
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I. INTRODUCTION

Quantum computing is a prolific research area, halfway
between physics and computer science [1–5]. Most likely, its
origins may be dated back to the 1970s, when some work on
quantum information began to appear (see, e.g., Refs. [6,7]).
In the early 1980s, Feynman suggested that the computational
power of quantum mechanical processes might be beyond that
of traditional computation models [8]. A similar idea was
put forth by Manin [9]. Almost at the same time, Benioff
proved that such processes are at least as powerful as Turing
machines [10]. In 1985, Deutsch proposed the notion of a
quantum Turing machine as a physically realizable model for
a quantum computer [11].

The first impressive result witnessing “quantum power”
was Shor’s algorithm for integer factorization, which could
run in polynomial time on a quantum computer [12]. It should
be stressed that no classical polynomial time factoring algo-
rithm is currently known. On this fact, the security of many
current cryptographic protocols, e.g., Rivest-Shamir-Adleman
(RSA) and Diffie-Hellman, actually relies. Relevant progress
was made by Grover, who proposed a quantum algorithm for
searching an item in an unsorted database containing n items,
which runs in time O(

√
n) [13].

These and other theoretical advances naturally drove much
attention to efforts on the physical realization of quantum
computational devices (see, e.g., Refs. [14–17]). While we
can hardly expect to see a full-featured quantum computer in
the near future, it might be reasonable to envision classical
computing devices incorporating quantum components. Since
the physical realization of quantum computational systems
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has proved to be an extremely complex task, it is also rea-
sonable to keep quantum components as small as possible.
Small-size quantum devices are modeled by quantum finite
automata, a theoretical model for quantum machines with
finite memory.

Indeed, in current implementations of quantum computing,
the preparation and initialization of qubits in superposition
and/or entangled states is often challenging, making worth-
while the study of quantum computation with restricted mem-
ory, which requires less demanding resources, as in the case
of the quantum finite automata.

The simplest and most promising from a physical realiza-
tion viewpoint model of a quantum finite automaton is the
so-called measure-once quantum finite automaton [18–21].
Such a model also served as a basis for defining several
variants of quantum finite automata introduced and studied in
plenty of contributions (see, e.g., Refs. [22–28]). Becasue it
is the only model considered in the present paper, from now
on for the sake of brevity we will simply write “quantum
finite automaton” instead of “measure-once quantum finite
automaton.”

The “hardware” of a (one-way) quantum finite automaton
is that of a classical finite automaton. Thus, we have an
input tape scanned by a one-way input head moving one
position forward at each move, plus a finite basis state control.
Some basis states are designated as accepting states. At any
given time during the computation, the state of the quantum
finite automaton is represented by a complex linear combina-
tion of classical basis states, called a superposition. At each
step, a unitary transformation associated with the currently
scanned input symbol makes the automaton evolve to the
next superposition. Superposition dynamics can transfer the
complexity of the problem from a large number of sequential
steps to a large number of coherently superposed quantum
states. At the end of input processing, the automaton is
observed in its final superposition. This operation makes the
superposition collapse to a particular (classical) basis state
with a certain probability. The probability that the automaton
accepts the input word is given by the probability of observing
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(collapsing into) an accepting basis state. Quantum finite
automata exhibit both advantages and disadvantages with
respect to their classical (e.g., deterministic or probabilistic)
counterparts. Basically, quantum superposition offers some
computational advantages on probabilistic superposition. On
the other hand, quantum dynamics must be reversible, and this
requirement may impose severe computational limitations to
finite memory devices. As a matter of fact, it is sometimes
impossible to simulate classical finite automata by quantum
finite automata. In fact, as we will discuss in Sec. II D, isolated
cut point quantum finite automata recognize a proper subclass
of regular languages [18,20,21].

Although weaker from a computational power point of
view, quantum finite automata may greatly outperform clas-
sical ones when descriptional power is at stake. In the realm
of descriptional complexity [29], models of computation are
compared on the basis of their size. In the case of finite state
machines, a commonly assumed size measure is the number
of finite control states. Most likely, the first contribution
explicitly studying the descriptional power of quantum versus
classical finite automata is Ref. [30], where an extremely
succinct quantum finite automaton is provided, accepting the
unary language Lm = {ak | k ∈ N and k mod m = 0} for any
given m > 0. The construction in Ref. [30] uses as a basic (and
sole) module a quantum finite automaton A for Lm with 2 ba-
sis states, whose acceptance reliability is then enhanced within
a suitable modular building framework where traditional com-
positions (i.e., direct products and sums) of quantum systems
are performed. Actually, many (if not all) contributions in the
literature aiming to design small size quantum finite automata
for several tasks (see, e.g., Refs. [25,31–38]) use the module
A as a crucial building block. In this sense, the language Lm
and the module A turn out to be “paradigmatic” as tools to
build and test size-efficient quantum finite automata. Hence,
a physical realization of the module A might be well worth
investigating.

In this paper, we put forward a physical implementation of
quantum finite automata based on the polarization degree of
freedom of single photons and able to recognize a family of
periodic languages. More precisely, because of above stressed
centrality in quantum finite automaton design frameworks,
we focus on the physical implementation of the quantum
finite automaton A for the language Lm. We investigate the
performance of our photonic automaton, taking into account
the main sources of error and imperfections, e.g., in the prepa-
ration of the initial automaton state. We also use techniques
of confidence amplification to reduce the acceptance error
probability of the automaton.

The paper is structured as follows. In Sec. II, we provide
an almost self-contained overview of the basic concepts un-
derling formal language theory and classical finite automa.
Moreover, we quickly address practical impacts of finite au-
tomata and the importance of investigating their size in the
light of possible physical implementations of such devices.
Next, we present the notion of a quantum finite automaton
together with some basic facts on its computational and de-
scriptional power. We particularly focus on unary automata,
i.e., automata with a single-letter input alphabet, and em-
phasize the notion of a language accepted with isolated cut
point. In Sec. III, we introduce a simple unary language, as

a benchmark upon which to test the descriptional power of
classical and quantum finite automata, namely the language
Lm = {ak | k ∈ N and k mod m = 0} for any given m > 0.
We provide a theoretical definition of a quantum finite au-
tomaton A accepting Lm with isolated cut point and two
basis states, whereas any classical automaton for Lm requires
a number of states which grows with m.

The photonic implementation of the quantum finite au-
tomaton A with two basis states is then discussed in Sec. IV.
There, we start reviewing the standard quantum formalism
used to describe the polarization state of the single photon,
its dynamics, and the link with the formalism used in the
previous sections. Then, we explain the working principle of
the photonic implementation of the quantum finite automaton
and propose a discrimination strategy to reduce the acceptance
error probability. Section V describes the experimental appa-
ratus and reports the results we obtained. Finally, we close the
paper with Sec. VI, where we draw some concluding remarks
and the outlook for our work.

II. PRELIMINARIES

A. Formal languages and classical finite automata

Formal language theory studies languages from a math-
ematical point of view, providing formal tools and methods
to analyze language properties. Strictly connected with au-
tomata theory, the discipline dates back to the 1950s, and
it was originally developed to provide a theoretical basis for
natural language processing. It was soon realized that this the-
ory was relevant to the artificial languages (e.g., programming
languages) that had originated in computer science. Since its
birth, formal language theory has become established as one
of the most prominent area in theoretical computer science. Its
results have huge impacts in numerous fields, including prac-
tical computer science, cryptography and security, discrete
mathematics and combinatorics, graph theory, mathemati-
cal logic, nature-inspired (e.g., quantum, biological, genetic)
computational models, physics, and system theory.

The reader may find a lot of excellent textbooks where
thoughtful presentations of formal language and automata
theory and their applications are presented (see, e.g.,
Refs. [39,40]). In order to keep this paper as self-contained as
possible, we present basic concepts and notations of formal
language and automata theory and briefly emphasize those
aspects which are relevant to the present work, i.e., regular
languages and finite automata.

An alphabet is any finite set ! of elements called symbols.
A word on ! is a sequence ω = σ1σ2 . . . σn with σi ∈ ! being
its ith symbol. The length of ω, i.e., the number of symbols ω
consists of, is denoted by |ω|. We let ε be the empty word
satisfying |ε| = 0. The set of all words (including the empty
word) on ! is denoted by !∗, and we let !+ = !∗ \ {ε}.
A language L on ! is any subset of !∗, i.e., L ⊆ !∗. If
|!| = 1, we say that ! is a unary alphabet, and languages
on unary alphabets are called unary languages. In the case of
unary alphabets, we customarily let ! = {a} so that a unary
language is any set L ⊆ a∗. The concatenation of the word
x ∈ !∗ with the word y ∈ !∗ is the word xy consisting of
the sequence of symbols of x immediately followed by the
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sequence of symbols of y. For any σ ∈ ! and any positive
integer k, we let σ k be the word obtained by concatenating k
times the symbol σ . We stipulate that σ 0 = ε.

Several formal tools have been introduced to rigorously
express languages. Formal grammars are the main generative
systems for languages. A formal grammar is a quadruple G =
(!, Q, P, S) where ! and Q are two disjoint finite alphabets
of, respectively, terminal and nonterminal symbols, S ∈ Q is
the start symbol, and P is the finite set of production rules, or
simply, productions. Productions can be regarded as rewriting
rules, typically expressed in the form α → β with α ∈ (! ∪
Q)+ and β ∈ (! ∪ Q)∗. Given w, z ∈ (! ∪ Q)∗, we say that
z is derived in one step from w in G whenever w = xαy,
z = xβy, and α → β is a production rule in P. Formally,
we write w ⇒G z. More generally, z is derived from w in G
whenever there is a sequence w0,w1, . . . ,wn−1,wn ∈ (! ∪
Q)∗ such that w = w0 ⇒G w1 ⇒G · · · ⇒G wn−1 ⇒G wn =
z. Formally, we write w ⇒∗

G z. The language generated by
the grammar G = (!, Q, P, S) is the set L(G) ⊆ !∗ defined
as L(G) = {ω ∈ !∗ | S ⇒∗

G ω}. Two grammars G, G′ are
equivalent whenever L(G) = L(G′).

The following example provides a grammar and establishes
the corresponding generated language.

Example 1. When listing grammar production rules, we
can write α → β1|β2| . . . βn−1|βn as a shortcut for expressing
the set of productions α → β1,α → β2, . . . , α → βn.
So, consider the grammar G = (! = {a, b}, Q =
{B0, . . . , Bk}, P, B0) where the set P of productions is
defined as

P = {B0 → aB0|bB0|bB1}
∪ {Bi → aBi+1|bBi+1 for 1 ! i ! k − 1, Bk → ε}.

Let us derive the generated language L(G). By repeatedly ap-
plying the productions B0 → aB0|bB0, from the start symbol
B0 we can derive αB0, for any α ∈ {a, b}∗. Formally, B0 ⇒∗

G
αB0. At this point, in order to generate a word of terminal
symbols only, we must apply the production B0 → bB1, thus
having B0 ⇒∗

G αB0 ⇒G αbB1. Then, we are left to sequen-
tially apply the productions Bi → aBi+1|bBi+1 for every 1 !
i ! k − 1. So, B0 ⇒∗

G αB0 ⇒G αbB1 ⇒∗
G αbβBk , for any

β ∈ {a, b}∗ and |β| = k − 1. By applying the last production
Bk → ε, we get B0 ⇒∗

G αB0 ⇒G αbB1 ⇒∗
G αbβBk ⇒G αbβ.

Thus, the language generated by G writes as

L(G) = {ω ∈ {a, b}∗ | ω = αbβ and |β| = k − 1}.

In words, L(G) consists of those words on {a, b} featuring a
symbol b at the kth position from the right.

Originally, four types of grammars have been pointed out,
depending on the form of productions. The corresponding four
classes of generated languages turn out to be relevant both
from practical and theoretical points of view. Precisely, G =
(!, Q, P, S) is a grammar of the following:

TYPE 0: whenever productions in P do not have any partic-
ular restriction. The class of languages generated by this type
of grammar is the class of recursively enumerable languages.

TYPE 1 or context-sensitive: whenever every production
α → β ∈ P satisfies |α| ! |β|; the production S → ε is al-
lowed provided S never occurs within the right part of any

production in P. The class of languages generated by this type
of grammar is the class of context-sensitive languages.

TYPE 2 or context-free: whenever every production in P
is of the form A → β with A ∈ Q. The class of languages
generated by this type of grammar is the class of context-free
languages.

TYPE 3 or regular: whenever every production is of the
form A → ε, A → σ , or A → σB with σ ∈ ! and A, B ∈ Q.
The class of languages generated by this type of grammar is
the class of regular languages. The reader may easily verify
that the grammar proposed in Exercise 1 is a type 3 grammar,
and hence the generated language is an example of regular
language.

It can be shown that for any given type i + 1 grammar,
an equivalent type i grammar can be built. Hence, the class
of regular languages is contained in the class of context-
free languages, which is contained in the class of context-
sensitive languages, which in turn is contained in the class of
recursively enumerable languages. In addition, we have that
such a language class hierarchy is proper. In fact, (i) there
exist languages outside the class of recursively enumerable
languages, (ii) there exist recursively enumerable languages
that cannot be generated by any context-sensitive grammar,
(iii) the ternary context-sensitive language {anbncn | n ∈ N}
cannot be generated by any context-free grammar, (iv) the
binary context-free language {anbn | n ∈ N} cannot be gen-
erated by any regular grammar. Beside the one in Example 1,
further instances of regular languages will be provided below.
This language class hierarchy is usually known as the Chom-
sky hierarchy, and the whole formal language and automata
theory has been developing around it. Every level of the
hierarchy has been deeply investigated, yielding profound
results and widespread applications.

An alternative equivalent approach to define the Chom-
sky hierarchy uses language accepting systems, i.e., roughly
speaking, formal computational devices which process input
words and outcome an accept/reject final verdict. For one such
device, the corresponding accepted (or recognized) language
consists of those input words that are accepted. According
to this point of view, (i) the class of recursively enumerable
languages coincides with the class of languages accepted by
Turing machines, (ii) the class of context-sensitive languages
coincides with the class of languages accepted by linear
bounded automata, (iii) the class of context-free languages
coincides with the class of languages accepted by nondeter-
ministic pushdown automata, and (iv) the class of regular
languages coincides with the class of languages accepted by
(several types of) finite automata.

In this paper, we will be concerned with the class of regular
languages. In particular, we will focus on the computational
model of finite automata defining them [see (iv) above]. For
extensive and thoughtful surveys on classical finite automata
theory, the reader is referred to, e.g., Refs. [39–41]. Several
types of finite automata have been introduced and deeply
investigated in the literature. Let us begin by the original
and most basic version. In Fig. 1, the “hardware” of a one-
way deterministic finite automaton (1dfa, for short [42]) A is
depicted. We remark that the other versions of finite automata
we are going to review share the same hardware but exhibit
different dynamics.
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FIG. 1. Schematic diagram of the “hardware” of a one-way de-
terministic finite automaton (1dfa). The 1dfa is made of a read-only
input tape consisting of a sequence of cells, each one capable of
storing a symbol. The tape may be scanned by a “head”, which
is moving one position right at each step. At each stage of the
computation of A, a finite state control is in a state from a finite set Q.

We have a read-only input tape consisting of a sequence
of cells, each one being able to store an input symbol. The
tape is scanned by an input head always moving one position
right at each step. This type of input head motion motivates the
designation “one way.” At each time during the computation
of A, a finite state control is in a state from a finite set Q. Some
of the states in Q are designated as accepting states, while
q0 ∈ Q is a designated initial state. The computation of A on a
word ω from a given input alphabet ! begins by having (i) ω
stored symbol by symbol, left to right, in the cells of the input
tape, (ii) the input head scanning the leftmost tape cell, and
(iii) the finite state control being in the state q0. In a move, A
reads the symbol below the input head and, depending on such
a symbol and the state of the finite state control, it switches
to the next state according to a fixed transition function and
moves the input head one position forward. We say that A
accepts ω if and only if it enters an accepting state after
scanning the rightmost symbol of ω; otherwise, A rejects ω.
The language accepted by A is the set L(A) ⊆ !∗ consisting
of all the input words accepted by A.

Formally, a 1dfa is a quintuple A = (Q,!, δ, q0, F ), where
Q is a finite set of states, with q0 ∈ Q being the initial
state and F ⊆ Q being the set of accepting states, ! is the
input alphabet, and δ : Q × ! → Q is the transition function
defining moves as follows: If A scans the input symbol σ
by being in the state p and δ(p, σ ) = q holds, then it enters
the state q and shifts the input head one position forward.
The transition function δ can be inductively extended from
symbols in ! to words in !∗ as δ : Q × !∗ → Q. Namely,
for any q ∈ Q and ω ∈ !∗, we let

δ(q,ω) =
{

q if ω = ε
δ(δ(q, σ ),α) if ω = σα.

Thus, the language accepted by A is the set L(A) ⊆ !∗ defined
as L(A) = {ω ∈ !∗ | δ(q0,ω) ∈ F }.

A nice pictorial representation of a 1dfa A =
(Q,!, δ, q0, F ) is by its state (or transition) graph DA.
Basically, DA is a labeled digraph having Q as the set of
its vertexes and labeled directed edges representing moves.
Precisely, there exists an edge from vertex p to vertex q with
label σ if and only if δ(p, σ ) = q holds true. Vertexes are

FIG. 2. The state graph for the 1dfa A accepting the language Lm.

usually drawn as circles on the plan with labels indicating
the corresponding states, while labeled arrows join adjacent
states. The vertex corresponding to the state q0 has an
incoming arrow, while vertexes associated with accepting
states in F are double circled. It is easy to see that the
computation of A on the input word ω can be tracked in DA by
following the unique directed path labeled ω from the vertex
q0. So, A accepts ω if and only if such a path ends up in a
double circled vertex.

To clarify the above notions, the next example displays a
1dfa accepting a simple unary language. We provide such a
1dfa both in its formal definition as a quintuple and as state
graph.

Example 2. The following simple unary language will play
an important role throughout the rest of the paper. For any
given integer m > 0, let

Lm = {ak | k ∈ N and k mod m = 0}. (1)

Such a language can be accepted by the 1dfa

A = (Q = {q0, q1, . . . , qm−1},! = {a}, δ, q0, F = {q0}),

where, for any 0 ! i ! m − 1, we set δ(qi, a) = q(i+1) mod m. It
is easy to see that δ(q0, ak ) = qk mod m which is q0 if and only if
k mod m = 0 if and only if ak ∈ Lm. Hence, L(A) = Lm. The
state graph for the 1dfa A is depicted in Fig. 2. Because of
unary input alphabet, all edges would have the same label a,
which can then be safely omitted.

Let us now turn to the model of a one-way nondeterministic
finite automaton (1nfa, for short [42]). Formally, a 1nfa is a
quintuple A = (Q,!, δ, q0, F ) in which every component is
defined as in 1dfa’s but the transition function, which is now
a mapping δ : Q × ! → 2Q, where 2Q denotes the powerset
of Q, i.e., the set of all subsets of Q. Unlike the deterministic
case, now at each move A has several candidates as possible
next states. Precisely, if A scans the input symbol σ by being
in the state p and δ(p, σ ) = S holds, then it may enter one of
the states in S and shift the input head one position forward.
Thus, on any input word ω, more computation paths from q0
exist; if at least one of such paths leads to an accepting state,
then A accepts ω. More formally, we can inductively extend
the transition function δ to subsets of states and words as δ :
2Q × !∗ → 2Q. First of all, we define the extension δ : 2Q ×
! → 2Q as δ(S, σ ) = ∪q∈Sδ(q, σ ), for any S ⊆ Q and σ ∈ !.
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FIG. 3. The state graph of a 1nfa for the language Ek .

Then, for any S ⊆ Q and ω ∈ !∗, we let

δ(S,ω) =
{

S if ω = ε

δ(δ(S, σ ),α) if ω = σα.

Thus, the language accepted by A is the set L(A) ⊆ !∗ defined
as L(A) = {ω ∈ !∗ | δ({q0},ω) ∩ F ̸= ∅}. The reader may
easily verify that a 1dfa can be seen as a 1nfa where, for any
q ∈ Q and σ ∈ !, we have that δ(q, σ ) contains a single state.

The state graph DA for the 1nfa A = (Q,!, δ, q0, F ) can be
defined as above for the deterministic case, but now an edge
from vertex p to vertex q with label σ exists if and only if
q ∈ δ(p, σ ) holds true. This means that, in general, a vertex
may present more outgoing edges with the same label. Thus,
A accepts an input word ω if and only if there exists a path in
DA labeled ω from q0 to a double circled vertex.

The following example proposes a 1nfa expressed as state
graph for a binary language.

Example 3. Consider the binary language in Example 1,
for which a type 3 grammar was there provided. Here, we call
that language Ek which was defined as

Ek = {ω ∈ {a, b}∗ | ω = αbβ and |β| = k − 1}. (2)

Thus, a word on {a, b} is in Ek if and only if its kth symbol
from the right is b. In Fig. 3, the state graph of a 1nfa accepting
Ek is depicted. The reader may easily verify that the accepted
language is exactly Ek . Moreover, she may straightforwardly
work out an equivalent formal definition of the 1nfa as a
quintuple.

We complete our overview of classical models of finite
automata by introducing the notion of a one-way probabilistic
finite automaton (1pfa, for short [43]). Formally, a 1pfa is a
quintuple A = (Q,!, δ, q0, F ) in which every component is
defined as usual, but now δ returns a probability distribution
for the next state. More precisely, δ : Q × ! × Q → [0, 1] is
defined such that δ(p, σ, q) is the probability that A, being
in the state p, reaches the state q upon reading the symbol
σ . As usual, the input head is shifted one position right at
each move. Clearly, for any p ∈ Q and σ ∈ !, we require
that

∑
q∈Q δ(p, σ, q) = 1. Inductively extending the transition

function δ to words enables us to get δ : Q × !∗ × Q →
[0, 1], where δ(p,ω, q) yields the probability that A, being in
the state p, reaches the state q upon reading the input word ω
as

δ(p,ω, q)

=

⎧
⎨

⎩

0 if ω = ε and p ̸= q
1 if ω = ε and p = q∑

s∈Q δ(p, σ, s) · δ(s,α, q) if ω = σα.

Thus, the probability that A accepts the input word ω is
written as pA(ω) =

∑
q∈F δ(q0,ω, q), i.e., the probability for

A to reach an accepting state from the initial state q0 after
processing ω. Given a real number λ, we define the lan-
guage accepted by A with cut point λ as the set LA,λ =
{ω ∈ !∗ | pA(ω) > λ}. A language L ⊆ !∗ is said to be
accepted by A with isolated cut point λ whenever L = LA,λ

and there exists ρ > 0 such that |pA(ω) − λ| " ρ for every
ω ∈ !∗. The relevance of isolated cut point acceptance is due
to the fact that, in this case, we can arbitrarily reduce the
classification error probability of an input word by repeating
a constant number of times (not depending on the length of
the input word) its parsing and taking the majority of the
answers [41,43]. In our experiment, we will use this fact to
reduce the error probability. Notice that beside isolated cut
point acceptance, other probabilistic acceptance modes are
widely studied in the literature (see, e.g., Refs. [24,25,36,44].

Without going into detail, even with a 1pfa A, a state graph
DA can be naturally associated. Now, edges in DA are labeled
by both a symbol and the corresponding transition probability.

Example 4. For two primes m, n, let the unary language

Lm·n = {ak | k ∈ N and k mod (m · n) = 0}. (3)

Notice that this is a particular instance of the unary language
introduced in Example 2. We define the set of states Q =
{s, p0, . . . , pm−1, q0, . . . , qm−1} and construct the 1pfa A =
(Q,! = {a}, δ, s, F = {s, p0, q0}) where we set

δ(s, a, p1) = 1
2 = δ(s, a, q1),

δ(pi, a, p(i+1) mod m) = 1 = δ(q j, a, q( j+1) mod n)

for 0 ! i ! m − 1 and 0 ! j ! n − 1,

and any other transition occurs with probability 0.

It is not hard to see that

pA(ak ) =
{

1 if ak ∈ Lm·n
! 1

2 otherwise.

Thus, the 1pfa A accepts Lm·n with cut point 3
4 isolated by 1

4 .
The state graph of the 1pfa A is sketched in Fig. 4. As usual,
due to unary input alphabet, we omit the label a from every
edge. Moreover, each edge without an associated probability
defines a move occurring with certainty.

For the sake of completeness, we point out that two-way
finite automata are also considered in the literature. Very
roughly speaking, a two-way finite automaton has the same
hardware as a one-way finite automaton, but its input head
can move one position forward or backward, or stand still at
each move. Two-way motion of the input head can be adopted
by the three paradigms above recalled, thus leading to the
models of 2dfa’s, 2nfa’s, and 2pfa’s. Formal definitions and
properties of two-way finite automata may be found, e.g., in
Refs. [39–43,45,46].

The computational power of all these (and actually of many
other) variants of finite automata has been well established in
the literature over many years of research. As suggested in
point (iv), in the automata-based characterization of Chomsky
hierarchy above recalled, the following is true:
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FIG. 4. The state graph of the 1pfa A for the language Lm·n.

Theorem 5. The class of languages accepted by {1, 2}dfa’s,
{1, 2}nfa’s, or 1pfa’s with isolated cut point coincides with the
class of regular languages.

The class of regular languages is properly contained in the
class of languages accepted by isolated cut point 2pfa’s [45].
However, when restricted to unary alphabets, even isolated cut
point 2pfa’s accept exactly unary regular languages [46].

Regular languages are of fundamental importance in many
applications in computer science. Viewing regular languages
throughout finite automata greatly improved compiler and
interpreter design, parsing and pattern-matching algorithms,
cryptography and security protocol testing, computer network
protocol testing, model checking, and software validation. It
is not an exaggeration to say that almost any task in computer
science sooner or later leads to coping with some regular
language which can be fruitfully managed via a suitable finite
automaton.

However, beside being a valuable tool in language pro-
cessing, finite automata represent a formidable theoretical
model to deal with those physical systems which exhibit a
predetermined sequence of actions depending on a sequence
of events they are presented. Originally, finite automata have
been introduced to describe the electric activity of brain neu-
rons, but soon they have been extensively used in the design
and analysis of several devices such as the control units for
vending machines, elevators, traffic lights, combination locks,
etc.

Particularly important is the use of finite automata in very
large scale integration (VLSI) design, namely, in the project of
sequential networks which are the building blocks of modern
computers and digital systems. Very roughly speaking, a se-
quential network is a boolean circuit equipped with memory.
Engineering a sequential network typically requires modeling
its behavior with a finite automaton whose number of states

directly influences the amount of hardware (i.e., the number
of logic gates) employed in the electronic realization of the
sequential network. From this point of view, having fewer
states in the modeling finite automaton directly results in
employing smaller hardware which, in turn, means having less
energy absorption and fewer cooling problems. These latter
physical implementation aspects, as the reader may easily
figure out, turn out to be of paramount importance given the
current level of digital device miniaturization.

These “physical” (and other more theoretical) considera-
tions have led to a trend in the literature in which, beside
acceptance capabilities, the descriptional power of finite au-
tomata is deeply investigated. Within the realm of descrip-
tional complexity [29], the size of finite automata is under
consideration, and a common measure for finite automaton
size is the number of states. In particular, reducing or in-
creasing the number of states is studied, when using different
computational paradigms (e.g., deterministic, nondetermin-
istic, probabilistic, quantum, one-way, two-way) on a finite
automaton to perform a given task. Let us quickly recall
some very well-known results on the descriptional power of
different types of finite automata. To this aim, we say that two
finite automata A, A′ are equivalent whenever L(A) = L(A′).

It is well known that any n-state 1nfa can be converted into
an equivalent 2n-state 1dfa [42], and that in general such an
exponential size blowup is unavoidable. In fact, consider the
language Ek in Example 3. There, a k-state 1nfa accepting Ek
is sketched, but it can be shown that any 1dfa for Ek cannot
have fewer than 2k states. A similar exponential gap exists for
1dfa’s versus 1pfa’s: Any n-state 1pfa accepting a language
with cut point isolated by ρ can be turned into an equivalent
1dfa with (1 + 1/ρ)n states [43]. Even in this case, the ex-
ponential blowup is in general “almost unavoidable” (stating
the exact size gap between determinism and probabilism is
an open problem). This can be proved by elaborating on the
language Lm·n provided in Example 4. Equivalent 1dfa’s for
n-state 2dfa’s and 2nfa’s can be obtained, paying by not less
than nn and 2n2

states, respectively [42,47].
Following this line of research on the succinctness of dif-

ferent computational paradigms, we are going to investigate
whether and how adopting the quantum paradigm of computa-
tion may reduce the number of states on finite state automata,
thus providing theoretical foundations for the realization of
more succinct devices with all potential benefits in terms of
miniaturization and energy consumption above addressed.

To this aim, we will be particularly interested in unary
one-way finite automata, i.e., automata having a unary input
alphabet consisting of the sole symbol a. Clearly, unary one-
way finite automata accept unary languages L ⊆ a∗. Here, we
choose to provide a nice and compact matrix presentation
of unary one-way finite automata that will naturally lead to
formalizing the notion of a unary one-way quantum finite
automaton. We recall that a matrix is said to be boolean
whenever its entries are either 0 or 1 and stochastic whenever
its entries are real numbers from the interval [0,1] and each
row sums to 1.

Let A be a unary one-way finite automaton with
{q1, q2, . . . , qn} being the set of its states; some of these
states are accepting. Then, A can be formally written as a
triple A = (ζ ,U, η), where η ∈ {0, 1}n×1 is the characteristic
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column vector of the accepting states, i.e., ηi = 1 if and only
if qi is an accepting state, while ζ and U have different forms
depending on the nature of A. Precisely, A is as follows:

1dfa: ζ ∈ {0, 1}n is the characteristic row vector of the
initial state, U is an n × n boolean stochastic transition matrix,
and hence U has exactly a single 1 per row, with Ui j = 1 if
and only if and only if A moves from the state qi to the state
q j upon reading a; i.e., Ui j = 1 if and only if δ(qi, a) = q j .

1nfa: as above, except that U is boolean with Ui j = 1 if
and only if qj ∈ δ(qi, a).

1pfa: ζ ∈ [0, 1]n is a stochastic row vector representing
the initial probability distribution of the states,1 and U is an
n × n stochastic transition matrix with Ui j being the probabil-
ity that A moves from the state qi to the state q j upon reading
a, i.e., Ui j = δ(qi, a, q j ).

The reader may easily work out the matrix presentation
for the unary 1dfa and the unary 1pfa defined, respectively,
in Examples 2 and 4.

Let us see how to express the notion of accepted language
in this matrix presentation. The situation of the unary one-way
finite automata A at the end its the computation on the input
word ak is described by the vector ζU k having the following
meaning (recall that η is the characteristic vector of the final
states of A):

A is a 1dfa: ζU k is the characteristic vector of the state
reached by A at the end of the computation on ak . Thus, the
product ζU kη returns 1 if the reached state is accepting, and
0 otherwise. We say that A accepts ak whenever ζU kη = 1.

A is a 1nfa: ζU k is the characteristic vector of the set of
states reached by A at the end of the computation on ak . Thus,
the product ζU kη returns the number of reached accepting
states. We say that A accepts ak whenever ζU kη " 1.

A is a 1pfa: ζU k is a stochastic vector whose ith compo-
nent represents the probability that A reaches the state qi at
the end of the computation on ak . Thus, the product pA(ak ) =
ζU kη returns the probability for A to reach an accepting state
at the end of the computation on ak , i.e., the probability that A
accepts ak .

If A is a unary 1dfa or 1nfa, then the accepted language is
defined as

LA = {ak | k ∈ N and ζU kη " 1}. (4)

Let A be a unary 1pfa. The language accepted by A with cut
point λ is defined as

LA,λ = {ak | k ∈ N and pA(ak )>λ}. (5)

As above recalled, the unary 1pfa A accepts a unary language
L ⊆ a∗ with isolated cut point λ whenever L = LA,λ and there
exists ρ > 0 such that |pA(ak ) − λ| " ρ for every k ∈ N.

For the sake of completeness, we point out that when
investigating the descriptional power of unary finite automata,
we get size estimations which are slightly different than those

1The definition of a 1pfa previously given admits a single initial
state q0 instead of assigning to each control state the probability of
being initial. It can be shown that the two definitions of a 1pfa are
actually equivalent from both a computational and a descriptional
point of view.

above quoted for finite automata working on general input
alphabets. Thus, e.g., it is known that e,(

√
n log n) states are

necessary and sufficient for 1dfa’s to simulate unary 1nfa’s
[48]. The same exponential blowup is proved in Refs. [49,50]
for simulating unary 2dfa’s and 2nfa’s by 1dfa’s. A “similar”
exponential gap is also proved for simulating unary 1pfa’s
by 1dfa’s; however, for this latter simulation the question
should be stated more carefully, and we refer the reader
to Refs. [51,52] for complete details. Finally, as previously
recalled, we have that isolated cut point unary 2pfa’s accept
all and only regular languages, but their exact descriptional
power is still an open question.

B. Basics of linear algebra

We briefly recall some basic notions of linear algebra (see,
e.g., Ref. [53]) that are useful in the quantum picture and, in
particular, to define the model of quantum finite automata. We
denote by C the field of complex numbers. Given a complex
number z ∈ C, its conjugate is denoted by z and its modulus
by |z| =

√
zz. The set of n × m matrices having entries in C is

denoted by Cn×m. For matrices C ∈ Cn×m and D ∈ Cm×r , their
product is the matrix (CD)i j =

∑m
k=1 CikDk j in Cn×r . The

adjoint of a matrix M ∈ Cn×m is the matrix M† ∈ Cm×n with
M†

i j = Mji. An Hilbert space of dimension n is the linear space
C1×n—in what follows denoted by Cn for short—equipped
with sum and product by elements in C, in which, for any
vectors ζ , ξ ∈ Cn, the inner product ⟨ζ , ξ ⟩ = ζ ξ † is defined.
If ⟨ζ , ξ ⟩ = 0, we say that ζ and ξ are orthogonal. If ζ and
ξ are orthogonal and ∥ζ∥ = 1 = ∥ξ∥, then ζ and ξ are said
to be orthonormal. The norm of vector ζ is defined as ∥ζ∥ =√

⟨ζ , ζ ⟩. Two subspaces X,Y in Cn are orthogonal if every
vector in X is orthogonal to every vector in Y ; in this case, the
linear space generated by X ∪ Y is denoted by X ! Y .

A matrix M ∈ Cn×n is said to be unitary whenever MM† =
I = M†M, where I ∈ Cn×n is the identity matrix. Equiva-
lently, M is unitary if and only if it preserves the norm, i.e.,
∥ζM∥ = ∥ζ∥ for every ζ ∈ Cn. The eigenvalues of unitary
matrices are complex numbers of modulus 1, i.e., they are
in the form eiϑ , for some real ϑ . A matrix O ∈ Cn×n is
said to be Hermitian whenever O = O†. Let c1, . . . , cs be
the eigenvalues of the Hermitian matrix O and E1, . . . Es be
the corresponding eigenspaces. It is well known that (i) each
eigenvalue ck is real, (ii) Ei is orthogonal to Ej for every
i ̸= j, and (iii) E1 ! · · · ! Es = Cn. Each vector ζ ∈ Cn can
be uniquely decomposed as ζ = ζ1 + · · · + ζs, where ζ j ∈ Ej .
The linear transformation ζ 1→ ζ j is the projector Pj ∈ Cn×n

on the subspace Ej . It is easy to see that
∑s

j=1 Pj = I . An Her-
mitian matrix O is one-to-one determined by its eigenvalues
and its eigenspaces (or, equivalently, by its projectors). In fact,
we have O = c1P1 + · · · + csPs.

C. Axiomatic for quantum mechanics in short

Here, we use the elements of linear algebra discussed
so far to describe quantum systems (see, e.g., Refs. [54,55]
for detailed expositions). Given a set Q = {q1, . . . , qm} of
basis states, every qi can be represented by its characteristic
vector ei ∈ {0, 1}m having 1 at ith position and 0 elsewhere.
A quantum state on Q is a superposition ζ ∈ Cm of basis
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states of the form ζ =
∑m

k=1 αkek , with coefficients αk being
complex amplitudes satisfying ∥ζ∥ = 1. Given an alphabet
! = {a1, . . . , al} of events, with every event symbol ai we
associate a unitary transformation U (ak ) : Cm → Cm. An
observable is described by an Hermitian matrix O = c1P1
+ · · · + csPs. Suppose that at a given instant a quantum system
is described by the quantum state ζ . Then, we can operate the
following:

(1) Evolution by the event a j . The new state ξ = ζU (a j )
is reached. This dynamics is reversible, meaning that ζ =
ξU †(a j ).

(2) Measurement of O . Every outcome in {c1, . . . , cs} can
be obtained. The outcome c j is obtained with probability
∥ζPj∥2 = ⟨ζPj, ζPj⟩, and the state of the quantum system
after observing such a measurement collapses to the super-
position ζPj/∥ζPj∥. The state transformation induced by a
measurement is typically irreversible.

D. One-way unary quantum finite automata

Several models of one-way (fully) quantum finite automata
are proposed in the literature. Basically, they differ in mea-
surement policy [22,24,25,44]. In this paper, we consider the
simplest model of one-way quantum automata called measure
once [18–21]. We focus on the unary case, i.e., automata
having a single-letter input alphabet ! = {a}. Indeed, the def-
inition of a one-way quantum automata on a general alphabet
comes straightforwardly. As done in Sec. II A for classical
models of unary one-way finite automata, we are going to
provide a matrix presentation of unary one-way quantum
finite automata.

A unary measure-once one-way quantum finite automaton
(1qfa, for short) with n basis states, some of which are
designated as accepting states, is formally defined by the triple
A = (ζ ,U, P), where the following hold:

(i) ζ ∈ Cn, with ∥ζ∥ = 1, is the initial superposition of
basis states.

(ii) U ∈ Cn×n is a unitary transition matrix with Ui j being
the amplitude that A moves from the basis state qi to the basis
state q j upon reading a, so that |Ui j |2 is the probability of such
a transition.

(iii) P ∈ Cn×n is the projector onto the accepting subspace,
i.e., the subspace of Cn spanned by the accepting basis states.
The projector P represents the observable O = 1 · P + 0 ·
(I − P).

At the end of the computation on the input word ak , the
state of A is described by the final superposition ζU k . At this
point, the observable O is measured, and A is observed in
an accepting basis state with probability pA(ak ) = ∥ζU kP∥2.
This is the probability that A accepts ak.

The definition of the unary language LA,λ accepted by A
with cut point λ and the notion of a unary language accepted
by A with isolated cut point are identical to those provided in
Sec. II A for the model of unary 1pfa’s.

The designation “measure once” given to the model of
1qfa above introduced is due to the fact the observation
for acceptance is performed only once, at the end of input
processing. Throughout the rest of the paper, for the sake of

brevity, by 1qfa we will mean “measure-once 1qfa,” unless
otherwise stated.

Several contributions in the literature show that, surpris-
ingly enough, isolated cut point 1qfa’s are less powerful
than classical models of one-way finite automata. In fact,
Refs. [18,20,21] prove the following:

Theorem 6. The class of languages on general alphabets
accepted by isolated cut point 1qfa’s coincides with the class
of group languages [56], a proper subclass of regular lan-
guages.

This limitation still remains for more general variants
of (fully) quantum finite automata [22,24,25,57]. To over-
come this computational weakness and exactly reach clas-
sical acceptance capability, hybrid models are proposed in
the literature, consisting of classical finite automata “embed-
ding” small quantum finite memory components (see, e.g.,
[24,28,35,58–60]).

By restricting to unary alphabets, the computational power
of isolated cut point 1qfa’s still remains strictly lower than that
of classical devices. On the other hand, it is proved in Ref. [61]
that the class of unary languages accepted by “measure-
many” isolated cut point 1qfa’s coincides with the class of
unary regular languages. Roughly speaking, a measure-many
1qfa [24,25,57] is defined as a measure-once 1qfa, but the
observation for acceptance is performed at each step along the
computation.

III. THEORETICAL DESIGN OF A SMALL QUANTUM
FINITE AUTOMATON

Although being computationally weaker, 1qfa’s may
greatly outperform classical devices when size—customarily
measured by the number of basis states—is considered (see,
e.g., Refs. [18,30,33,34,36,38,62–66]). To prove this fact, we
test the descriptional power of several models of classical
and quantum one-way finite automata on the very simple
benchmark language introduced in Example 2: For any given
integer m > 0, we let the unary language

Lm = {ak | k ∈ N and k mod m = 0}. (6)

Despite its simplicity, this language proves to be particularly
size consuming on the classical model of one-way finite
automata, as shown in the following:

Theorem 7. For any integer m > 0, let m = pα1
1 pα2

2 . . . pαs
s

be its integer factorization, for primes pi and positive integers
αi. To accept the language Lm, the following number of states
are necessary and sufficient:

(i) m states on 1{d,n}fa’s, and
(ii) pα1

1 + pα2
2 + · · · + pαs

s states on 2{d,n}fa’s and isolated
cut point 1pfa’s.

Proof. (i) In Example 2, an m-state 1dfa (which is clearly
a particular 1nfa) for Lm is provided. The fact that m states are
necessary for any 1{d,n}fa to accept Lm can be easily obtained
by using the pumping lemma for regular languages [39,40].
(ii) For 2{d,n}fa’s, the result is proved in [49]. For 1pfa’s, the
result is proved in Ref. [65]. "

By adopting the quantum paradigm, we can obtain isolated
cut point 1qfa’s for Lm of incredibly small size.

Theorem 8. For any integer m > 0, the language Lm can be
accepted by an isolated cut point 1qfa with two basis states.
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FIG. 5. Scheme of the 1qfa A accepting the language Lm: Given
the initial automaton state ζ and the input word ak the automaton
outputs “1” (accepted) or “0” (not accepted). See the text for details.

Proof. We define the 1qfa A with 2 basis states as

A =
(

ζ = (1, 0),

Um =
( cos(π/m) sin(π/m)

− sin(π/m) cos(π/m)

)
,

P =
(1 0

0 0

))
. (7)

One may easily verify that U is a unitary matrix and that

(Um)k =
( cos(πk/m) sin(πk/m)

− sin(πk/m) cos(πk/m)

)
. (8)

Straightforward calculations show that the probability that A
accepts the word ak amounts to

pA (ak ) = ∥ζ (Um)kP∥2 = cos2
(

πk
m

)

=
{

1 if k mod m = 0
< cos2(π/m) otherwise. (9)

In other words, our 1qfa A accepts with certainty the words
in Lm, while the acceptance probability for the words not in
Lm is bounded above by cos2 (π/m) < 1.

So, we can set the cut point λ = [1 + cos2 (π/m)]/2 and
isolation ρ = [1 − cos2 (π/m)]/2, and conclude that Lm is
accepted by the 1qfa A with two basis states and cut point
λ isolated by ρ. "

In Fig. 5, we depict the 1qfa A of Eq. (7) in order to
highlight the input word ak , the initial automaton state ζ , the
unitary operator Um, and the measurement described by the
projector P.

It is worth noting that the isolation ρ = [1 −
cos2 (π/m)]/2 around the cut point of the 1qfa A of
Eq. (7) tends to 0 for m → +∞. Hence, as m grows, so
does the error probability, i.e., with high probability A may
erroneously accept (reject) words not in Lm (words in Lm).
To overcome this lack of precision, several modular design
frameworks have been settled in the literature, aiming at
enlarging cut point isolation paying by increasing the number
of basis states [25,31–38]. Within these frameworks, for any
desired isolation ρ > 0, a 1qfa can be theoretically defined,
which accepts Lm with cut point isolated by ρ and featuring
O( log m

ρ
) basis states. Although the number of basis states

now depends on m, still it remains exponentially lower than
the number of states of equivalent classical one-way finite
automata displayed in Theorem 7. In addition, the proposed

O( log m
ρ

)-state 1qfa turns out to be the smallest possible. In
fact, in Ref. [34] it is proved that any 1qfa accepting Lm with
cut point isolation ρ must have at least log m

log[1+2/ρ] basis states.
It should be stressed that all the design frameworks pro-

posed in the literature, aiming to build extremely succinct
1qfa’s not only for Lm but also for more general families of
languages, use the simple 1qfa A of Eq. (7) as a crucial
building block. Within these frameworks, the 1qfa A is
suitably composed in a modular pattern by using traditional
compositions (i.e., direct product and sum of quantum sys-
tems), in order to enhance precision in language recognition.
In particular, from this perspective, a physical realization of
the 1qfa A is not only interesting per se but it may provide a
concrete computational component upon which to physically
project more sophisticated and precise 1qfa’s by traditional
compositions of quantum systems.

IV. PHOTONIC IMPLEMENTATION OF THE QUANTUM
FINITE AUTOMATON

In this section, we describe the physical implementation of
the 1qfa A of Eq. (7). The experimental realization is based
on the polarization degree of freedom of single photons and
their manipulation through suitable rotators of polarization.
For the sake of clarity, before discussing the physical im-
plementation, we will summarize in the following the basic
formalism used to describe this kind of quantum system.

A. The Dirac formalism

In order to describe the physical implementation of the
1qfa A of Eq. (7) accepting the language Lm, it is useful to re-
view the standard notation for quantum mechanics introduced
by Dirac [54]. This will help the reader to easily pass from the
notation used in the previous sections to the one we will use
in the following. In this notation, the state “ψ” of a quantum
system is described by the symbol |ψ⟩ which is, in general,
a complex column vector in a Hilbert space. In the present
work, we are interested in the (linear) polarization state of a
single photon; therefore, only the two basis states |H⟩ and |V ⟩,
referring to the horizontal (H) and vertical (V ) polarization,
respectively, are needed. Indeed, because of the very law of
quantum mechanics, any normalized linear combination of
these two vectors represents a quantum state. For instance,
a single photon polarized at an angle θ with respect to the
horizontal is described by the state vector

|θ⟩ = cos θ |H⟩ + sin θ |V ⟩. (10)

Since we are in the presence of only two basis states, we
can give a geometrical representation of them and of the
corresponding spanned space, as shown in Fig. 6(a).

In this formalism, it is clear the correspondence

|H⟩ = ζ † =
(

1
0

)
, and ⟨H | = (|H⟩)† = ζ = (1, 0), (11)

where ζ is the same state introduced in Eq. (7). Analogously,
we have

|V ⟩ = ξ † =
(

0
1

)
and |θ⟩ =

(
cos θ
sin θ

)
, (12)
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FIG. 6. (a) Two-dimensional representation of the polarization
states |H⟩ (horizontal polarization) and |V ⟩ (vertical polarization)
of a single photon. We also report the representation of the single-
photon state with (linear) polarization at the angle θ . (b) The square
of the projections along the horizontal and the vertical axes corre-
spond to the probability of finding the photon with horizontal and
vertical polarization, respectively.

In Sec. II B, we introduced the inner product ⟨ζ , ξ ⟩ = ζ ξ †

between the states ζ and ξ . Using the Dirac formalism, we
have

ζ ξ † = ⟨H |V ⟩ = 0, (13)

where we also used the orthonormality of the involved states.
If we now introduce the projectors

2H = |H⟩⟨H | = P =
(

1 0
0 0

)
, (14)

where P is the same as in Eq. (7), and

2V = |V ⟩⟨V | = Q =
(

0 0
0 1

)
, (15)

given the state |θ⟩, with (|θ⟩)† = ϑ , we have

pH = ⟨ϑP,ϑP⟩ = ⟨θ |2H |θ⟩ = |⟨H |θ⟩|2 = cos2 θ , (16a)

pV = ⟨ϑQ,ϑQ⟩ = ⟨θ |2V |θ⟩ = |⟨V |θ⟩|2 = sin2 θ , (16b)

where we used 22
J = 2J , with J ∈ {H,V } and ⟨a|b⟩ = ⟨b|a⟩.

The geometrical meanings of pH and pV are reported in
Fig. 6(b), where, from the physical point of view, they corre-
spond to the probability of finding the photon with horizontal
or vertical polarization, respectively.

In the context of the polarization of single photons, the ana-
log of the unitary operator Um defined in Eq. (7) is the operator
R(π/m) which corresponds to a rotator of polarization, which
rotates the polarization of the photons by an amount π/m. We
can write R(π/m) = U †

m. Thereafter, the one-step evolution of
the state |H⟩ = ζ † reads

R(π/m)|H⟩ = ζUm. (17)

B. Photonic quantum automaton

In Fig. 7, we depicted the basic elements of the photonic
quantum automaton implementing the 1qfa A of Eq. (7)
accepting the language Lm. Given the input word ak (see also
Fig. 5), a single photon, generated in the state |H⟩ is sent
through k rotators of polarization, where each rotator applies
a rotation of a fixed amount π/m. It is worth noting that
in order to actually reproduce the computation of a 1qfa, a
single rotation should be applied step by step upon reading

FIG. 7. Sketch of the photonic implementation of the 1qfa A
accepting the language Lm. Single photons are generated in the
polarization state |H⟩ and then they pass through k polarization
rotators, k being the length of the input word ak . Each rotator
implements the operator R(π/m) rotating the polarization by the
amount π/m: The overall polarization rotation is θ = πk/m. Finally,
the photons are addressed to two photodetectors by means of a
polarizing beam splitters (PBS) according to their horizontal (H ) or
vertical (V ) polarization.

each input symbol, since the input word length is not known
in advance. After the rotators, the single photon is sent to
a polarizing beam splitter (PBS), a device which transmits
(reflects) the horizontal (vertical) polarization component of
the input state. Since after the rotators the state of the photon
is |θ⟩, given in Eq. (10), it is detected by the H or V detector
(see Fig. 7) with the probabilities given in Eqs. (16). It is worth
noting that, as expected, pH (k) is equal to the automaton
acceptance probability pA (ak ); see Eq. (9). As mentioned in
Theorem 8, this kind of automaton accepts with certainty the
word ak if k mod m = 0, but it has also a high error probability
to accept the word if k mod m = 1. In fact, in this case, pH (k)
attains its maximum cos2(π/m).

To reduce the error probability, one can send M = Nc(m)
copies of the same input word ak , collect the number Nc(k) of
counts at the detector H , and evaluate the ratio

fk = Nc(k)
Nc(m)

M≫1−−→ pH (k). (18)

In this scenario, we let f1 = f(k mod m) = 1 be the highest fre-
quency less than f0 = f(k mod m) = 0 = 1. That is, f1 is the high-
est frequency for words that are erroneously accepted (those
words ak for which k mod m = 1), and f0 is the frequency
of those words that are correctly accepted (those words ak

for which k mod m = 0). Thus, we can define the threshold
frequency

fth = f0 + f1

2
= 1 + f1

2
, (19)

and we use the following strategy:

if fk > fth ⇒ ak is accepted byA ,

if fk < fth ⇒ ak is rejected. (20)

It is clear that such a strategy leads to a zero error probability;
namely, all and only the words in Lm can have fk > fth. How-
ever, in a realistic scenario the number of detected photons
is subjected to Poisson statistical fluctuations, due to the very
nature of the detection process [67]. So, given the word ak ,
the number of detected counts Nc(k) fluctuates according to a
Poisson distribution with mean µk = ⟨Nc⟩ cos2(πk/m), where
⟨Nc⟩ is the average number of detected photons obtained for
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FIG. 8. Error probability (wrong acceptance probability) of the
1qfa A accepting the language Lm, for different values of m, as a
function of the average number of counts ⟨Nc⟩.

k mod m = 0. Thus, it is possible to have a detected frequency
f̃k = Nc(k)/⟨Nc⟩ which incorrectly satisfies

f̃k > f̃th = ( f̃0 + f̃1) / 2 [resp., f̃k < f̃th = ( f̃0 + f̃1) / 2]

also for a word ak not belonging (resp., belonging) to the
language Lm, leading to a non-null experimental acceptance
error probability perr.

If we assume µ1 = ⟨Nc⟩ cos2(π/m) ≫ 1, the distribution
of the detected number of counts for k mod m = 1 can be
approximated by a Gaussian distribution function with mean
and variance given by same value µ1. Analogously, for
k mod m = 0 we have a Gaussian distribution with mean
and variance equal to µ0 = ⟨Nc⟩. Now we can find a more
suitable threshold Nth of the detected counts by considering
the intersection between the two Gaussians, namely

Nth = ⟨Nc⟩
∣∣ cos(π/m)

∣∣
√

1 − ln[cos2(π/m)]
⟨Nc⟩ sin2(π/m)

, (21)

and the corresponding discrimination strategy reads

if Nc(k) " Nth ⇒ ak is accepted byA ,

if Nc(k) < Nth ⇒ ak is rejected. (22)

The experimental error probability is thus given by (we con-
sider only the two relevant contributions)

perr =
∫ Nth

−∞

dx√
2πµ0

exp
[
− (x − µ0)2

2µ0

]

+
∫ ∞

Nth

dx√
2πµ1

exp
[
− (x − µ1)2

2µ1

]
, (23)

where 1 ≪ ⟨Nc⟩ cos2(π/m) = µ1 < Nth < µ0 = ⟨Nc⟩. We
note that perr corresponds to the probability of accepting
(resp., rejecting) the word ak whenever it should be rejected
(resp., accepted). In Fig. 8, we plot the error probability for
different values of m: As one may expect, as m increases so
should the average number of counts ⟨Nc⟩ in order to have a
small error probability.

V. EXPERIMENTAL RESULTS

The main elements of our physical implementation of the
1qfa A accepting the language Lm are sketched in Fig. 7.
However, in order to reduce the losses and other sources of

FIG. 9. Schematic diagram of the experimental setup. A 405-nm
continuous wave (cw) laser diode (L) generates a pump beam which
passes through an amplitude modulator, composed of a half-wave
plate (λ/2) and a polarizing beamsplitter cube (PBS), and through
another half-wave plate to set the polarization. The beam interacts
with a 1-mm-long barium borate (BBO) crystal generating photons
at 810 nm via parametric down conversion (PDC). The two beams
separated by the horizontal plane are called signal and idler: On the
signal’s branch there are two polarizers (P) separated by a half-wave
plate. Photons are finally focused into two multimode fibers through
two couplers (C), and sent to homemade single-photon counting
modules.

noise, in the actual setup we replace the action of the k polar-
ization rotators on the input word ak by using a single rotator
applying an overall rotation of θ = πk/m, which “simulates”
the whole computation of the 1qfa: For this reason, we will
refer to our system as a photonic quantum simulator [68] of
the quantum automaton. As mentioned in the previous section,
an actual 1qfa does not have an a priori knowledge about the
length k of the input word. In fact, it reads the input word
symbol by symbol while applying a rotation π/m per each
scanned input symbol a. Practically, this can be implemented,
for instance, by a motorized rotator of polarization, but this
is beyond the scope of the present work. Nevertheless, it is
worth noting that a more advanced technology, e.g., based on
integrated optics or optoelectronics, can be used to realize the
very setup of Fig. 7.

The experimental setup is shown in Fig. 9.
(1) The pump derives from a 405-nm cw InGaN laser

diode, which we chose in order to use detectors in silicon,
the ones with the lowest noise on the market: Indeed, these
work with maximum quantum efficiency at 810 nm, which is
the same wavelength of the photons generated via parametric
down conversion (PDC) from a 405-nm pump.

(2) The laser beam passes through an amplitude modulator
composed by a half-wave plate and a polarizing beamsplitter
cube (PBS), and then through another half-wave plate to set
the polarization vertical with respect to the optical bench.

(3) The interaction between the pump and a 1-mm-long
BBO crystal generates photons at 810 nm with horizontal
polarization, along the surface of a cone, via type-I-eoo PDC:
For this purpose, the optical axis of the crystal is on the
vertical plane at the phase-matching angle.

(4) The intersection of the cone with the horizontal plane
distinguishes two beams (branches): the signal and the idler.
It is possible to finely tune the angle of the outgoing photons
by properly rotating the principal axis of the BBO.
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FIG. 10. Experimental ratio Nc(k)/⟨Nc⟩ with k = m = 5 (green
disks) and k = 1 (red circles) as a function of the experimental run
number (Rep), k being the length of the input word ak of the 1qfa
A accepting the language Lm. We considered different values of the
overall average number of counts: (a) ⟨Nc⟩ = 36, (b) ⟨Nc⟩ = 108,
(c) ⟨Nc⟩ = 479, and (d) ⟨Nc⟩ = 1845. The horizontal lines are the
threshold values Nth given in Eq. (21). In the plots, we also report
the theoretical error probability from Eq. (23). The reduction of the
relative statistical fluctuations is evident.

(5) Along the signal branch, a polarizer ensures the trans-
mission of the horizontally polarized photons, then a half-
wave plate is used to simulate the k polarization rotators, and
finally another horizontal polarizer transmits the photons to
the detector. This last half-wave plate can be manually rotated
and is equipped with graduations where a unit corresponds to
4◦ in polarization: By considering the working principle of the
half-wave plate, this can be obtained by actually rotating the
plate by 2◦. Therefore, in general, in order to obtain a rotation
in polarization of amount θ , one should rotate the plate by
θ/2.

(6) On each branch, photons are finally focused into a mul-
timode fiber and sent to a homemade single-photon counting
module, based on an avalanche photodiode operated in Geiger
mode with passive quenching [69]. We chose to measure the
coincidence counts in order to obtain a better signal-noise
ratio: Indeed, the photodiodes produce a thermal background
such that approximately 1% of the direct counts are dark
counts, while the coincidence dark counts are only 0.001%
of the coincidence counts.

In Fig. 10, we show typical experimental results from our
photonic simulator of the 1qfa A for the language Lm, with
m = 5 (this choice allows us to put better in evidence the
role of the statistical fluctuations of the detected number of
photons). In this case, a single rotation of polarization (taking
place, e.g., on the input word of length k = 1) has θ = 36◦,
which corresponds to rotating by 9 units the half-wave plate
on signal’s branch [see point (5) in the above description of
our experimental setup].

Here we only show the interesting results for input words
ak of length k = 5 and k = 1. These two inputs, respectively
representing a word in L5 and one of the most prone to error
classification words not in L5, turn out to be critical for testing
the accuracy of the discrimination strategy we use. Further-

FIG. 11. Examples of the experimental number of counts Nc(k)
(dots) as a function of the length k of the input word ak (we
have chosen 10 values of k randomly in the interval [1, 500]). The
horizontal lines refer to the threshold Nth on the number of counts for
the discrimination strategy (see the text for details): If Nc(k) " Nth

the word ak is accepted. The color of the vertical bars refers to the
theoretical acceptance (green) or rejection (red) of the corresponding
input ak by the 1qfa A accepting the language Lm, with m = 23.
The average number of counts is ⟨Nc⟩ = 18439 ± 114 (top panel,
corresponding to Nth = 18267.5) and ⟨Nc⟩ = 56477 ± 244 (bottom
panel, leading to Nth = 55951.5). In both panels, the lower plots
are a magnification of the region around the threshold Nth. (Top
panel) In this case, the error probability evaluated from Eq. (23) is
perr = 10.3%. The number 229 is accepted according to our strategy,
since the number of counts (see the orange arrows) is larger than
the threshold (horizontal solid line), but it should be rejected; on
the other hand, the number 115 should be accepted but it is rejected
since the number of counts (see the magenta arrows) is below the
threshold. (Bottom panel) Here the error probability evaluated from
Eq. (23) is perr = 1.3%. Now the number 229 is rejected and the
number 115 is accepted, according to the definition of Lm. See the
text for details.

more, in order to highlight the reduction of the statistical fluc-
tuations, we plot the ratio Nc(k)/⟨Nc⟩. Each point corresponds
to the number of counts at the detector H when the average
total number of counts is ⟨Nc⟩ = 36, 108, 479, and 1845,
respectively, which can be obtained varying pump’s power
by rotating the half-wave plate of the amplitude modulator.
We repeated the experiments 50 times with an acquisition
time of 1s for each of the two values of k. It is clear that
increasing ⟨Nc⟩ reduces the relative fluctuations and thus the
error probability decreases accordingly.
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To better appreciate the performance of our photonic sim-
ulator, we consider our 1qfa A accepting the language Lm,
with m = 23. In this case, a single rotation of polarization
(taking place, e.g., on the input word of length k = 1) has
(approximately) θ = 8◦, which corresponds to 2 units in the
half-wave plate’s scale [see point (5) in the above description
of our experimental setup]. In the top panel of Fig. 11, we
report examples of the number of counts Nc(k) for just one
given experimental run as a function of different values k
of the length of the input word ak and for ⟨Nc⟩ = 18439.
The acquisition time of each point is 10s. We can see that,
due to the statistical fluctuations mentioned above, sometimes
the automaton fails to accept the word: This is the case for
the input lengths 115 and 229, as discussed in the figure
caption. We remark that in the latter cases we have chosen two
particular experimental runs in which the automaton fails: If
we had considered the average over many runs, we would have
found that the automaton always succeeds on average, since
the standard deviation, due to the statistical scaling, can be
reduced at will. Of course, given a particular run, the error is
independent of k, but depends only on the random, statistical
fluctuations, which can be controlled by increasing ⟨Nc⟩, as
we can see in the bottom panel of Fig. 11, where we report
the results of the photonic simulator taking the same words of
the top panel as inputs but with ⟨Nc⟩ = 56477, obtained with
an acquisition time of 30s. This can be also understood by
considering Eq. (23): The error probability is reduced from
perr = 10.3% for ⟨Nc⟩ = 18439 of the previous case to the
current perr = 1.3% for ⟨Nc⟩ = 56477.

VI. CONCLUSIONS

We have suggested and demonstrated a photonic realiza-
tion of quantum finite automata able to recognize a well-
known family of unary periodic languages. Our device ex-
ploits the polarization degree of freedom of single photons
and their manipulation through linear optical elements. In
particular, we have designed and implemented a one-way
quantum finite automaton A accepting the unary language
Lm = {ak | k ∈ N and k mod m = 0} with only two basis
states and isolated cut point. Notice that any classical finite

automaton for Lm requires a number of states which grows
with m. We have implemented the quantum finite automaton
A using the polarization degree of freedom of a single photon
and have exploited a discrimination strategy to reduce the
acceptance error probability.

It is worth noting that, for the particular one-way quan-
tum finite automaton we considered, we exploited only the
polarization degree of freedom of (quantized) optical fields
and photodetection. Therefore, one can implement a similar
automaton also exploiting polarization of a classical coherent
field (a laser beam) and intensity measurements. Neverthe-
less, our experiment uses single photons that are intrinsically
quantum objects, and thus it paves the way for more complex
quantum finite automata we are planning to address and which
exploit genuine quantum resources, such as entanglement. In
fact, the quantum technology employed in our implementation
is the same used in the current quantum information process-
ing setups based on optical states.

Besides being interesting in itself for fundamental rea-
sons, our physical realization of the one-way quantum fi-
nite automaton A provides a concrete implementation of a
small quantum computational component that can be used
to physically build more sophisticated and precise quantum
finite automata. Indeed, several modular design frameworks
have been modeled and widely investigated from a theoretical
point of view [24,25,30–38,65] to build succinct and precise
quantum finite automata performing different tasks, where the
module A plays a crucial role. Within these frameworks, by
suitably assembling a sufficient number of A -like modules
via traditional compositions of quantum systems (i.e., direct
products and sums), the existence of succinct and precise
quantum finite automata has been theoretically shown. From
this perspective, our results are instrumental to a deeper
understanding of possible physical implementations of these
design frameworks by means of photonic technology and pave
the way for the construction of other more powerful models of
quantum finite automata.
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