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Quantum phase communication channels in the presence of static and dynamical phase diffusion
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We address quantum communication channels based on phase modulation of coherent states and analyze in
detail the effects of static and dynamical (stochastic) phase diffusion. We evaluate mutual information for an
ideal phase receiver and for a covariant phase-space-based receiver, and compare their performances by varying
the number of symbols in the alphabet and/or the overall energy of the channel. Our results show that phase
communication channels are generally robust against phase noise, especially for large alphabets in the low-energy
regime. In the presence of dynamical (non-Markovian) noise the mutual information is preserved by the time
correlation of the environment, and when the noise spectra are detuned with respect to the information carrier,
revivals of mutual information appear.
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I. INTRODUCTION

The transmission of classical information along an ideal
bosonic quantum channel is optimized by encoding informa-
tion onto Fock number states, according to a thermal distribu-
tion, and then retrieving this information by the measurement
of the number of photons [1–3]. This strategy allows us to
achieve the ultimate channel capacity, i.e., to maximize the
mutual information between the sender and the receiver, given
a constraint on the overall energy sent through the channel, thus
outperforming other encoding-decoding schemes involving
different degrees of freedom of the radiation field, e.g., the
amplitude or the phase.

If we take into account the unavoidable noise affecting the
information carriers along the channel, the situation becomes
more involved and a question arises on whether different
encoding-decoding schemes may offer better or comparable
performances. Indeed, in the presence of a phase-insensitive
noise, e.g., amplitude damping, also coherent coding has been
shown to achieve the ultimate channel capacity [4,5].

In this paper, we address communication channels based on
phase encoding [6–8] and analyze in detail their performances
in the presence of phase diffusion, which represents the most
detrimental kind of noise affecting this kind of channel [9,10].
In particular, we will consider communication schemes where
the information is encoded by modulating the phase of a
coherent signal, which then travels through a phase-diffusing
environment before arriving at the receiver station and being
detected. We consider two different environment models in
which phase noise is either induced by a stationary environ-
ment inducing a static noise, or by a fluctuating one leading
to stochastic phase diffusion. We then evaluate the mutual
information for both an ideal phase receiver and a covariant
phase-space-based one (corresponding to the marginal phase
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distribution of the Husimi Q function). We then compare
their performances to each other and with the capacity of
other relevant channels, including the optimal one. Our results
show that phase-keyed communication channels are robust
against phase diffusion and offer performances comparable to
channels involving coherent encoding. Phase channels may
even approach the ultimate capacity in the low-energy regime
and for large alphabets.

The paper is structured as follows. In Sec. II we describe the
communication protocol details and derive a general formula
for the corresponding mutual information. In Sec. III we
introduce a model for the static noise case and discuss the
effects on the channel performance, making a comparison with
the cases of photon number and amplitude channels. Section IV
considers channels affected by dynamical (stochastic) phase
diffusion and discusses the significative differences with the
static case. Section V closes the paper with some concluding
remarks.

II. PHASE-KEYED COMMUNICATION CHANNELS

A schematic diagram of a quantum phase communication
channel is depicted in Fig. 1. The sender encodes a finite
number N of symbols using N different values of a phase
shift φk , where φk < φj if k < j and 0 ! k < N . We assume
a choice of equidistant phase values φk = 2πk/N . The phase
φk is encoded onto a seed state ρ0 of a single-mode radiation
field by the unitary phase-shift operation U (φ) = exp(iφ a†a),
a being the annihilation operator, [a,a†] = 1; namely,

ρ0 → ρk ≡ U (φk)ρ0U
†(φk). (1)

The signal then propagates along the channel to the receiver
station, where it is detected by a suitable measurement scheme
in order to retrieve the information it carries. More explicitly,
the receiver performs a phase measurement on the output state
and, once the phase is measured, she chooses a strategy to
associate the measured value to one of the symbols of the
sender’s alphabet. The inference strategy should match the
(continuous) output from the phase measurement to a symbol
from a discrete alphabet. The straightforward choice consists
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FIG. 1. (Color online) Schematic representation of a phase com-
munication channel. The sender encodes a finite number N of symbols
using N different values of a phase shift φk = 2πk/N imposed on a
seed coherent state ρ0. The signal then propagates along the channel,
to the receiver station, in the presence of either static or dynamical
noise, and it is finally detected by a suitable measurement scheme in
order to retrieve the carried information.

of associating each phase value with the closest φk within a
margin of error. To this aim the receiver divides the full phase
range [0,2π ) into N bins, corresponding to the intervals

$j = [φj − %,φj + %),

where % = π/N and
⋃N

j=1 $j = [0,2π ). More generally, the
width of each bin may be different and dependent on j , though
a symmetric choice is often optimal and will be assumed
throughout this paper. If φ denotes the value of the receiver’s
outcome, we express the inference rule as follows:

if φ ∈ $j ⇒ φ → φj . (2)

The positive operator-valued measure (POVM) {&(φj )} ≡
{&j } describing the measurement strategy employed by the
receiver can be written as

&j =
∫ φj +%

φj −%

π (θ )dθ, (3)

where π (θ ) is the actual POVM of the phase measurement
performed by the receiver. A POVM for a covariant phase
measurement may always be written as [12,13]

π (θ ) = 1
2π

∞∑

n,m=0

An,me−i(n−m)θ |n⟩⟨m|, (4)

where An,m are the elements of a positive and Hermitian matrix
A, which is measurement-dependent. Covariance follows
easily from Eq. (4), since U (φ)π (θ )U †(φ) = π (θ + φ) and
thus

&j = U (φj )&0U
†(φj ). (5)

The combination of Eqs. (3) and (4) brings to an explicit form
of the POVM &j , given by

&j =
∞∑

n,m=0

An,mfn−m(j )|n⟩⟨m|, (6)

where the structure of the POVM is determined by the
resolution function

fd (j ) = 1
2π

∫ φj +%

φj −%

e−idθdθ = sin %π

πd
e−idφj , (7)

with the property
∑N

j=1 fd (j ) = δd,0, where δ is the Kronecker
delta.

The figure of merit to assess the performances of a
communication channel is the mutual information between
sender and receiver. This quantity measures the amount of
information shared by the two parties and can be written as

I =
N−1∑

k,j=0

p(k,j ) log2
p(k,j )

p(k) p′(j )

=
N−1∑

k,j=0

p(j |k)p(k) log2
p(j |k)
p′(j )

, (8)

where p(k) is the a priori probability distribution of trans-
mitting a φk-encoded seed state; p(k,j ) = p(j |k) p(k) is the
joint probability to send the symbol φk and obtaining the
outcome φj ; p′(j ) ≡ p′(φj ) is the probability of the outcome
φj , given by p′(j ) =

∑N−1
k=0 p(j |k)p(k); and, finally, p(j |k) is

the conditional probability of measuring a phase φj given the
input phase φk or, in other words, the conditional probability
of an outcome φ falling in the bin $j given the initial state ρk ,
which is given by

p(φ ∈ $j |ρk) ≡ p(j |k) = Tr[ρk&j ]. (9)

Maximization over the a priori probability p(φk) leads to the
so called channel capacity, i.e., the maximum information
transmitted through the channel per use. In our case, this is
achieved using a uniform encoding probability, p(k) = N−1;
i.e., the letters have the same probability to be sent through
the channel. The proof follows from the covariance of the
receiver’s POVM in Eq. (5) together with the convexity of the
Shannon entropy and with the fact that phase noise, as we will
see in the following, commutes with the encoding procedure in
Eq. (1). As a consequence, the mutual information given in Eq.
(8) is the channel capacity of the phase-keyed communication
channel, and may be rewritten as

I = 1
N

N−1∑

k,j=0

Tr[ϱk&j ] log2

{
Tr[ϱk&j ]

N−1
∑N−1

h=0 Tr[ϱh&j ]

}

. (10)

By using again the covariance property of the POVM and
its explicit form given in Eq. (6), the conditional probability
can be expressed as

p(j |k) = Tr[ρk&j ] = Tr[ρ0&j−k]

=
∞∑

n,m=0

An,mfn−m(j − k)ρn,m. (11)

Note that
∑

k p(j |k) =
∑

k Tr[ρk&j ] = 1, which follows
from the symmetries of the resolution function, f−d (j ) =
fd (j ); i.e., f−d (−j ) = fd (j ). Upon introducing the positive
quantity s = |j − k|, we obtain a simpler form for the mutual
information

I ≡ I (N,n̄) = log2 N +
N−1∑

s=0

q(s) log2 q(s), (12)
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where n̄ is the average number of photons of the seed signal
and

q(s) =
∞∑

n,m=0

An,mfn−m(s)ρn,m (13)

= 1
N

{
1 +

∞∑

n=0

∞∑

d=1

An,n+d [fd (s)ρn,n+d + c.c.]
}
. (14)

The function q(s) measures the probability of finding a
2πs/N phase difference between the input and output signal,
whatsoever value the encoded phase may assume.

The function q(s) and thus the performances of the com-
munication channel do depend on the measurement performed
by the receiver through the matrix (An,m) and on the seed state
via the matrix elements ρn,m = ⟨n|ρ0|m⟩. In the following, we
will focus on two particular phase measurements: the canonical
phase measurement [11–15] and a phase-space-based one, i.e.,
the marginal phase distribution obtained from the Husimi Q
function [16–25]. The latter is a feasible phase measurement
achievable, e.g., by heterodyne or double-homodyne detection.
For the canonical measurement we have An,m = 1, whereas for
the Q measurement An,m = *[1 + 1

2 (n + m)](n!m!)−
1
2 , *[x]

being the Euler Gamma function.

III. QUANTUM PHASE COMMUNICATION CHANNELS IN
THE PRESENCE OF STATIC PHASE DIFFUSION

In this section we address quantum phase communication
channels in the presence of phase diffusion, and start by
considering situations where the environmental noise is static.
Any phase communication channel is based on the observation
that the optical field produced by a laser provides a convenient
quantum system for carrying information. In particular, co-
herence of laser source ensures that a well-defined phase can
be attributed to a light mode. Still, the unavoidable presence
of noise generates a phase diffusion, which ultimately limits
the coherence of the light. The master equation governing
the evolution of the light beam in a static phase diffusing
environment may be written as [10,26]

d

dt
ρ = *

2
L[a†a]ρ, (15)

whereL[O]ρ = 2OρO† − O†Oρ − ρO†O and * is the static
phase noise factor. An initial state ρ(0) evolves with time as

ρ(t) =
∞∑

n,m=0

e− 1
2 τ (n−m)2

ρn,m|n⟩⟨m|, (16)

where we introduced the rescale time τ = *t . One can easily
see that the diagonal elements ρn,n are unaffected by the phase
noise; thus, energy is conserved, whereas the off-diagonal
elements decay away exponentially.

In the rest of our paper we assume that the input seed is a
coherent state of the radiation field; namely, ρ0 = |α⟩⟨α|, with

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩. (17)

Without lack of generality, we assume α to be real. The density
matrix elements associated with the initial coherent state ρ0

are

ρn,m = e−n̄ n̄(n+m)/2

√
n!m!

, (18)

where n̄ ≡ α2 is the average number of photons of the coherent
state ρ0. Exploiting Eq. (16), we find that the state arriving at
the receiver after the propagation through the noisy channel
has the following density matrix elements:

ρn,m → ρn,m(t) = e− 1
2 τ (n−m)2

ρn,m, (19)

which can be used to evaluate the mutual information as written
in Eq. (12) once the POVM describing the measurement is
given and, thus, the fn−m(s) are assigned.

The POVM describing the ideal (canonical) measurement
is obtained from Eq. (4) with An,m = 1, ∀n,m. In turn, the
probability q(s) after the phase diffusion process reads

qC(s) = 1
N

{
1 + 2e−n̄

∞∑

n=0

∞∑

d=1

sinc
(

πd

N

)
e− 1

2 d2τ

× cos
[
πd

N
(2s + 1)

]
n̄n+d/2

√
n!(n + d)!

}
, (20)

where sinc(x) = sin(x)/x. The channel capacity with ideal
receivers is given by the mutual information IC that directly
follows from Eq. (12).

The probability qQ(s) for the Q-measurement process is
obtained using An,m = *[1 + 1

2 (n + m)](n!m!)−
1
2 :

qQ(s) = 1
N

{
1 + 2e−n̄

∞∑

n=0

∞∑

d=1

sinc
(

πd

N

)
e− 1

2 d2τ

× cos
[
πd

N
(2s + 1)

]
*

(
1 + n + d

2

)
n̄n+d/2

n!(n + d)!

}
.

(21)

The corresponding channel capacity IQ is again obtained using
Eq. (12).

In the upper panels of Fig. 2 we show the channel capacity
as a function of the rescaled time variable τ , which plays the
role of a noise parameter, for ideal (upper left panel) and Q
(upper right panel) phase receivers and for different values n̄
of the average number of photons of the seed state. The size
of the alphabet is set to N = 20. As is apparent from the plots,
phase diffusion leads to an unavoidable loss of information.
The mutual information IQ for Q receivers shows the same
vanishing behavior in time as the ideal one IC , though its value
is always slightly smaller. In order to provide a quantitative
assessment we show their ratio IQ/IC in the lower panel of the
same figure, as a function of τ for different values of n̄. The
ratio is always below 1, thus confirming that Q receivers are
not as efficient as the ideal ones. The ratio slightly increases
with time, i.e., for long-distance channels, and with the energy
of the seed signal.

In order to further assess the performances of phase
channels we now compare the mutual information IC and
IQ with the capacity of a (realistic) coherent channel and
with the ultimate quantum capacity of a single-mode channel,
which is achieved by the photon number channel. In a
coherent channel information is encoded onto the amplitude
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FIG. 2. (Color online) Phase communication channels in the
presence of static phase diffusion. The upper panels show the
capacities for the ideal receiver IC (left) and the Q one IQ (right)
as a function of the noise parameter τ = *t for different values of
the average number of photons: from bottom to top, n̄ = 1 (dashed
blue), n̄ = 2 (dot-dashed orange), n̄ = 3 (solid green). We set the
alphabet size to N = 20. The lower panel shows the ratio IQ/IC as a
function of τ for different values of the average number of photons:
from bottom to top, n̄ = 1 (dashed blue), n̄ = 2 (dot-dashed orange),
n̄ = 3 (solid green).

of a coherent signal and then retrieved by heterodyne or
double-homodyne detectors; the channel capacity is achieved
by Gaussian modulation of the amplitude and is given by

CCOH(η) = log2(1 + ηn̄), (22)

where n̄ is again the average number of photon per use of the
channel, and η is the overall (amplitude) loss along the channel.
On the other hand, the ultimate quantum capacity of a single-
mode channel, which also saturates the Holevo-Ozawa-Yuen
bound [1], is achieved by the photon number channel

CPHN = (n̄ + 1) log2(n̄ + 1) − n̄ log2 n̄, (23)

where information is encoded onto the number of quanta trans-
mitted through the channel according to a thermal distribution,
and the decoding stage is performed by photodetection.

At first, let us address noiseless phase channels and
consider, for both receivers, the ratio between the corre-
sponding mutual information and the ultimate capacity, i.e.,
γC = IC/CPHN and γQ = IQ/CPHN. The two quantities are
reported in the upper left panel of Fig. 3 as a function of
the number of symbols in the phase alphabet, and for different
values of the average number of photons n̄. The plots reveal
that an alphabet of about N ≃ 50 symbols is enough to reach
the asymptotic value of both ratios, and in turn of IC and IQ.
Also, the plots show that the ratio with the ultimate capacity is
comparable to that of noiseless coherent channels, with ideal
phase receivers slightly outperforming the coherent channel

0 20 40 60 80 100
N

0.40

0.45

0.50

0.55

0.60

0.65

Γ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
n

0.2

0.3

0.4

0.5

0.6

Γ

FIG. 3. (Color online) The upper left panel shows the ratios γC

(symbols joined by solid lines) and γQ (symbols joined by dotted
lines) as a function of the number of symbols in the alphabet for
noiseless phase channels (η = 1). Red circles correspond to n̄ = 1,
blue squares to n̄ = 2, and green triangles to n̄ = 3. Solid lines are
the ratios CCOH/CPHN for the same three values of n̄ (from bottom to
top) with the same color code. The upper right panel shows the ratios
γC (dotted red), CCOH/CPHN (solid black), and γQ (dashed blue) for
noiseless channels as a function of n̄ and for a fixed value of N = 50.
The lower panels show the regions βC > 1 and βQ > 1, respectively,
as functions of τ = *t and η. From left to right we have the regions
corresponding to n̄ = 1,2,3 (green, orange, and blue, respectively).
When βk > 1, k = C,Q, the phase channels become more effective
than coherent ones. The boundary of each region singles out an
energy-dependent threshold on the noise parameters.

and the Q one being slightly outperformed. Using this size
of the alphabet, we have evaluated γC and γQ as a function of
the average photon number n̄. Results are shown in the upper
right panel of Fig. 3, confirming that phase channels with ideal
receivers perform slightly better than coherent ones, whereas
Q receivers lead to slightly worse performances.

Let us now compare phase channels with coherent ones in
the presence of noise. In the lower panels of Fig. 3 we show the
ratios βk = Ik/CCOH, k = C,Q, between the capacity of the
phase channels and the capacity of the coherent channel as a
function of the noise parameters, τ and η, of the two channels.
Results for different values of the average number of photons n̄
are shown. In both cases an energy-dependent threshold on the
amount of noise appears, above which phase channels become
more effective than coherent ones. In particular, we notice
that noisy phase channels with ideal receivers may outperform
ideal coherent channels, while this phenomenon is absent when
using the Q receivers.

Finally, let us discuss the performances of the two receivers
in the relevant quantum regime of low number of photons,
n̄ ≪ 1, and large number of letters, N ≫ 1. As can be argued
from the upper right of Fig. 3, both IC and IQ grow linearly
with n̄ for n̄ ≪ 1, and this resembles the behaviour of both
the coherent capacity and the ultimate quantum capacity. This
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means that, albeit being suboptimal, phase channels offer good
performances when low energy should be transmitted through
the channel. This finding can be confirmed by expanding the
channel capacity up to the first order in the average photon
number of the seed signal, arriving at the expressions

IID
n̄≪1
≃

n̄ sinc2
(

π
N

)
e−τ

log10 2
N≫1
≃ n̄ e−τ

log10 2
(24)

for the ideal measurement and

IQ
n̄≪1
≃ π

4

n̄ sinc2
(

π
N

)
e−τ

log10 2
N≫1
≃ π

4
n̄ e−τ

log10 2
(25)

for the Q-receiver one, their ratio approaching the limiting
value of π/4.

IV. DYNAMICAL PHASE DIFFUSION

In many experimental situations, the exchange of infor-
mation between sender and receiver takes place in noisy
environments which cannot be described in terms of a
Markovian master equation. In such cases, a full quantum
description of the interaction may be inconvenient, as the
approximations needed to obtain solvable dynamical equations
could preclude the study of interesting features of the dynamics
itself. On the other hand, when the exact quantum description
is not achievable, it is still possible to model the interaction by
classical stochastic fields (CSFs), which happen to be reliable
models of quantum environments, especially when the noise
presents classical features, e.g., a Gaussian noise [27–30].
Moreover, the use of a CSF also gives the chance to analyze in a
simple way the role of the correlation time of the environment,
and the influence on the dynamics of the presence of a detuning
between the mode playing the role of information carrier and
the central (natural) frequency of the environment.

In the following, we consider a generalized phase diffusion
model corresponding to the quantum map

ρ(τ ) =
∫ ∞

−∞

dφ√
2πσ (τ )

e− φ2

2σ (τ ) U (φ)ρ(0)U †(φ), (26)

where σ (τ ) is a time-dependent variance, summarizing the
dynamical properties of the environment, and, for convenience,
we still use the rescaled time τ = *t . The static environment
of the previous section is recovered for σ (τ ) = τ . The quantum
map (26) turns the input state ρk into a statistical mixture of
states with a time-dependent Gaussian distribution of the phase
around the original phase φk . The time dependence of σ (τ ) is
linked to the correlation function of the underlying stochastic
noise as follows:

σ (τ ) =
∫ t

0
ds1

∫ t

0
ds2 cos[δ(s1 − s2)] K(s1,s2), (27)

where K(s1,s2) is the correlation function of the specific
CSF chosen to describe the noise and δ = (ω0 − ω)/* is
the rescaled detuning between the carrier frequency ω0 and
the central frequency of the environmental spectrum ω. In
this paper, we focus on the noise generated by the Ornstein-
Uhlenbeck process with a Lorentzian spectrum and correlation
function K(τ1,τ2) = 1

2λ τ−1
E

exp(−|τ1 − τ2|/τE), where τE is
the characteristic time of the environment and λ is the

dynamical phase noise factor, rescaled with *. In this case,
σ (τ ) is given by

σ (τ ) = λ

[1 + (δ τE)2]2
(τ − τE + (δ τE)2(τ + τE)

+ τE e−τ/τE {[1 − (δ τE)2] cos δ τ − 2δ τE sin δ τ }).
(28)

In the Markovian limit τE ≪ τ , the latter may be rewritten as

σ (τ ) ≃ λτ (29)

whereas, in the presence of highly correlated environments
τE ≫ τ , it becomes

σ (τ ) ≃ 1
2λτ 2/τE. (30)

Equation (29) confirms that the quantum map (26) is the
solution of the Markovian master equation for a static phase-
diffusing environment, upon setting λ = 1. In this case the
environment is characterized by a very short correlation and
the stochastic field describes a Markovian interaction. The
corresponding dynamics of mutual information approaches
that illustrated in Fig. 2.

If the environment shows nonzero correlation time the
dynamics of mutual information may be dramatically altered,
showing either a different decay rate or the appearance of
oscillations. In the following we first analyze the case of
a resonant environment with zero detuning δ = 0 and then
focus attention on nonresonant situations. In both cases, the
probabilities qk(s), k = C,Q are still given by Eqs. (20) and
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FIG. 4. (Color online) Phase communication channels in the
presence of dynamical phase diffusion. The upper panels show the
mutual information IC (left) and IQ (right) as functions of τ = *t for
different values of the correlation time τE of the environment. From
bottom to top, τE = 0.1 (solid brown), 1 (dot-dashed purple), 10
(dashed red). The lower solid green curve is the mutual information
in the static case. The other parameters read as follows: N = 20,
λ = 1, n̄ = 3. The lower panel shows the ratio IQ/IC as a function of
τ for the same values of τE and of the other parameters. The color
code is the same as in the upper panels.
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FIG. 5. (Color online) Phase communication channels in the
presence of dynamical phase diffusion. The upper panels show
the channel capacities (or mutual information) IC (left) and IQ

(right) as a function of τ = *t for different values of detuning.
From top to bottom δ = 10 (red), δ = 6 (green), δ = 4.5 (orange),
and δ = 3.5 (blue). The other parameters are given by N = 20,
λ = 1,n̄ = 3,τE = 1. The lower left panel shows the contour plots
of IC as a function of τ and detuning δ for N = 20, λ = 1, n̄ = 3, and
tE = 1. The right panel contains the contour plots IQ as a function of
τ and tE for N = 20, λ = 1, n̄ = 3, and δ = 5.5.

(21) with the replacement

exp
(
− 1

2d2τ
)

−→ exp
[
− 1

2d2σ (τ )
]
.

Let us start with the case of a resonant environment (δ = 0).
Under such condition, σ (t) reduces to

σ (τ ) = λ[τ − τE(1 − e−τ/τE )] (31)

and the channel appears to be more robust against the effects
of noise, at least for a short-time dynamics, compared to the
static case. In order to illustrate this feature, in Fig. 4, we show
the mutual information IC and IQ as a function of τ for different
values of τE . As is apparent from the plot, the presence of a
nonzero correlation time of the environment τE better preserves
the capacity against phase diffusion for both ideal and Q
receiver. As happens in the static case the mutual information
vanishes with time. However, a time-correlated environment
allows a “concave dynamics” of the mutual information, which
lasts longer, the higher is the correlation time. This behavior is
due to the transition from linear to quadratic behavior of σ (τ ),

see Eq. (30), which may be observed for increasing τE . We
also show the capacity for the static case (solid green line) for
comparison. In the lower panel of the same figure we report the
ratio IQ/IC as a function of τ . Upon comparing this plot with
the lower panel of Fig. 2 we conclude that dynamical noise is
more detrimental for Q receivers than for ideal ones.

Let us now analyze the effects of detuning between the
frequency of the information carrier and the central frequency
of the CSF. As it is possible to see from the upper panels
of Fig. 5, the dynamics of the capacity is strongly affected
by the detuning for both kind of receivers. On the one hand,
the detuning contributes to the significative slowdown of the
damping of mutual information and, on the other hand, it is
responsible for the appearance of revivals of capacity, which
can be interpreted as a sign of a backflow of information
caused by the non-Markovian effect of the detuned dynamical
map. Yet, the contour plots of mutual information, shown
in the lower panels of the same figure, reveal that the
presence of revivals is also related to the correlation time of
the environment. In the left panel, we show that for fixed
correlation time of the environment τE = 1 revivals appear
only for particular values of detuning δ. In the right panel,
we show that for fixed value of detuning δ = 5.5 revivals
appear beyond a threshold value of the correlation time of
the environment.

V. CONCLUSIONS

We have analyzed quantum phase communication channels
based on phase modulation of coherent states and addressed
their performances in the presence of static and dynamical
phase diffusion by evaluating the channel capacity for ideal
and realistic phase receivers. In terms of performance, our
results show that phase communication channels are robust,
especially for large alphabets in the low-energy regime, and
that their performances are comparable to those of coherent
channels in the presence of loss.

In the presence of dynamical (non-Markovian) phase
diffusion, phase channels become more robust, the channel
capacity being preserved by the time correlations of the
environment. When the noise spectrum is detuned with respect
to the information carrier, revivals of capacity also appear.

Our results illustrate the potential applications of phase-
keyed M-ary channels and may be also of interest in other
schemes where the information is coded on phase shifts as, for
example, in interferometric high-sensitivity measurements.
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