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We address the use of a single qubit as a quantum probe to characterize the properties of classical 
noise. In particular, we focus on the characterization of classical noise arising from the interaction with 
a stochastic field described by Gaussian processes. The tools of quantum estimation theory allow us to 
find the optimal state preparation for the probe, the optimal interaction time with the external noise, and 
the optimal measurement to effectively extract information on the noise parameter. We also perform a 
set of simulated experiments to assess the performances of maximum likelihood estimator, showing that 
the asymptotic regime, where the estimator is unbiased and efficient, is approximately achieved already 
after few thousands repeated measurements on the probe system.
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1. Introduction

Quantum systems of interest for quantum technology are usu-
ally immersed in complex environments, which influence their 
dynamics and generally induce decoherence. The characterization 
of the environment properties is thus a relevant topic for the de-
velopment of effective quantum protocols. In many situations, the 
environment may be conveniently represented as a collection of 
fluctuators, such that it can be described as a classical stochas-
tic field, e.g. driven by a Gaussian process. In fact, much atten-
tion has been recently devoted to answering the question whether 
even a quantum bath can be described using a classical or semi-
classical picture of the environment [1–5]. The classical description 
becomes progressively more reliable as far as the environment has 
many degrees of freedom or when the interaction between a quan-
tum system and a classical fluctuating field is taken into account. 
Several systems of interest indeed belong to this category, includ-
ing the dynamics of quantum correlations in the presence of clas-
sical fluctuations [6–10], the simulation of motional averaging [11], 
and the decoherence problem associated with the non-Markovian 
dynamics of solid state qubits [12–14].

A reliable characterization of the environment, e.g. through its 
power spectrum, may allow one to design robust quantum pro-
tocols resilient to noise [15–18]. To this aim, some efforts have 
been recently devoted to understand whether the (de)coherent 
dynamics of a qubit can be used to extract information on the 
noise affecting the qubit itself [19–22]. The canonical way to at-
tack this problem is by using the tools of quantum estimation 
theory (QET) [23–28]. Indeed, QET allows one to individuate the 
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best strategy to estimate the value of an unknown parameter, even 
when it corresponds to a quantity which is not accessible by direct 
measurement. Upon collecting the outcomes from the measure-
ment of a suitably optimized observable, it is possible to build an 
estimator and infer the value of the parameter with the ultimate 
precision allowed by quantum mechanics. QET has been effectively 
employed in several scenarios, e.g. to estimate quantum correla-
tions [29,30], interferometric phase-shift [31–39], and the spec-
tral properties of non-Gaussian environments [20,21]. Concerning 
quantum probes, optimized quantum thermometry by single qubit 
has been recently addressed experimentally [40,41] and theoreti-
cally [42,43].

In this paper we address the characterization of classical noise 
using a qubit as a quantum probe, and focus attention to noise 
generated by Gaussian stochastic processes, i.e. processes that are 
fully described by their power spectrum or their autocorrelation 
function. A relevant example of Gaussian process is the Ornstein–
Uhlenbeck process, which has been extensively employed in vari-
ous contexts [44–47]. For the sake of completeness, and in order 
to analyze possible effects due to specific features of the noise 
spectra, we also consider the noise generated by processes with 
a Gaussian or a power law autocorrelation function.

The performances of a qubit as a quantum probe clearly depend 
on the kind of interaction it establishes with the environment. 
In order to maintain the analysis self-contained, and to address sit-
uations of practical interest, in the following we will assume that 
the dephasing effects of the environment are much stronger than 
relaxation (damping) ones. This generally happens when the typ-
ical frequencies of the environment are smaller than the natural 
frequencies of the system, i.e. the energy splitting between the 
eigenstates of the unperturbed Hamiltonian. In this case, in fact, 
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fluctuations can cause a superposition to decohere, without driving
transitions between the different levels. In this framework, the 
characterization of the noise, which consists in estimating the pa-
rameters of the autocorrelation function, amounts to estimate the 
characteristic time describing the dephasing process occurring dur-
ing the decoherent dynamics.

Due to the relatively simple dynamics of the probe, we have 
been able to evaluate the quantum Fisher information (QFI) and 
the quantum signal-to-noise ratio (QSNR) analytically. Upon maxi-
mizing the QFI we obtain the three ingredients required to build an 
optimized inference strategy to characterize the noise, i.e.: (i) the 
optimal initial state preparation for the qubit; (ii) the optimal in-
teraction time with the environment; (iii) the optimal measure-
ment to be performed at the output. The final step is then the pro-
cessing of data to infer the value of the noise parameter, for which 
we employ a maximum likelihood estimator (MLE). In order to 
assess the performances of MLE we have performed a set of simu-
lated experiments, showing that the asymptotic regime, where it 
becomes unbiased and efficient, is approximately achieved after 
few thousands repeated measurements on the probe system.

The paper is organized as follows. In Section 2 we introduce the 
physical model for the qubit-environment system and describe the 
Gaussian processes generating the noise; in Section 3 we briefly 
review the tools of local quantum estimation theory; in Section 4
we present our results about the optimal settings to achieve a large 
QFI and the performances of a likelihood estimator. In Section 5 we 
end the paper with some concluding remarks.

2. The physical model

Consider a qubit interacting with a classical fluctuating field 
which induces dephasing. The qubit Hamiltonian is given by

H(t) = ω0σz + B(t)σz, (1)

where ω0 is the qubit energy, σz is the Pauli matrix, and B(t) is 
a stochastic stationary process that follows a Gaussian statistics. 
In particular, we focus on processes characterized by a zero mean 
and a autocorrelation function K (t, t′), in formula:
[

B(t)
]

B = 0 (2)
[

B(t)B
(
t′)]

B = K
(
t − t′) (3)

where [...]B represents the average over the stochastic process B . 
A Gaussian process is fully described by its second order statistics, 
e.g. its autocorrelation function K . The characteristic function is 
given by [48,49]:

[
ei

∫ t
t0

ds f (s) B(s)]
B = e− 1

2

∫ t
t0

∫ t
t0

ds ds′ f (s)K (s−s′) f (s′)
. (4)

From the Hamiltonian (1), we can write the time evolution opera-
tor

U (t) = exp

{

−i

t∫

0

H(s)ds

}

= exp
{
−i

[
ω0t + ϕ(t)

]
σz

}
, (5)

where we defined the noise phase ϕ(t) =
∫ t

0 B(s) ds. We assume 
that the qubit is initially in a pure state |ψ0⟩ = cos θ/2|0⟩ +
sin θ/2|1⟩ with 0 < θ < π . The qubit density matrix is given by 
the average of the evolved density matrix over the stochastic pro-
cess:

ρ(t) =
[
U (t)ρ(0)U †(t)

]
B

= 1
2

(
1 + cos θ e−2iω0t[e−2iϕ(t)]B sin θ

e2iω0t[e2iϕ(t)]B sin θ 1 − cos θ

)

, (6)

where the initial state is ρ(0) = |ψ0⟩⟨ψ0|. We can rewrite Eq. (6)
as:

ρ(t) = 1
2

(
1 + cos θ e−2(iω0t+β(t)) sin θ

e2(iω0t−β(t)) sin θ 1 − cos θ

)

, (7)

where the off diagonal terms are calculated using Eq. (4) and the 
function β is related to the autocorrelation function of the stochas-
tic process generating the classical noise through the relation:

β(t) =
t∫

0

t∫

0

ds ds′ K
(
s − s′). (8)

In this paper we consider three particular Gaussian processes. 
Specifically, we assume that the stochastic field B(t) in Eq. (1)
is driven either by an Ornstein–Uhlenbeck (OU), or by a Gaus-
sian (G) or power-law (PL) one. The corresponding autocorrelation 
functions are given by

KOU
(
t − t′,γ ,Γ

)
= Γ γ

2
e−γ |t−t′| (9)

KG
(
t − t′,γ ,Γ

)
= Γ γ√

π
e−γ 2(t−t′)2

(10)

KPL
(
t − t′,γ ,Γ,α

)
= α − 1

2
γ Γ

(γ |t − t′| + 1)α
(11)

where γ is the unknown noise parameter, Γ is the damping rate 
that we assume fixed, and t is the interaction time. In Eq. (11) we 
have the constraint α > 2. Inserting these autocorrelation functions 
in Eq. (8) leads to the following β functions:

βOU(g,τ ) = 1
g

(
gτ + e−gτ − 1

)
(12)

βG(g,τ ) = 1
g

[
gτ Erf(gτ ) + e−(gτ )2 − 1√

π

]
(13)

βPL(g,τ ) = 1
g

[
(1 + gτ )2−α + gτ (α − 2) − 1

(α − 2)

]
, (14)

where we introduced the adimensional quantities g = γ
Γ and

τ = Γ t .
The characterization of the classical noise amounts to estimate 

the overall noise parameter g by performing measurements on the 
quantum probe after the interaction, i.e. on the states described by 
the density matrices in Eq. (7). In order to make this procedure as 
effective as possible, i.e. to extract the maximum amount of infor-
mation on the noise by inspecting the state of the probe, we have 
to suitably optimize the initial preparation of the qubit, the value 
of the interaction time, the measurement to be performed at the 
output and, finally, the data processing after collecting an experi-
mental sample. The proper framework to attack this optimization 
problem is that of local quantum estimation theory [23–28], which 
we are going to briefly review in the next section.

3. Quantum estimation theory

Consider a family of quantum states ργ , characterized by an 
unknown value of a parameter γ , usually corresponding to a non-
observable quantity. The goal of any estimation procedure is to 
infer the value of the unknown parameter γ by measuring some 
observable quantity on the system ργ . This is achieved by col-
lecting the outputs (x1, x2, . . . , xM) of such measurements and use 
them to build an estimator γ̂ = γ̂ (x1, x2, . . . , xM), i.e. a function 
of the outcomes. The smaller is the estimator variance σ 2 (over 
data), the more accurate is the estimation procedure. The lower 
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bound to the precision of any unbiased estimator is given by the 
Cramér–Rao (CR) bound:

σ 2(γ̂ ) ≥ 1
M F (γ )

, (15)

where M is the number of measurements and F (γ ) is the Fisher 
Information (FI):

F (γ ) =
∑

x

p(x|γ )
[
∂γ ln p(x|γ )

]2
, (16)

where p(x|γ ) is the conditional probability of obtaining the out-
comes x if the true value of the parameter is γ . Given a quantum 
system, the conditional probability can be written as p(x|γ ) =
Tr[ργ Ex] with Ex a positive operator-valued measure (POVM). 
By maximizing the FI over all possible POVMs (see e.g. [27]), one 
obtains the ultimate bound to the precision of any estimator, i.e. 
the quantum Cramér–Rao (QCR) bound:

σ 2(γ̂ ) ≥ 1
M H(γ )

, (17)

where H(γ ) is the quantum Fisher information, i.e. the superior of 
F (γ ) over POVMs. A measurement Ex is said to be optimal when 
its FI coincides with the QFI, i.e. F (γ ) = H(γ ). Eqs. (15) and (17)
set the lower bound to the precision of any estimation procedure. 
Once a measurement has been chosen, and performed, one has to 
process data, i.e. to choose an estimator. Estimators for which the 
CR bound is saturated are said to be efficient.

For a family of qubit states, the QFI reads:

H(γ ) =
2∑

n=1

(∂γ pn)
2

pn
+ 2

∑

n≠m

(pn − pm)2

pn + pm

∣∣⟨pm|∂γ pn⟩
∣∣2

(18)

where pn and |pn⟩ are respectively the eigenvalues and eigenvec-
tors of the qubit density matrix ρ = ∑

n=1,2 pn|pn⟩⟨pn|.
A suitable figure of merit to assess the overall estimability of a 

parameter is the quantum signal-to-noise ratio (QSNR):

R(γ ) = γ 2 H(γ ), (19)

which accounts for the fact that large values of the parameter are 
generally easier to estimate, while small values need more pre-
cise estimators. A given parameter is said to be easily estimable if 
the corresponding R is large. On the other hand, if R is small the 
estimation of γ is an inherently inefficient procedure, whatever 
strategy is employed to infer its value.

Once a measurement has been chosen, possibly the optimal one 
maximizing the Fisher information, one has to chose an estima-
tor, i.e. a procedure to process data in order to infer the value of 
the parameter of interest. An estimator which is asymptotically ef-
ficient, i.e. it saturates the QCR bound in the limit of large samples, 
is the maximum likelihood estimator. Consider M independent 
measurements of the random variables X , with probability density 
p(x|γ ). The joint probability function of an experimental sample of 
size M , {xi}M

i=1, is given by the product 
∏

p(xi, γ ), and it is usually 
referred to as the Likelihood function L(γ )

L(γ ) = L(γ |x1, x2, . . . , xM) =
M∏

i=1

p(xi |γ ). (20)

The MLE for the parameter γ is the value yielding the largest like-
lihood of the observed values, that is the value that maximizes the 
quantity in Eq. (20):

γ̂ML = arg max
γ

L(γ ). (21)

As mentioned above, γML is known to be asymptotically effi-
cient [50], i.e. it saturates the CR bound for large number of mea-
surements M ≫ 1. On the other hand, in practical situations, one 
is usually interested in checking whether this regime is achieved 
for values of M within the experimental capabilities.

4. Quantum probes for classical environments

In this section we present and discuss our results. In the first 
subsection, we find the analytic expressions of the QFI and the 
QSNR for the estimation of the noise parameter g of the consid-
ered processes. Moreover, we show that the optimal measurement 
corresponds to the Pauli matrix σx in the rotating frame of the 
qubit. In the second subsection we assess the performances of the 
MLE by a set of simulated experiments.

4.1. Signal-to-noise ratio and optimal setting

The QFI gives the ultimate quantum bound to the precision 
of an inference procedure. For the family of qubit density matri-
ces described by Eq. (7), the QFI can be computed using Eq. (18), 
through the eigenvalues and eigenvectors of the density operator:

p±(g,τ ) = 1
2

(
1 ± e−2β(g,τ )

)
(22)

|p±⟩ = 1√
2

(
±e−2iω0t |0⟩ + |1⟩

)
, (23)

where we substituted the symbol p1,2 with p± to denote eigenval-
ues and eigenvectors. Inserting these expressions in Eq. (18), one 
obtains the analytic expression for the QFI:

H(g,τ ) = 4
sin2 θ

e4β(g,τ ) − 1

[
∂gβ(g,τ )

]2
. (24)

It is worth noticing that Eq. (24) does not depend on the qubit en-
ergy ω0, and it is maximized by θ = π

2 . It follows that the optimal 
initial state is the superposition |ψ0⟩ = 1√

2
(|0⟩ + |1⟩) = |+⟩.

For the processes described in Eqs. (12)–(14), the QSNR is cal-
culated from Eq. (19) and it is given by:

ROU(g,τ ) = 4e−2gτ

g2

[
(1 − egτ + gτ )2

e4(τ+ e−gτ −1
g ) − 1

]

RG(g,τ ) = 4
π g2

[
(e−g2τ 2 − 1)2

e
4( e−g2τ2 −1√

π g
+τ Erf(gτ )) − 1

]

RPL(g,τ ) = 4
g2

[
(1 + αgτ + (α − 1)(gτ )2 − (1 + gτ )α)2

(e4(τ+ (1+gτ )2−α−1
g(α−2) )−1

)(α − 2)2(1 + gτ )2α

]
.

(25)

The QSNRs of Eqs. (25) are shown in Fig. 1. As it is apparent 
from the plots, the qualitative behavior is the same for all pro-
cesses. At any fixed value of g there is a maximum in the QSNR, 
achieved for an optimal value of the interaction time τM(g). The 
value of this maximum R M = R(τM) decreases with g . It follows 
that smaller values of g may be better estimated than larger ones. 
The optimal time τM(g) decreases with increasing values of the 
parameter. This means that the smaller is g , the longer is the in-
teraction time that is required to effectively imprint the effects of 
the external environment on the probe. The dependency of τM on 
the parameter g is shown in the upper panel of Fig. 2, for the three 
considered processes. For small values of g we have approximately 
τM ≃ a/

√
g (with a ≃ 0.89 for OU and similar values for the other 

processes) while for g ≫ 1 we may write τM ≃ b/g , with b ≃ 2.5
for OU. The corresponding values of the QSNR, i.e. R M are shown 
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Fig. 1. (Color online.) The quantum signal-to-noise ratio R(g) as a function of g and the interaction time τ for different stochastic processes: (a) OU, (b) G, and PL with 
(c) α = 3 and (d) α = 10.

in the lower panel of the same figure. R M is almost constant for 
small g and then start to decrease. We have R M ≃ a − b

√
g for 

g ≪ 1, where a ≃ 0.161 and b = 0.096 for OU, and R M ≃ b/g for 
g ≫ 1, with b ≃ 0.33 for OU. It follows that g may be effectively 
estimated when it is small, since the QSNR is large. In this regime, 
the estimation procedure is also robust, since the optimal interac-
tion time and the resulting value of the QSNR depend only weakly 
on the value of g . On the other hand, for larger g the estimation 
procedure is unavoidably less effective.

To complete our analysis, we now prove that the optimal mea-
surement achieving the QFI is a realistic one, since it corresponds 
to the projectors onto the eigenstates (23). In fact, the FI of the 
distributions (22), computed from Eq. (16), is given by:

F (g,τ ) = [∂g p+(g,τ )]2

p+(g,τ )
+ [∂g p−(g,τ )]2

p−(g,τ )

= 4[∂gβ(g,τ , t)]2

e4β(g,τ ) − 1
= H(g,τ ), (26)

which coincides with the QFI. The optimal measurement is thus 
obtained from the projectors onto the eigenstates of the density 
matrix Π± = |p±⟩⟨p±|:

Π± = 1
2

(
1 ±e−2iωot

±e2iωot 1

)

(27)

= 1
2

e−iω0tσz |±⟩⟨±|eiω0tσz . (28)

In other words, the optimal measurement corresponds to σx in the 
qubit reference frame which rotates with frequency ω0.

4.2. Maximum likelihood estimator

In this section we present the results of simulated experiments, 
performed to assess the performances of the MLE and to char-
acterize its asymptotic regime. In particular, we have numerically 
simulated repeated measurements of the observable described by 
the projectors Π± in Eq. (28), and then estimated the value of the 
parameter g in the case of OU process using MLE.

Let us consider to have performed M repeated measurements 
of Π± at the optimal time τM . Each run returns ±1, according 
the probability distributions (22). Let us call N the number of out-
comes with value +1. The frequentist interpretation of probability 
leads us to write the relation

p+(g,τ ) = N
M

, (29)

implicitly assuming that the number of measurement is large 
M ≫ 1.

In order to simplify the notation, we hereafter call p(g, τ ) ≡
p+(g, τ ). By inverting Eq. (29), we can write the inversion esti-
mator ĝ of g: ĝ(N, M) = p−1( N

M , τ ). Before analyzing the perfor-
mances of this estimator we show that it coincides with the MLE. 
In fact, from Eq. (20) we have that the likelihood is given by:

L(g,τ ) = p(g,τ )N[
1 − p(g,τ )

]M−N
(30)

∂gL(g,τ ) = −
[
1 − p(g,τ )

]M−N−1
p(g,τ )N−1

×
[
Mp(g,τ ) − N

]
∂g p(g,τ ). (31)
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Fig. 2. (Color online.) The upper panel shows the optimal interaction time τM (g), 
which maximizes the QSNR, for the three different processes. We have OU (solid 
black), G (dashed red) and PL (dotted blue). In the PL case, we set α = 3. The lower 
panel shows the corresponding (maximized) values of the QSNR RM , using the same 
color code.

Eq. (31) has a maximum for p(g, τ ) = N
M which, by inversion, gives 

the inversion estimator

ĝML(N, M) = p−1
(

N
M

,τ

)
. (32)

The MLE is a function of the number of repeated measurements M
and the number of outcomes with value +1, N . By numerical sim-
ulations, we mimic the results of experiments. The variance of the 
MLE (32) is computed using the error propagation theory. Upon as-
suming that the measure outcomes follow a binomial distribution, 
the estimator variance σ 2 is given by:

σ 2(ĝML) =
∣∣∣∣
∂ ĝML(N, M)

∂N

∣∣∣∣
2

N
(

1 − N
M

)
. (33)

In Fig. 3 we shows the ratio between the estimated value ĝML and 
the true value as a function of the number of repeated measure-
ments for different values of the true parameter g . The estimated 
value oscillates around the true one, with standard deviations σ
decreasing as a function of M . In fact, as the number of measure-
ments becomes larger, the ratio ĝML/g gets closer to unity. The 
error associated with each point is smaller with increasing num-
ber of measurements. The sets of data in Fig. 3 refer to g = 0.01
(black solid line) and g = 100 (red dashed line) in the upper panel 
and g = 0.1 (black solid line) and g = 1 (red dashed line) in the 
lower one. The upper panel in Fig. 3 highlights the fact that for 
the data associated with small g , the ratio converges more rapidly 
to unity and with smaller error with respect to the case g = 100. 
This is in agreement with the results of the previous subsection, 
where we found that R M is larger for smaller values of the param-
eter, meaning that the parameter is better estimable in the regime 
g ≪ 1. The lower panel of Fig. 3 confirm the behavior found in 

Fig. 3. (Color online.) The two panels show the ratio gML/g between the ML esti-
mated value of g and the true value, together with the corresponding error bars, 
as a function of the number of repeated (simulated) measurements M . In the up-
per panel the results for the true values g = 0.01 (solid black) and g = 100 (red 
dashed) are compared. Larger values of the parameter are better estimated. In the 
lower panel the considered values are g = 0.1 (solid black) and g = 1 (red dashed). 
Notice that the simulated data in both panels are computed for the same values 
of M and then the red points are slightly shifted along the x-axes for the sake of 
clarity.

Fig. 4. (Color online.) The variance (red line) of the ML estimator as a function of the 
number of measurements for the case g = 1. The light blue area illustrates the QCR 
bound. Variances below the quantum bound mean that the estimator has a bias. 
Inset: The same as in the main frame but for a large number of measurements: the 
bias is no longer present.

Fig. 2: in the region g < 1 it is possible to easily estimate the pa-
rameter almost independently on the value of g .

As already mentioned, the variance σ 2 decreases with increas-
ing M . This is expected from the QCR bound in Eq. (17) because 
the QFI is a fixed quantity for fixed g , so the minimum error scales 
as 1

M .
In Fig. 4 we illustrate the behavior of the variance σ 2 as a func-

tion of the measurement number in the case g = 1. The red lines 
represent the variances for different number of repeated measure-
ments and the shaded area outlines the QCR bound. The reader 
may note that in certain cases the variance is below the quantum 
bound. This means that the estimator is slightly biased. But as the 
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number of measurements in increased the bias tends to zero and 
the estimator becomes efficient (i.e. it saturates the QCR bound, 
as shown in the inset) as expected for MLE. The same qualita-
tive behavior is found for all the other values of the parameter 
g . From our analysis, we see that the asymptotic regime for MLE is 
already achieved for a number of repeated measurements of about 
104–105. We have also analyzed the convergence of a Bayesian 
estimator and found that the required M to have the asymptotic 
behavior is larger. It follows that, to achieve the characterization of 
the spectral properties of a Gaussian noise, a ML procedure lead to 
a faster estimation of the unknown parameters.

5. Conclusions

A detailed description of decoherence is crucial for the devel-
opment of quantum information processing in realistic scenarios. 
In particular, the precise characterization of the noise acting on a 
quantum system is the main tool in designing protocols to contrast 
its detrimental effects. In this paper, we have addressed the esti-
mation of the noise parameter for Gaussian processes by the use 
a simple quantum system, such as a qubit, as a quantum probe. 
More specifically, by maximizing the quantum signal-to-noise ratio 
we have found the optimal setting to perform optimal measure-
ments and inference. Our results show that for any fixed value of 
the estimable parameter, the QSNR has a maximum, corresponding 
to an optimal value of the interaction time τM . This maximum is 
larger for smaller values of the parameter, which may be estimated 
more precisely.

The ultimate bound to precision may be practically achieved by 
measuring the “polarization” of the qubit, i.e. the observable σx in 
the rotating frame of the qubit, and then employing a maximum-
likelihood estimator, which achieves the asymptotic regime, and 
thus the optimal performances, already after few thousands mea-
surements.

The estimation scheme presented in this paper would be suit-
able also to infer the amplitude of white noise, characterized 
by an autocorrelation function K proportional to a Dirac delta. 
In this case, the optimal state preparation and measurement are 
the same as those obtained for Gaussian noise, However, the quan-
tum signal-to-noise-ratio is a monotonically decreasing function of 
time, leaving no room for any optimization procedure.

At present, we cannot provide a quantitative statement about 
the performance of quantum probes compared to classical ones 
since the modeling of the latter would be rather challenging. 
On the other hand, our results show that quantum probes, besides 
having the advantage of introducing small perturbations into the 
system, require only measurements performed at a single instant 
of time, thus avoiding the need of observing the system for a long 
time in order to collect a time series.
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