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a b s t r a c t

We address the characterization of classical fractional random noise via quantum probes.
In particular, we focus on estimation and discrimination problems involving the fractal di-
mension of the trajectories of a system subject to fractional Brownian noise. We assume
that the classical degree of freedom exposed to the environmental noise is coupled to a
quantum degree of freedom of the same system, e.g. its spin, and exploit quantum limited
measurements on the spin part to characterize the classical fractional noise. More gener-
ally, our approach may be applied to any two-level system subject to dephasing perturba-
tions described by fractional Brownian noise, in order to assess the precision of quantum
limited measurements in the characterization of the external noise. In order to assess the
performances of quantum probes we evaluate the Bures metric, as well as the Helstrom
and the Chernoff bound, and optimize their values over the interaction time. We find that
quantumprobesmay be successfully employed to obtain a reliable characterization of frac-
tional Gaussian process when the coupling with the environment is weak or strong. In the
first case decoherence is not much detrimental and for long interaction times the probe
acquires information about the environmental parameters without being toomuchmixed.
Conversely, for strong coupling information is quickly impinged on the quantum probe
and can be effectively retrieved by measurements performed in the early stage of the evo-
lution. In the intermediate situation, none of the two above effects take place: information
is flowing from the environment to the probe too slowly compared to decoherence, and
no measurements can be effectively employed to extract it from the quantum probe. The
two regimes of weak and strong coupling are defined in terms of a threshold value of the
coupling, which itself increases with the fractional dimension.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic modeling is often themost effective tool available in order to describe complex systems in physical, biological
and social networks [1–4]. In particular, since natural noise sources are mostly Gaussian, stationary and non-stationary
Gaussian processes are often used to model the response of a system exposed to environmental noise. In view of the
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increasing interest towards complex systems, a question thus naturally arises on whether an effective characterization of
Gaussian processes is achievable.

In this paper we address the characterization of classical random fields and focus attention on fractional Gaussian pro-
cesses. The reason is twofold: on the one hand, most of the noise sources in nature are Gaussian and the same is true for
the linear response of systems exposed to environmental noise [5]. On the other hand, fractional processes have recently
received large attention since they are suitable to describe noise processes leading to complex trajectories, e.g., irregular
time series characterized by a Hausdorff fractal dimension in the range 1  �  2. In particular, in order to maintain the
discussion reasonably self contained, we focus on systems exposed to fractional Brownian noise [6–8] (fBn) BH(t), which is
a paradigmatic nonstationary Gaussian stochastic process with zero mean E[BH(t)]B = 0 and covariance [9]

E[BH(t)BH(s)]B ⌘ K(t, s)

= 1
2
VH

�|t|2H + |s|2H � |t � s|2H�

, (1)

where

VH = 0(1 � 2H)
cos⇡H
⇡H

,

0(x) being the Euler Gamma function. In the above formulas H is a real parameter H 2 [0, 1], usually referred to as the
Hurst parameter [10]. The Hurst parameter is directly linked to the fractal dimension � = 2 � H of the trajectories of the
particles exposed to the fractional noise. The notation [. . .]B denotes expectation values taken over the values of the process
and represents a shorthand for the functional integral

[f (t)]B =
Z

D[BH(t)] P [BH(t)] f (t)

1 =
Z

D[BH(t)] P [BH(t)],
performed over all the possible realizations of the process BH(t), each one occurring with probability P [BH(t)]. We remind
that fBn is a self-similar Gaussian process, i.e., BH(at) ⇠ |a|HBH(t), and that it is suitable to describe anomalous diffusion
processes with diffusion coefficients proportional to t2H , corresponding to (generalized) noise spectra with a power-law
dependence |!|�2H�1 on frequency [11].

The characterization of fBn amounts to the determination of the fractal dimension of the resulting trajectories, i.e., the
determination of the parameter H . In the following, in order to simplify notation and formulas, we will employ the comple-
mentary Hurst parameter � = 1 + H = 3 � � 2 [1, 2] and upon replacing

H �! � � 1

VH �! V� = 2
⇡
0(2 � 2� ) cos⇡�

in Eq. (1), we will denote the fBn process by B� (t)
The purpose of this paper is to address in some detail the characterization of fBn, i.e., the determination of the parameter

� , using quantum probes. This means that we consider a system, say a particle, subject to fBn, and assume that its motional
degree of freedom, regarded to be classical, is coupled to a quantum degree of freedom of the same system, e.g., its spin.
We then ignore the noisy classical part and exploit quantum limited measurements on the spin part to extract information
about the fBn. Notice, however, that our approach and our results are also valid to assess the performances of quantum
limitedmeasurements for any two-level system subject to dephasing perturbations described by fractional Brownian noise,
i.e., without the need of referring to a qubit coupled to the motion of a particle.

We will address both estimation and discrimination problems for the fractal dimension of the fBn, i.e., situations where
the goal is to estimate the unknown values of the parameter � 2 [1, 2], and cases where we know in advance that only two
possible values �1 and �2 are admissible and want to discriminate between them [12].

Several techniques have been suggested for the estimation of the Hurst parameter in the time or in the frequency
domain [13,14], or using wavelets [15,16]. Among themwemention range scale estimators [10], maximum likelihood [17],
Karhunen–Loeve expansion [18], p-variation [19], periodograms [20,21], weighted functional [22], and linear Bayesian
models [23].

Compared to existing techniques, quantum probes offer the advantage of requiring measurements performed at a fixed
single (optimized) instant of time, without the need of observing the system for a long time in order to collect a time series,
and thus avoiding any issue related to poor sampling [24–26]. As we will see, quantum probes may be effectively employed
to characterize fractional Gaussian processwhen the system–environment coupling isweak, provided that a long interaction
time is achievable, or when the coupling is strong and the quantum probemay be observed shortly after that the interaction
has been switched on. Overall, and together with results obtained for the characterization of stationary process [27], our
results indicate that quantum probes may represent a valid alternative to other techniques to characterize classical noise.

The paper is structured as follows: in Section 2we introduce the physicalmodel and discuss the dynamics of the quantum
probe. In Section 3 we briefly review the basic notions of quantum information geometry and evaluate the figures of merit
that are relevant to our problems. In Section 4 we discuss optimization of the interaction time, and evaluate the ultimate
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bounds to the above figures of merit that are achievable using quantum probes. Section 5 closes the paper with some
concluding remarks.

2. The physical model

We consider a spin 1
2 particle in a situation where its motion is subject to environmental fBn noise andmay be described

classically.We assume that themotional degree of freedom of the particle is coupled to its spin, such that the effects of noise
influence also the dynamics of the spin part. We also assume that the noise spectrum of the fBn contains frequencies that
are far away from the natural frequency !0 of the spin part. When the spectrum contains frequencies that are smaller than
!0then the fluctuation induced by the fBn are likely to produce decoherence of the spin part, rather the damping, such that
the time-dependent interaction Hamiltonian between the motional and the spin degrees of freedommay be written as

HI = � �zB� (t), (2)
where �z denotes a Pauli matrix and � denotes the coupling between the spin part and its classical environment. We do not
refer to any specific interaction model between the motional degree of freedom and the spin part and assume that Eq. (2)
describes the overall effect of the coupling. The full Hamiltonian of the spin part is given by H = !0�z + �B� (t)�z and may
be easily treated in the interaction picture. Upon denoting by ⇢0 the initial state of the spin part, the state at a subsequent
time t is given by ⇢� (t) = E

⇥

U(t) ⇢0 UÑ(t)
⇤

B, where

U(t) = exp
⇢

�i�
Z t

0
ds B� (s)�z

�

⌘ e�i'(t)�z

= cos'(t)I � i sin'(t)�z . (3)
Upon substituting the above expression of U(t) in ⇢� we arrive at

⇢� (t) = E[cos2 '(t)]B ⇢0 + E[sin2 '(t)]B �z⇢0�z � iE[sin'(t) cos'(t)]B [�z, ⇢0]
= p� (t, �) ⇢0 + [1 � p� (t, �)]�z⇢0�z . (4)

In writing the last equality, we have already employed the averages over the realizations of the fractional process

p� (t, �) ⌘ E[cos2 '(t)]B = 1
2



1 + exp
⇢

�� t
2� V�
�

��

E[cos'(t) sin'(t)]B = 0,
which have been evaluated taking into account that B� (t) is a Gaussian process with zero mean and covariance K(t, s),
i.e., by using the generating function

E


exp
⇢

�i
Z t

0
ds f (s) B� (s)

��

B
= exp

⇢

�1
2

Z t

0

Z t

0
dsds0f (s) K(s, s0) f (s0)

�

, (5)

which leads to

E
⇥

e�im'(t)⇤

B = E


exp
⇢

�im
Z t

0
ds B� (s)

��

B

= exp
⇢

�1
2
m2�(t)

�

8m 2 Z,

where

�(t) =
Z t

0

Z t

0
dsds0 K(s, s0) = � t2�

2�
V� . (6)

In the complementary case, i.e., when the noise spectrum of the fBn contains frequencies that are larger than the natural
frequency of the spin part, the dominant process induced by the environmental noise is damping, such that the overall
Hamiltonian may be written as H 0 = !0�z + B� (t)�x. Due to the presence of the transverse field in the time-dependent
stochastic Hamiltonian there is no exact (close) solution for the unitary evolution, which involves time ordering. When the
quantity �(t) in the characteristic function is small [28], e.g., in the limit of slowly varying B� (t) we may write the quasi
static unitary evolution, which reads as follows:

U 0(t) = exp
⇢

�i
Z t

0
ds H 0(s)

�

= cos
q

!2
0t2 + '2(t) I � i!0t

sin
q

!2
0t2 + '2(t)

q

!2
0t2 + '2(t)

�z � i'(t)
sin

q

!2
0t2 + '2(t)

q

!2
0t2 + '2(t)

�x

' cos'(t) I � i sin'(t) �x, (7)
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where the last equality is valid if!0t ⌧ '(t), i.e., assuming!0 ⌧ �|B� (t)|, 8t . In this limit, the damping evolution operator
in Eq. (7) is just a rotated version of the decoherence one in Eq. (3). In general In the following we limit ourselves to estima-
tion and discrimination problems involving a fBn inducing nondissipative decoherence, i.e., with noise spectrum containing
frequencies smaller than !0 and leading to an evolution operator of the form (3).

3. Quantum information geometry for a spin

1

2

particle exposed to classical noise

The characterization of fBn by quantum probes amount to distinguish quantum states in the class ⇢� (t), i.e., states orig-
inating from a common initial state ⇢0 and evolving in different noisy fBn channels, each one characterized by a different
Hurst parameter, and thus inducing trajectories with different fractal dimension. Distinguishability of quantum states is
generally quantified by a distance in the Hilbert space. However, depending on the nature of the estimation/discrimination
problem at hand, different distances are involved to capture the relevant notion of distinguishability [29,30].

In situations where wewant to estimate the unknown value of � 2 [1, 2] the problem is to discriminate a quantum state
within the continuous family ⇢� (t). In this case, the relevant quantity is the so-called Bures infinitesimal distance between
nearby point in the parameter space [31–35] d2B(⇢� , ⇢�+d� ) = gB(� ) d2� , where the Bures metric gB(� ) is given by

gB(� ) = 1
2

X

nk

|h k|@� ⇢� | ki|2
⇢n + ⇢k

, (8)

| ni being the eigenvectors of ⇢� = P

n ⇢n| nih n|. We omitted the explicit dependence on time. The finite Bures dis-
tance between two quantum states is given by DB(⇢1, ⇢2)

2 = 2(1 � p
F(⇢1, ⇢2)) in terms of the fidelity F(⇢1, ⇢2) =

�

Tr
⇥pp

⇢1⇢2
p
⇢1

⇤�2.
The relevance of the Bures metric in estimation problems comes from the fact that gB(� ) = 1

4G(� ) where G(� ) is the
quantum Fisher information of the considered statistical model ⇢� [36–42]. In order to appreciate this fact, let us remind
that any estimation problem consists in inferring the value of a parameter � , which is not directly accessible, by measuring
a related quantity X . The solution of the problem amounts to find an estimator �̂ ⌘ �̂ (x1, x2, . . .), i.e., a real function of
the measurements outcomes {xk} to the parameters space. Classically, the variance Var(� ) of any unbiased estimator sat-
isfies the Cramer–Rao bound Var(� ) � 1/MF(� ), which establishes a lower bound on variance in terms of the number of
independent measurementsM and the Fisher Information F(� ) = P

x p(x|� )
⇥

@� log p(x|� )
⇤2, p(x|� ) being the conditional

probability of obtaining the value x when the parameter has the value � . When quantum systems are involved, we have
p(x|� ) = Tr

⇥

%� Px
⇤

, {Px} being the probability operator-valued measure (POVM) describing the measurement. A quantum
estimation problem thus corresponds to a quantum statistical model, i.e., a set of quantum states ⇢� labeled by the param-
eter of interest, with the mapping � ! ⇢� providing a coordinate system. Upon introducing the Symmetric Logarithmic

Derivative (SLD) ⇤� as operator satisfying the equation @� ⇢� = 1
2

h

⇤�⇢� + ⇢�⇤�

i

one can prove [36] that F(� ) is upper

bounded by the Quantum Fisher Information F(� )  G(� ) ⌘ Tr
⇥

⇢�⇤
2
�

⇤

. In turn, the ultimate limit to precision is given by
the quantum Cramer–Rao theorem (QCR)

Var(� ) � 1
MG(� )

,

which provides ameasurement-independent lower bound for the variancewhich is attainable uponmeasuring a POVMbuilt
with the eigenprojectors of the SLD. In fact, quantum estimation theory has been successfully employed for the estimation
of static noise parameters [43–47] and in several other scenarios, as for example quantum thermometry [48].

For quantum systems with a bidimensional Hilbert space, as those we are investigating in this paper, the optimal mea-
surement is a projective one [49,50]. Besides, using Eqs. (4) and (8), it is straightforward to show that starting from a generic
pure initial state | 0i = cos ✓2 |0i+ei� sin ✓

2 |1i themaximumof gB(� ) is achieved for ✓ = ⇡/2. In this case, the evolved state
⇢� (t) is a mixed state with eigenvectors independent on � . In other words, the dependence on � is only in the eigenvalues,
and thus Eq. (8) reduces to

gB(� ) = 1
4

⇥

@� p� (t, �)
⇤2

p� (t, �)[1 � p� (t, �)]

= t4� �2

� 4

⇥

� @� V� � (1 � 2� log t) V�
⇤2 ⇥

✓

e
2� t2�
� V� � 1

◆�1

, (9)

where

@� V� = � 2
⇡
0(2 � 2� )

h

2 cos⇡�  (2 � 2� ) + ⇡ sin⇡�
i

,

 (x) = @x0(x)/0(x) being the log-derivative of the Euler Gamma function.
The quantum Cramer–Rao theorem implies that the optimal conditions to estimate � by quantum probes correspond to

the maxima of gB(� ). As mentioned above, the optimization over the initial state is trivial and correspond to prepare the
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spin of the particle in the superposition | 0i = (|0i + |1i)/p2, whereas the maximization over the time evolution will be
discussed in the next section.

Let us now consider situations where we have to discriminate between two fixed and known values of � , e.g., the null
hypothesis �1 = 2 and the alternative �2 = � ⇤ corresponding to a non trivial fractal dimension. The corresponding states
⇢�1 and ⇢�2 are assumed to be known, as well as the a priori probabilities z1 and z2 = 1�z1, but we do not knowwhich state
is actually received at the end of propagation. The simplest case occurs when the a priori probabilities are equal z1 = z2 = 1

2 .
Any strategy for the discrimination between the two states amounts to define a two-outcomes POVM {⇧1,⇧2} on the sys-
tem and establish the inference rule that after observing the outcome j the observer infers that the state of the system is
⇢�j [51–55]. The probability of inferring �j when the true value is �k is thus given by Pjk = Tr

⇥

⇢�k⇧j
⇤

and the optimal POVM
for the discrimination problem is the one minimizing the overall probability of a misidentification i.e., Pe = z1P21 + z2P12.
For the simplest case of equiprobable hypotheses (z1 = z2 = 1/2) we have Pe = 1

2 (1 � Tr [⇧2⇤]) where⇤ = 1
2 (⇢2 � ⇢1).

Pe is minimized by choosing ⇧2 as the projector over the positive subspace of ⇤. Then we have Tr[⇧2⇤] = Tr|⇤| and
Pe = 1

2 (1 � Tr |⇤|)where |A| = p
AÑA. This is usually referred to as the Helstrom bound, and represents the ultimate quan-

tum bound to the error probability in a binary discrimination problem. In our case, Pe is minimized when the two output
states commute, i.e., for ✓ = ⇡/2 leading to

Pe = 1
2

�

1 � �

�p�2(t, �) � p�1(t, �)
�

�

�

= 1
2

✓

1 � 1
2

�

�e�2�1(t) � e�2�2(t)
�

�

◆

(10)

where p� (t, �) = 1
2 (1 + e�2�(t)) is given in Section 2. The minimization over the interaction time will be discussed in the

next section. We notice, however, that any single-copy discrimination strategy based on quantum probes is inherently in-
efficient since Eq. (10) imposes an error probability larger than Pe � 1

4 at any time. One is therefore led to consider different
strategies, as those involving several copies of the quantum probes.

Indeed, let us now suppose that n copies of both states are available for the discrimination. The problemmay be addressed
using the above formulas upon replacing⇢with⇢⌦n.We thus need to analyze the quantity Pe,n = 1

2

�

1 � Tr 12 (|⇢⌦n
�2

� ⇢⌦n
�1

|)�.
The evaluation of the trace distance for increasing n may be difficult and for this reason, one usually resort to the quantum
Chernoff bound, which gives an upper bound to the probability of error [56–61]

Pe,n  1
2
Qn

where

Q ⌘ Q [�1, �2, �] = inf
0s1

Tr
⇥

⇢s
�1

: ⇢1�s
�2

⇤

. (11)

The bound may be attained in the asymptotic limit of large n. Notice that while the trace distance is capturing the notion
of distinguishability for single copy discrimination this is not the case for multiple copies strategies, where the quantity Q
represents the proper figure of merit. Also in Eq. (11) we omitted the explicit dependence on the interaction time.

For nearby states the relevant distance is the so-called infinitesimal quantum Chernoff bound (QCB) distance d2QCB(⇢� ,
⇢�+d� ) = 1 � Q = gQCB(� ) d2� , where the QCB metric gQCB(� ) is given by

gQCB(� ) = 1
2

X

nk

|h k|@� ⇢� | ki|2
�p
⇢n + p

⇢k
�2 . (12)

The QCB introduces a measure of distinguishability for density operators which acquires an operational meaning in the
asymptotic limit. The larger is the QCB distance, the smaller is the asymptotic error probability of discriminating a given
state from its neighbors. On the other hand, for a fixed probability of error Pe, the smaller is Q , the smaller the number of
copies of ⇢�1 and ⇢�2 we will need in order to distinguish them.

Also the quantity Q is minimized when the two output states commute, i.e., for ✓ = ⇡/2 and, in this case we have

Q = inf
s

n

ps�1(t, �) p
1�s
�2

(t, �) + [1 � p�1(t, �)]s [1 � p�2(t, �)]1�s
o

. (13)

The minimization over the parameter s and the interaction time will be discussed in the next section. Concerning the QCB
metric, we have the general relation 1

2gB(� )  gQCB(� )  gB(� ). In our case, since the maximum is achieved when only the
eigenvalues of ⇢� (t) depend on � , the only non zero terms in Eqs. (8) and (12) are those with n = m. As a consequence the
first inequality above is saturated and we have gQCB(�) = 1

2gB(�), 8t, � . The working conditions to optimize the estimation
or the discrimination of nearby states are thus the same.

4. Quantum probes for fractional Gaussian processes

In this section we discuss optimization of the estimation/discrimination strategies for fBn over the possible values of
the interaction time. More explicitly, we maximize the Bures metric and minimize the Helstrom and QCB bound to error
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Fig. 1. Bures metric gB(� ) for the estimation of the complementary Hurst parameter � as a function of � and of the interaction time, for different values
of the coupling �. The contour plots correspond, from top left to bottom right, to � = 10�3, 10�2, 10�1, 10, 102, and � = 103, respectively. Whiter regions
correspond to larger values of the Bures metric.

probability, as a function of the interaction time. In thisway,we individuate the optimalworking conditions,maximizing the
performances of quantum probes, and establish a benchmark to assess any strategy based on non optimal measurements.

4.1. Estimation by quantum probes

Upon inspecting the functional dependence of the Bures metric on the quantities t , � and � in Eq. (9) one sees that gB(� )
is somehow a function of the quantity �t2� and thus maxima are expected, loosely speaking, for small t and large � or vice
versa. On the other hand, this scaling is not exact and thus a richer structure is expected. This is illustrated in Fig. 1, wherewe
show contour plots of gB as a function of � and of the interaction time for different values of the coupling �. As it is apparent
from the plots, for any value of the coupling there are two maxima located in different regions (notice the different ranges
for the interaction time). The global maximummoves from one region to the other depending on the values of the coupling
(see below).

In Fig. 2we show the results obtained from the numerical maximization of the Bures metric g(� ) over the interaction
time. The upper left panel is a log–log-plot of the maximized Bures metric as a function of the coupling for randomly chosen
values of � 2 [1, 2] and � 2 [10�3, 103] (gray points). We also report some curves at fixed values of � , showing that for any
value of the complementary Hurst parameter, except those close to the limiting values � = 1 and � = 2, a threshold value
�th(� ) on the coupling, i.e., on the intensity of the noise, naturally emerges. The Bures metric is large, i.e., estimation may
achieve high precision, in the weak and in the strong coupling limit, that is, when � ⌧ �th(� ) or � � �th(� ). On the other
hand, for intermediate values of the coupling � ⇠ �th(� ) the estimation of the fractal dimension is inherently inefficient.
This behavior is further illustrated in the lower left panel, where we report the same random points as a function of � , also
showing curves at fixed values of the coupling. Values of � close to � = 1 or � = 2may be precisely estimated for any value
of the coupling whereas intermediate values needs a tuning of �, in order to be placed in the corresponding weak (or strong)
coupling limit. The threshold value �th(� ) increases with � and does not appear for � ' 1 or � ' 2. For those values high
precision measurements are achievable only in the strong coupling limit (for � ' 1, i.e., fractal dimension close to � ' 2)
or the weak coupling limit (� ' 2, i.e., negligible fractal dimension � ' 1).

The right panels of Fig. 2 show the optimal values ⌧B = argmaxt gB(� ) of the interaction time, leading to the maximized
values of the Bures metric reported in the left panels. The upper panel shows ⌧B as function of the coupling whereas the
lower one illustrates the behavior as a function of � . Referring to the upper panel: ⌧B exhibits a power-law decrease for
small and large values of the coupling (notice the log–log scale the plots) whereas for intermediate values of � we observe
a discontinuous behavior, which reflects the transition of the global maximum from the peak at large t and small � to the
other one, located in the region of small t and large �.
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Fig. 2. Optimal estimation of the complementary Hurst parameter � by quantum probes. The upper left panel shows the maximized Bures metric as a
function of the coupling for 5000 randomly chosen values of � 2 [1, 2] (gray points) and � 2 [10�3, 103]. The curves correspond to, from left to right,
� = 1.2 (red), � = 1.4 (blue) � = 1.6 (green), � = 1.8 (black). The upper right panel shows the optimal values ⌧B of the interaction time, leading to the
Bures metric of the left panel. The curves are for the same fixed values of � of the left panel. The lower left panel shows the maximized Bures metric as a
function of � for the same 5000 randomly chosen values of � 2 [1, 2] (gray points) and � 2 [10�3, 103] of the upper panel. Here we report curves at fixed
values of � = 10k with (from left to right) k = �3, �2, �1, 0, 1, 2, 3. The lower right panel shows the optimal values of the interaction time, leading to the
Bures metric of the right panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The overall picture thatwe obtain from Fig. 2 is that quantumprobesmay be generally employed to obtain a reliable char-
acterization of fractional Gaussian process, except when the coupling with the environment has intermediate values. These
results may be understood intuitively as follows. The maxima obtained for small values of � correspond to quantum probes
that areweakly coupled to the environment. In this case, decoherence is notmuch detrimental and for long interaction times
the probe acquires information about the environmental parameters without being toomuchmixed, i.e., still storing this in-
formation in its quantum state. Vice versa, for a quantum probe strongly coupled to the environment, the information about
the environmental parameters is quickly impinged onto the state of the quantumprobe, such that it can effectively retrieved,
upon performing measurements in the early stage of the evolution. In the intermediate situation, none of the two above ef-
fects take place: information is flowing from the environment to the probe too slowly compared to decoherence and no
measurements can be effectively employed to extract it from the quantum state of the probe. The two regimes of weak and
strong coupling are defined in terms of a threshold value of the coupling,which itself increaseswith the fractional dimension.

The above picture, however, does not apply when the fractal dimension of the trajectories is close to its limiting values,
i.e., when the complementary Hurst parameter assumes values close to � = 1 or � = 2. In these two limiting cases no
threshold on the coupling appears and � may be reliably estimated only in the weak coupling limit (for negligible fractal
dimension) or in the strong coupling one (fractal dimension closer to its maximum value).

4.2. Discrimination by quantum probes

Let us now consider discrimination problems involving the complementary Hurst parameter. We assume to know in
advance that only two possible values �1 and �2 are admissible and want to discriminate between them using the results of
a measurement performed on the quantum probe. The Helstrom bound Pe to the error probability in a single-shot discrimi-
nation is given in Eq. (10) and here wewant tominimize Pe over the interaction time. Results of the numerical minimization
are shown in Fig. 2, where we report the minimized Helstrom bound as a function of �2 for different fixed values of �1,
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Fig. 3. Helstrom bound to the discrimination of pairs of values of the complementary Hurst parameter by quantumprobes. The four plots on the left panels
show the Helstrom bound Pe minimized over the interaction time as a function of �2 for different values of �1. In all the plots the different curves refer to
different values of the coupling: � = 10�2 (red), � = 10�1 (blue), � = 1 (green), � = 10 (magenta), � = 100 (black). The two right panels show a density
plot of the minimized Helstrom bound as a function of both the values �1 and �2 for two different values of the coupling: � = 10�1 (top panel) and � = 10
(bottom panel). Blue regions correspond to smaller values of Pe . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

together with density plots of the same quantity as a function of the pair of values (�1, �2) for different values of the cou-
pling with the environment.

The plots confirm the overall symmetry of the Helstrom bound Pe(�1, �2) = Pe(�2, �1) at fixed �. Another feature that
emerges from Fig. 3 is that, say, the pairs �1 = 1.2 and �2 = 1.4 or �1 = 1.4 and �2 = 1.6 have different discriminability
despite the fact that for both pairs we have |�1 � �2| = 0.2, i.e., the Helstrom bound is not uniform. The plots also con-
firm the overall picture obtained in discussing estimation problems: for each pair of values (�1, �2), two regimes of strong
or weak coupling may be individuated, where discrimination may be performed with reduced error probability, whereas
for intermediate values of the coupling performances are degraded. The only exception regards values close to the limiting
values � = 1 or � = 2, where no threshold appears.

We also notice that by increasing the coupling one enlarges the region in the �1 � �2 plane where discrimination may
be performed with reduced error probability. This is illustrated in the right panels of Fig. 3, where we show a density plot of
the minimized Helstrom bound as a function of both the values �1 and �2 for two different values of the coupling: � = 10�1

(top panel) and � = 10 (bottom panel).
As mentioned in Section 3, the Helstrom bound to the single-shot error probability by quantum probes is bounded from

below by the value Pe � 1
4 , making these kind discrimination schemes of little interest for applications. We are thus natu-

rally led to considermultiple-copy discrimination. In Fig. 4we report the results of the optimization of the Chernoff bound of
Eq. (11) over the parameter s and the interaction time. In the left panel we show the quantity Q (�1, �2, �), minimized over
the interaction time, as a function of the coupling with the environment for different pairs of values �1 and �2 not too close
to the limiting values � = 1 and � = 2. Also in this case, the plot also confirms that better performances are obtained in the
regimes of weak and strong coupling, whereas for intermediate values no measurements are able to effectively extract in-
formation from the quantum probe. The threshold to define the two regimes increases with the value of the � ’s themselves.
When the values of the Hurst parameter are approaching the limiting values � = 1 and � = 2 no threshold appears. In these
two limiting cases discrimination may be reliably performed in the weak coupling limit (for negligible fractal dimension) or
in the strong coupling one (fractal dimension closer to its maximum value). This behavior is illustrated in the right panel of
Fig. 4, where we show the minimized Q (�1, �2, �) as a function of the coupling for pairs of values �1 and �2 close to � = 1
or � = 2.

For both, single- and multiple-copy discrimination, the behavior of the optimal interaction time is analogue to that ob-
served in the discussion of estimation problem.
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Fig. 4. Chernoff bound to the multiple-copy discrimination of pairs of values of the complementary Hurst parameter by quantum probes. In the left panel
we report the maximized Chernoff bound as a function of the coupling with the environment for pair of values (� , � + 0.2) with � not too close to the
limiting values � = 1 or � = 2. From left to right we have, � = 1.2 (blue squares), � = 1.3 (green triangles), � = 1.4 (red circles), � = 1.5 (magenta
stars), � = 1.6 (gray squares), � = 1.7 (gray circles). In the right panel we show the same quantity for pair of values (�1, �2) close to the boundaries
� = 1 and � = 2. The increasing curves correspond to �1 = 1.0, �2 = 1.1 (blue circles), �1 = 1.1, �2 = 1.2 (blue stars), �1 = 1.0, �2 = 1.2 (blue
triangles), whereas the decreasing ones are for �1 = 1.8, �2 = 1.9 (black circles), �1 = 1.9, �2 = 2.0 (black stars), �1 = 1.8, �2 = 2.0 (black triangles).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Conclusions

Wehave addressed estimation and discrimination problems involving the fractal dimension of fractional Brownian noise.
Upon assuming that the noise induces a dephasing dynamics on a qubit, we have analyzed in detail the performances of
inferences strategies based onquantum limitedmeasurements. In particular, in order to assess the performances of quantum
probes, we have evaluated the Bures metric, the Helstrom bound and the Chernoff bound, and have optimized their values
over the interaction time.

Our results show that quantum probes provide an effective mean to characterize fractional process in two complemen-
tary regimes: either when the system–environment coupling is weak, provided that a long interaction time is achievable, or
when the coupling is strong and the quantum probe may be observed shortly after that the interaction has been switched
on. The two regimes of weak and strong coupling are defined in terms of a threshold value of the coupling, which itself
increases with the fractional dimension. Our results overall indicate that quantum probes may represent a valid alternative
to characterize classical noise.
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