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Abstract
Highly quantum nonlinear interactions between different bosonic modes lead to the generation
of quantum non-Gaussian states, i.e. states that cannot be written as mixtures of Gaussian
states. A paradigmatic example is given by Schrödinger’s cat states, that is, coherent
superpositions of coherent states with opposite amplitude. We here consider a novel quantum
non-Gaussianity criterion recently proposed in the literature and prove its effectiveness on
Schrödinger cat states evolving in a lossy bosonic channel. We prove that the quantum
non-Gaussianity can be effectively detected for high values of losses and for large coherent
amplitudes of the cat states.
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1. Introduction

The achievement and control of optical nonlinearities at
the quantum level (QNL) is arguably one of the central
goals of modern quantum optics3. Highly Hamiltonian
nonlinear processes such as Kerr interactions, or conditional
operations such as photon addition/subtraction and Fock
state generation [1] have indeed proven to be powerful tools
for investigating and exploiting the quantum nature of the
electromagnetic field. In light of this, techniques that reliably
verify the successful experimental implementation of QNL
are highly desirable. Closely linked to the concept of optical
nonlinearity is that of the set of Gaussian states [2], which
can be seen as a collection of states that can be obtained
by applying quadratic Hamiltonians to thermal states of
radiation. It is easy to realize that, without the use of QNL,
one is invariably limited to the preparation of Gaussian states
and their convex combinations. Conversely, the successful
detection of a state that cannot be written in this form,
a quantum non-Gaussian state, can only be explained by
the presence of a QNL during the preparation stage. The

3 In this paper, we use the term ‘nonlinearity’ to indicate any process that
cannot be realized with Hamiltonians that are second-degree polynomials
in the bosonic operators. More technically, a nonlinear process cannot be
obtained as a convex combination of Gaussian operations.

detection and characterization of quantum non-Gaussianity
(QNG) thus acquires fundamental importance in the study
of continuous-variable quantum states. The literature presents
a number of methods for detecting non-classical states [3],
defined as states that cannot be written as mixtures of
coherent states, or quantifying the deviation of a quantum
state from a Gaussian [4–7]. However these methods are,
respectively, not able to discriminate between quantum
non-Gaussian states and squeezed states, and not suitable
for distinguishing between quantum non-Gaussian states and
mixtures of Gaussian states. In fact, excluding the case of
states with negative Wigner function, which are certainly
quantum non-Gaussian, no general method for distinguishing
between the two sets is known. This state of knowledge
triggered the development of sufficient methods to detect
QNG in noisy setups, where no negativity of the Wigner
function can be observed [8, 9], allowing one to witness the
successful implementation of QNL processes despite the high
levels of noise [10, 11]. In this paper we apply the method
introduced in [9], to investigate QNG of Schrödinger cat
states [12–14] undergoing severe optical loss, such that its
Wigner function becomes positive everywhere. Focusing on
the so-called odd and even cat states, we find that QNG can be
witnessed for any value of the model parameters in the former
case, and for a significant but finite range of parameters in the
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latter. In what follows, we start by briefly summarizing the
results of [9] and the basics of the employed physical model,
and then use these tools to carry out a detailed analysis of the
problem of interest.

2. Quantum non-Gaussianity criteria

We here review QNG criteria based on the Wigner function
which have been proposed in [9]. We will restrict ourselves
here to single-mode systems, described by bosonic operators
satisfying the commutation relation [a, a†] = 1. Any single
mode quantum state % can be equivalently described by
its characteristic function or its Wigner function, defined
respectively as

� [%](� )=Tr[%D(� )], W [%](↵)=
Z

d2�

⇡2
e�

⇤↵��↵⇤
� [%](� ),

(1)
where D(� ) = exp{� a† � � ⇤a} represents the displacement
operator. A quantum state is called Gaussian if and only if
its Wigner function is a Gaussian function.

The Gaussian convex hull is the set of states

G =
⇢
% 2H | % =

Z
d� p(�) | 
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(�)ih 
G
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where H denotes the Hilbert space of continuous-variable
quantum states, p(�) is a proper probability distribution and
| 

G

(�)i are pure Gaussian states. We define a quantum state
quantum non-Gaussian iff it is not possible to express it as a
convex mixture of Gaussian states, that is, iff % /2 G. In [9] it
is proved that for any % 2 G, the following inequality holds

W [%](0)> 2
⇡

e�2n̄(n̄+1) , (3)

where n̄ = Tr [%a†a]. Together with the observation that the
set G is closed under any Gaussian map E

G

, inequality (3)
leads to the following generalized QNG criterion.

Criterion 1. Given a quantum state % and a Gaussian map
E

G

, define the QNG witness

1 [%, E
G

] = W [E
G

(%)](0) � 2
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exp{�2n̄E(n̄E + 1)} , (4)

where n̄E = Tr[E
G

(%)a†a]. Then,
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In the following section, we will apply this criterion
to Schrödinger’s cat states evolving in a lossy channel. As
additional Gaussian maps E

G

we will consider the simplest
examples, that is, displacement operations D(�), squeezing
operations S(⇠) = exp

� 1
2⇠(a

†)2 � 1
2⇠

⇤a2
 

and combinations
of the two.

3. Detecting quantum non-Gaussianity of
Schrödinger’s cat states

Schrödinger’s cat states are defined as

| ↵,⇠ i = | �↵i + ⇠ |↵i
N , (6)

where, without losing generality, ↵ 2 R and N =p
1 + ⇠ 2 + 2⇠e�2↵2 denote the normalization constant. By

considering the parameter ⇠ = 1 and �1, one obtains
respectively the so-called even | eveni and odd | oddi cat
states. In the following we will restrict our analysis to these
particular classes of states, whose Wigner functions are
plotted in figure 1 for ↵ = 1. We will consider their evolution
in a lossy bosonic channel described by the Markovian master
equation

d%
dt

= � a%a† � �

2
(a†a% + %a†a). (7)

The resulting time evolution is characterized by a single
parameter ✏ = 1 � e�� t and it models both the incoherent
loss of photons in a zero temperature environment, and the
performances of detectors having an efficiency parameter ⌘ =
1 � ✏. We will denote the evolved state as E✏(%0). In the
Wigner function picture, the evolution can be analytically
solved by means of the formula

W [E✏(%0)](�) = 2
⇡✏

Z
d2�0 W [%](�0)

⇥ exp

(

�
2
���� �0p1 � ✏

��2

✏

)

. (8)

Also, the average values of the operators needed to compute
the QNG witnesses 1[E✏(%0), EG

] can be analytically
evaluated as

n̄✏ = Tr [E✏(%0)a
†a] = (1 � ✏)n̄0 ,

ha2i✏ = Tr [E✏(%0)a
2] = (1 � ✏)ha2i0 , (9)

where for an initial Schrödinger’s cat state %0 = | ↵,⇠ ih ↵,⇠ |
the initial averages read

n̄0 = ↵2(1 + ⇠ 2 � 2⇠e�2↵2
)

N 2
, ha2i0 = ↵2 . (10)

We will focus on large noisy parameters, i.e. ✏ > 0.5 such that
no negativity of the Wigner function can be observed [15]. In
particular we will determine the maximum values for which
we observe a violation

✏max [%] = max {✏ : 9E
G

s.t. 1 [E✏(%), EG

]6 0} . (11)

The quantity ✏max is a relevant figure of merit to assess
our criterion. In fact, having values of ✏max close to unity
corresponds to situations where the criterion is able to detect
QNG even in a highly noisy channel or, equivalently, by using
highly inefficient detectors.

3.1. Odd cat states

We will start here by considering a odd cat state | oddi. The
Wigner function of the initial pure state, plotted in figure 1
(left), is squeezed along the P quadrature and presents a
minimum (negative) value at the origin of the phase space.
Then we can consider the QNG witness optimized over an
additional squeezing operation, i.e.

1odd(s) =1[E✏(| oddih odd|, S(s)]. (12)
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Figure 1. Contour plots of the Wigner functions W [%](�) of the odd cat state (left) and even cat state (right) for ↵ = 1.

Figure 2. (Left) Optimized QNG witness 1
odd

(s
opt

) for odd cat states evolving in a lossy channel, as a function of ✏ and for different values
of ↵: red dotted line: ↵ = 0.5; green dashed line: ↵ = 1.0; blue solid line: ↵ = 1.5. (Right) maximum value of the noise parameter ✏max such
that the optimized QNG witness 1odd(sopt) takes negative values, as a function of the coherent states amplitude ↵ (blue solid line).
The dashed red line corresponds to the maximum value of the noise parameter ✏max obtained without considering an additional squeezing
(i.e. for s = 0).

The average photon number of the squeezed evolved odd cat
state, needed to determine 1odd(s), can be evaluated as

n̄(odd)(s) = (µ2
s + ⌫2

s )n̄✏ + 2µs⌫sha2i✏ + ⌫2
s , (13)

where µs = cosh s, ⌫s = sinh s, and the values of n̄✏ and
ha2i✏ can be obtained from equations (9) and (10) by setting
⇠ = �1. We will then look for values of the additional
squeezing parameter s, such that the criterion 1 is fulfilled.
In particular one can then try to optimize over the additional
squeezing s, for each value of ↵ and ✏. By exploiting
the invariance of the Wigner function in the origin under
squeezing operation, this optimization corresponds to the
minimization of the average photon number in equation (13).
An analytic solution can be obtained, yielding

s
opt

= �1
4

log
1 � e2↵2 � 4↵2e2↵2

(1 � ✏)
1 � e2↵2 � 4↵2(1 � ✏)

. (14)

The behaviour of the resulting optimized witness
1odd(sopt) is plotted as a function of ✏ for different values
of ↵ in figure 2 (left): for the values of ↵ considered, QNG
of odd cat states can be detected by the criterion for all the
values of ✏. As pictured in figure 2 (right), it is possible to
prove numerically that ✏max is equal to one, that is, QNG can

also be detected for all values of noise, for larger values of
↵, in cases without an additional squeezing, by considering
1odd(0), ✏max ⇡ 0.5.

3.2. Even cat states

We now consider the problem of detecting QNG for even cat
states | eveni evolving in the lossy channel E✏ . By inspecting
the plot in figure 1 (right), we notice that the Wigner function
of the initial pure state is squeezed and that its minimum
is along the P quadrature axis. As a consequence we
will consider a combination of displacement and squeezing
operations, in order to construct the following QNG witness:

1even(�, s) =1[E✏(| evenih even|, D(i�)S(s)]. (15)

The average photon number n̄(even)
�,s to be used in the

calculation of 1even(�, s) reads

n̄(even)
�,s = (µ2

, + ⌫2
s )n̄✏ + 2µs⌫sha2i✏ + ⌫2

s +�2, (16)

where in this case the values of n̄✏ and ha2i✏ can be obtained
from equations (9) and (10) by setting ⇠ = 1.

We will look for the optimal values {�opt, sopt} which
minimize 1even(�, s) for given values of the noise parameter
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Figure 3. (Left) Optimized QNG witness 1even(�opt, sopt) for even cat states evolving in a lossy channel, as a function of ✏ and for different
values of ↵: red dotted line: ↵ = 0.4; green dashed line: ↵ = 0.6; blue solid line: ↵ = 1.0. (Right) maximum value of the noise parameter
✏max such that the optimized QNG witness 1even(�opt, sopt) takes negative values, as a function of the coherent states amplitude ↵. Notice
that for � = 0 and s = 0, one would obtain ✏max = 0 for all values of ↵.

✏ and the coherent states amplitude ↵. Unfortunately, in
this case an analytical approach cannot be pursued, since
the displacement operation changes both the value of the
Wigner function in the origin of the evolved state and the
average photon number in equation (16). As a consequence
the optimal values will be obtained numerically for each
couple of values of ✏ and ↵. The corresponding optimized
QNG witness 1even(�opt, sopt) has been evaluated and plotted
in figure 3 (left). We can clearly observe that, thanks to
the additional Gaussian operations, we are able to detect
QNG for non-trivial values of the noise parameter, that is for
✏ > 0.5. The maximum value of the noise parameter ✏max for
which we observe negative values of 1even has been obtained
numerically and it is plotted in figure 3 (right). For small
values of the coherent states amplitude ↵, one can detect QNG
for practically all the possible values of noise: in particular
for ↵ 6 0.1 we have ✏max ⇡ 1 (up to numerical precision),
and for ↵ < 0.6 we still have ✏max > 0.99. Unfortunately, by
further increasing the amplitude up to ↵ = 1, the witness
performances are drastically reduced and ✏max approaches its
limiting value ✏max ⇡ 0.5. Notice that if we do not consider
additional operations, that is by setting � = 0 and s = 0, one
obtains ✏max = 0 for all values of ↵, that is QNG cannot be
detected.

4. Conclusions

We have applied a recently proposed QNG criterion to
Schrödinger’s cat states evolving in a lossy bosonic channel.
We observe that by optimizing the witness by additional
Gaussian operations, one can detect QNG, and thus a QNL
process, for non-trivial values of the noise parameter, that is
for severe optical loss yielding a positive Wigner function.

In particular, the criterion works really well for odd cat
states, while it is effective only for small amplitude even cat
states.
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