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Abstract
We suggest and demonstrate a new protocol based on correlated beams of light: the ‘optical
illusionist game’. An ‘illusionist’ at first shows that if two uncorrelated light beams excited in
the same Gaussian state are mixed in a beam splitter, then no correlations arise between them,
as it was not present. On the other hand, when correlations with an ancillary state are
exploited, the presence of the beam splitter can be unveiled.

PACS numbers: 42.50.�p, 42.50.Ar, 42.50.Xa

(Some figures may appear in color only in the online journal)

1. Introduction

Gaussian states, i.e. states with Gaussian Wigner functions
(e.g. coherent, thermal and squeezed states), play a crucial role
in developing quantum technologies [1–21] and in quantum
optics.

They possess the interesting property of being generated
through linear and bilinear interactions feasible in quantum
optics laboratories and, remarkably, led to the realization
of the first quantum protocols, such as continuous variable
quantum teleportation [22]. Furthermore, in order to optimize
the generation of entanglement and to preserve it during
propagation through realistic channels, very recently interest
has emerged in analyzing the effects of linear optical elements
on the correlations of Gaussian states [22–29].

In this paper, we address the general question of the
invariance of two uncorrelated Gaussian states, irrespective
of whether classical (e.g. thermal) or quantum (e.g. squeezed
vacuum), mixed at a beam splitter (BS); in particular, we
demonstrate that, even when they are left unchanged, as when
the BS is not present, one can distinguish between the two
situations when a third ancillary state is included. In the
following, we present this physical phenomenon as a fancy
game.

2. The illusionist game: theory

An illusionist displays on the stage an amazing game
involving two light beams, a beam splitter (BSI) and two
photodetectors able to measure the correlations between
the beams. He specifies that he will use only Gaussian
states of light with zero first moments. The illusionist starts
his performance by crossing two uncorrelated beams of
light excited in the same Gaussian state and showing, as
one may expect, that no correlations arise between them
(figure 1(a)). Then, he inserts BSI and shows that the
counters continue to reveal zero correlations (figure 1(b)).
This effect is a consequence of the linear interaction of
modes performed by the BSI and the Gaussian nature of the
states [18, 19]. In fact, the most general single-mode Gaussian
state can be written as % = D(↵)S(⇠)⌫th(N )S†(⇠)D†(↵),
where ⌫th(N ) =P1

n=0(N )n/(1 + N )n+1|nihn| is a thermal
equilibrium state with N average number of quanta, S(r) =
exp{ 1

2 [⇠(â†)2 � ⇠ ⇤â2]} and D(↵) = exp[↵â† � ↵⇤â] are the
squeezing and the displacement operators, respectively,
a being the annihilation operator. The state % is fully
characterized by its 2 ⇥ 2 covariance matrix (CM) � , [� ]hk =
1
2 hRh Rk + Rk Rhi � hRhihRki, k = 1, 2, and first moment

vector X
T = hRTi = p

2(<e[↵], =m[↵]), with hAi = Tr[A %],
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Figure 1. The illusionist game. (a) Two uncorrelated light beams
excited in the same Gaussian state are crossed: no correlations arise.
(b) A beam splitter (BSI) lets the two beams interfere: still no
correlations are detected. (c) The illusionist can always say whether
the BSI is hidden under the hat or not: the trick is behind the curtain
(where the illusionist has access to a further beam). Dk , k = 1, 2, 3,
are detectors to measure the correlations.

where RT = (R̂1, R̂2) ⌘ (q̂, p̂) and q̂ = (â + â†)/
p

2 and
p̂ = (â � â†)/(i

p
2) are the position- and momentum-like

operators. In the following, according to the requirements of
the performer, we set ↵ = 0, i.e. X

T = 0. Now, when two
uncorrelated, single-mode Gaussian states %k with CMs � k ,
k = 1, 2, interact through a BSI with transmissivity ⌧ , the
initial 4 ⇥ 4 CM 60 = � 1 � � 2 of the two-mode state %1 ⌦ %2
transforms as [30–33]

60 ! 6(out) =
 

61 612

612 62

!

, (1)

where

61 = ⌧� 1 + (1 � ⌧ )� 2, 62 = ⌧� 2 + (1 � ⌧ )� 1

and

612 = ⌧ (1 � ⌧ )(� 2 � � 1).

Note that 612 6= 0 denotes the presence of correlation between
the outgoing modes. It is now clear that if the input states are
in the same initial state, namely � k = � and 60 ⌘ 6(out), then
the output beams are left uncorrelated (612 = 0).

In the second part of the game, the public is now asked to
insert at will the BSI hiding it under a hat (figure 1(c)). The
illusionist argues that he is able to say whether it is present
or not and he succeeds, despite the fact that the interaction
through the BSI does not seems to affect the output states.

Now we explain how the use of a third ancillary mode
correlated with one of the two input modes allows us to discri-

minate between the two cases. Although the public sees only
modes 1 and 2 on the stage excited in the state %1 = %2 = %,
however, mode 2 is actually correlated with mode 3 (kept by
the illusionist behind the curtain, figure 1(c)), i.e. %2 = Tr[%23]
with %23 6= %2 ⌦ %3. On the one hand, modes 1 and 2 are left
unchanged and uncorrelated after the interference; because of
the interaction, part of the correlations shared between modes
2 and 3 are now shared between modes 1 and 3. This can be
seen by looking at the evolved CM of the whole state of the
three modes in the presence of the BSI. The 6 ⇥ 6 CM of the
initial state %123 = %1 ⌦ %23 reads

6123 =

0

B@

� 1 0 0

0 � 2 �23

0 �T
23 � 3

1

CA , (2)

where � k is the 2 ⇥ 2 single-mode CM of mode k = 1, 2, 3,
� 1 = � 2 = � and the matrix �23 6= 0 contains the correlations
between modes 2 and 3. Since the BSI acts only on modes 1
and 2, we have

6123 ! 6
(out)
123 =

0

BB@

� 0
p

1 � ⌧ �23

0 �
p

⌧ �23
p

1 � ⌧ �T
23

p
⌧ �T

23 � 3

1

CCA .

(3)
The comparison between equations (2) and (3) shows that
while the states of modes 1 and 2 are (locally) left unchanged
and, in turn, uncorrelated, both modes 1 and 2 are now
correlated with mode 3 (again, the presence of non-zero
off-diagonal blocks denotes the presence of correlations
between the corresponding modes). Furthermore, the degree
of correlations between modes 2 and 3 is decreased (�23 !p

⌧ �23) for the benefit of the birth of correlations between
the previously uncorrelated modes 1 and 3 (0 ! p

1 � ⌧ �23).
We conclude that BSI is present, since mode 1 becomes
correlated with mode 3 at the expense of the initial
correlations between modes 1 and 2. Nevertheless, this
happens in such a way that no overall correlations arise
between the interacting modes. The illusionist, who has
access also to the third mode can discover the presence of the
BSI by exploiting the ‘hidden correlations’. Remarkably, the
correlations are not hidden ‘behind the curtain’: in fact,
the two beams are actually mixed (part of the photons from
each beam are reflected and transmitted according to the
interference rules of quantum physics) and, shot by shot,
correlation may arise due to the quantized nature of the light,
but, overall, this effect is ‘washed out’ by the very statistical
nature of the Gaussian states and the linear interaction itself.
Thus, the use of the ancillary mode allows us to retrieve this
particular information.

For the sake of clarity, we described the illusionist
game addressing only single-mode beams; however, the
same results hold also in the presence of multimode
Gaussian beams, provided that each mode interferes with
the corresponding one. This is essentially due to the tensor
product nature of the multimode state and the pairwise
interaction.
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Figure 2. Sketch of the experimental setup. Implementation of the
illusionist game with the BSI (a) and without it (b). In the right
panels of figures (a) and (b) the thermal beams detection area Ak are
reported. The numbers of photoelectrons I ( j)

k per frame j collected
in the area Ak are used to evaluate the correlation coefficients c1,2,
c1,3 and c2,3 according to equation (4).

3. The illusionist game: experiment

We have experimentally realized the protocol by addressing
the most simple Gaussian states, i.e. thermal beams (figure 2).
Two speckled, i.e. spatial multimode and single temporal
mode (pseudo)-thermal beams, a and b, were generated by
scattering two 1 ns laser pulses (� = 532 nm and 12.4 Hz
repetition rate) on two independent rotating ground glasses
(R1 and R2) [34]. While beam b is directly sent to BSI as
beam 1 (figure 2(a)), beam a is divided into the two correlated
beams 2 and 3, needed for the trick, by means of the balanced
beam splitter BS23. A system of half waveplates (�/2) and
polarizers (P) compensated unbalancing in intensity of the
modes and selected only modes with the same polarization,
in order to realize the theoretical condition %1 = %2. The
lens LI (focal length 20 cm) imaged the beams on an
electron multiplying charge coupled device (EMCCD) array
(Andor Luca, sensitive area 658 ⇥ 498 pixels, squared pixel
dimension 10 µm) with 0.16 magnification of the beams. Each
mode of the beams corresponded to a point on the EMCCD
array. For each beam k = 1, 2, 3 we selected an area Ak

with 40 ⇥ 40 pixels collecting M ⇡ 41 modes. Each mode
collected in the area Ak interferes with its correlated one in the
corresponding other areas. Optimal selection of the correlated
areas Ak is performed maximizing the (pixel-by-pixel) spatial
correlation [35].

The pseudo-thermal beams show the typical speckle
structure, and we put the BSI in their far field zone in order
to associate each mode of the multimode thermal beam with a
point on the BSI, i.e. on the detection plane. In this way, our
setup allows us to identify properly each pair of single modes
and make them interacting at the BSI.

To evaluate the intensity correlations between the modes,
which are due to the presence of non-zero off-diagonal blocks
of the CM, each beam k = 1, 2, 3 was registered by an area Ak

of an EMCCD array (right panel of figure 2), corresponding to
the detector Dk of figure 1. We actually measure the number

of photoelectrons I ( j)
k corresponding to the light intensity

impinging on the whole area Ak . By averaging I ( j)
k over

the number of frames, due to the presence of many spatial
modes per area, one has a reasonable estimate of the operator
Îk = ⌘

PM
m=1hâ†

m,k âm,ki, where ⌘ is the quantum efficiency of
the EMCCD and âm,k is the field operator of the mth mode
impinging on Ak and M is the total number of collected
modes. The correlation between the beams h and k (h, k =
1, 2, 3) is estimated by using the second-order correlation
coefficient ch,k , namely

ch,k = hIk Ihifr � hIhifrhIkifr

1fr(Ih)1fr(Ik)
, (4)

where hFifr = (Nframe)
�1PNframe

j=1 F ( j) is the average over
Nframe frames and 1fr(Ik)

2 = hI 2
k ifr � hIki2

fr. If ch,k = 1,
one has maximum correlation; if ch,k = 0, the beams are
uncorrelated. It is remarkable to note that if all the spatial
modes belonging to a beam have the same intensity, the
correlation coefficient ch,k is independent of the number of
modes M, i.e. ch,k is equal to the one calculated for the single
mode.

To ensure proper mode matching at BSI and perfect
superposition of the correlated areas A1 and A2, we
alternatively stopped beams a or b and measured and
maximized the correlation c(a)

1,2 and c(b)
1,2, respectively, between

beams 1 and 2 outgoing the BSI. We then investigated the
two configurations proposed by the illusionist: with the BSI

and without it. Our results fully demonstrate the theoretical
protocol. Figure 3 shows the correlation coefficient c1,2 for
different configurations and as a function of the number
of frames. With the BSI inserted, the correlation falls from
almost 1 in the presence of only one of the two beams
a and b (c(a)

1,2 and c(b)
1,2), to almost zero when both beams

are present, thus efficiently hiding the correlation (c(BS)
1,2 ). A

very small residual correlation persists due to experimental
imperfections, such as the non-perfect superpositions of the
optical modes and the unbalancing of the BSI. The question
that naturally arises is whether this residual correlation is
enough to discriminate the presence from the absence of the
BSI. The answer is ‘no’ where a relatively small number of
frames is used to estimate c1,2. As shown in the insets of
figure 3, the large overlap between the probability density
functions (pdf) [36] of c(BS)

1,2 and of c(no)
1,2 (obtained for Nframe =

10, 30, 50) does not allow us to discriminate between the two
cases with sufficiently small error probability and the ‘hidden
correlations’ are needed.

In figure 4(a) we report c1,3 with and without BSI:
the correlation between beams 1 and 3, which are initially
uncorrelated, is evident in the presence of BSI. In the absence
of BSI, beams 1 and 3 are uncorrelated, hence c(no)

1,3 ⇡ 0;
inserting BSI, correlations appear and c(BS)

1,3 ⇡ 0.5. Similar
results concern c2,3 (figure 4(b)): one has c(no)

2,3 ⇡ 1 without
BSI and c(BS)

2,3 ⇡ 0.5 with BSI. However, to perform the trick,
the illusionist should be able to discriminate between the
two cases with low error probability and, thus, he should
choose a suitable Nframe. In figure 4(c) we plotted the
probability of error P (1,2)

err as expected by the public, i.e.
addressing c1,2, and that of the illusionist, P (1,3)

err or P (2,3)
err ,

i.e. addressing c1,3 or c2,3, respectively. Also in the presence
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Figure 3. Plot of the correlation c1,2 for different experimental configurations (dots), together with the confidence intervals at 99% (shaded
regions), as a function of the number of frames used to evaluate it. c(a)

1,2 (black) and c(b)
1,2 (orange) correspond to the correlation of beams 1

and 2 outgoing BSI when only mode a or b, respectively, is switched on. c(BS)
1,2 (blue) and c(no)

1,2 (red) refer to the correlation of modes 1 and 2
with and without the BSI, respectively, when both a and b are switched on. As expected, the width of the confidence intervals decreases as
Nframes increases. The insets of the figure show the probability density function of the correlation coefficients for Nframe = 10, 30 and 50.

Figure 4. (a) Plot of c1,3 (dots), together with their confidence intervals at 99% (dashed lines and shaded regions), as functions of Nframe.
c(BS)

1,3 (blue) and c(no)
1,3 (red) refer to correlations between beams 1 and 3 with and without BSI, respectively. (b) Plot of c(BS)

2,3 (blue) and c(no)
2,3

(red), referred to correlations between beams 2 and 3 with and without BSI, respectively. (c) Log-linear plot of the error probability P (h,k)
err of

the discrimination presence/absence of BSI as a function of Nframe obtained from ch,k .

of experimental imperfections, for Nframe ⇡ 50, he is indeed
able to discriminate between the two configurations, since
P (1,3)

err ⇡ 1% (P (2,3)
err ⇡ 1%) and P (1,2)

err ⇡ 35%: we conclude
that the illusionist succeeded in his game!

4. Conclusions

In summary, we have suggested and demonstrated a novel
scheme to illustrate and exploit the correlations of quantized
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light. In our illusionist game, two identical Gaussian beams
of light are addressed to the BSI and do not acquire any
correlation revealing the action of the BS itself. On the other
hand, the presence of the BS can be identified by using the
pre-existing correlations of one of the beams with a third one.
Our protocol represents a paradigmatic example of hidden
correlations of quantized optical beams, and paves the way for
future applications, e.g. innovative interferometric schemes
and generation scheme for highly excited photon number
entangled states [37].
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