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We address quantum M-ary phase-shift keyed communication channels in the presence of phase diffusion and ana-
lyze the use of probabilistic noiseless linear amplifiers (NLAs) to enhance performance of coherent signals. We con-
sider both static and dynamical phase diffusion and assess the performances of the channel for ideal and realistic
phase receivers. Our results show that NLA employed at the stage of signal preparations is a useful resource, espe-
cially in the regime of weak signals. We also discuss the interplay between the use of NLA and the memory effects
occurring with dynamical noise in determining the capacity of the channel. ©2019Optical Society of America
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1. INTRODUCTION

Quantum communication channels based on continuous vari-
ables (CVs) have attracted increasing interest in recent years, due
to their robustness against noise [1]. For lossless CV channels,
the capacity at fixed energy is maximized by thermal encoding
of information onto Fock states [2]. On the other hand, when
propagation and detection are affected by loss and/or noise,
alternative strategies, where information is encoded onto either
the phase or the amplitude of coherent signals, have proven
effective [3,4].

In a phase modulation scheme, where the information
is encoded in the phase of a quantum seed signal [5,6], the
most detrimental noise is phase diffusion [7,8]. In particular,
when the seed state is coherent, it has been shown that time-
independent Markovian noise is detrimental to information
transfer and may undermine the overall performance of the
channel [9,10]. However, in quantum optical communications,
the Markovian hypothesis may be violated by the spectral struc-
ture of the environment leading to non-Markovian damping or
diffusion channels [10,11]. Thereby, reservoir engineering may
lead to substantial improvements in optical communication
channels by properly handling the unavoidable interaction with
the environment during propagation.

More generally, in order to reduce the detrimental effects
of noise, and the corresponding loss of information, different
types of amplification processes may be employed. None of
them, however, is expected to restore ideal conditions, due to
the inherent quantum limits of amplification. In particular,
the noise figure R (i.e., the ratio between the input and output

signal-to-noise ratios) of linear quantum amplifiers is bounded
by R > 2, leading to the well-known 3 dB standard quantum
noise limit [12]. In this paper, we exploit the possibility of
overcoming this fundamental quantum limitation by means
of probabilistic amplification based on conditional dynamics
in quantum phase communication channels. Furthermore,
we investigate the use of a probabilistic (and noiseless) linear
amplifier (NLA) at the stage of signal preparation to improve the
performances of noisy phase channels based on coherent signals.

We consider a protocol where information is encoded in the
phase shift of a seed state, which is then transferred to a receiver
station along a transmission line where phase diffusion (static
noise) or phase fluctuations (dynamical noise) may occur. We
consider static phase noise induced by a Markovian environ-
ment as well as dynamical noise leading to non-Markovian
evolution. We evaluate the mutual information for NL-
amplified coherent states for both ideal and realistic phase
receivers at the detection stage. In practice, the successfully
(heralded) amplified states serve as careers for phase informa-
tion transmission processes and undergo the whole process of
encoding-transfer along the noisy channel decoding, whereas
when the amplification fails, the sender abstains from imprint-
ing letters in the distorted states and discards them instead. We
then compare their performances. Furthermore, we compare
those phase channels with noisy amplitude-based ones, where
information is encoded onto the amplitude of coherent states.
Finally, we discuss the interplay between the use of NLA and the
memory effects occurring with dynamical noise in determining
the capacity of the channel.
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Among the different possible implementations of NLA
schemes, we focus attention on a feasible one [13], which, in
turn, has been experimentally achieved with current technology
[14], at least for given values of the gain. Our results are therefore
of practical interest and may be experimentally verified.

The paper is organized as follows. In Section 2, we review the
model of the probabilistic linear amplifier considered in our
work and address its action on coherent states. In Section 3, we
describe in some detail the dephasing dynamics. We then review
in Section 4 the main steps of the encoding–decoding strategy
in quantum phase channel. Section 5 is devoted to illustrating
our results for both static and dynamical phase noise. Finally,
Section 6 closes the paper with some concluding remarks.

2. MODEL OF THE NOISELESS LINEAR
AMPLIFIER

An ideal, noiseless deterministic amplification of a quantum
state is inherently forbidden by the unitarity and linearity of
quantum evolution. In fact, an unavoidable noise has to be
introduced to reinstate the uncertainty principle. A quantum-
noise limit has been drawn up for the two versions of linear
deterministic amplifiers: phase-sensitive and phase-insensitive
[12]. Recently, much attention has been devoted to a new
generation of linear amplifiers whose action differs from the
conventional devices: probabilistic noiseless amplifiers [15].
The non-deterministic nature of those devices enables us to
elude the theoretical limitation prohibiting noiseless amplifi-
cation. Several theoretical schemes and implementation of the
NLA have been proposed [16–20]. In this paper, we consider
the theoretical model suggested in [13] and experimentally
demonstrated in [14] for a given value of the gain.

Let us now describe the noiseless amplification in the
Schrödinger picture, where it may be perceived as the opera-
tion that takes a coherent state |↵i to its approximated amplified
version |g ↵i with a rate of success ps that depends on the mean
energy of the input state. A probabilistic noiseless amplification
may thus be described by the non-unitary operator

M(g ) = g a†a . (1)

Here, a is the field mode operator. The instance we are interested
in is g > 1, where g refers to the gain of the amplifier. The action
of such an operator on Fock states |ni consists of assigning a fac-
tor g n to their amplitudes. The operator M(g ) is unbounded,
and the physical consequence of this mathematical issue is that
a noiseless amplification may be only approximately achieved
with a finite success probability. In particular, it may be imple-
mented by truncating the expansion of g a†a to a given order in
the number operator, which we refer to as the truncation order.
This approximation is well justified for the class of weak signals
we consider in the following. In particular, let us consider the
case where the truncation order is set to one. A good figure of
merit to assess the performance of the amplification process is
the so-called effective gain, defined as the ratio of the amplitude
of the amplified state

%a = M(g )|↵ih↵|M†(g )

tr[M(g )|↵ih↵|M†(g )]

to that of the input coherent state, i.e.,

g eff =
1
↵

tr[a%a]. (2)

Fundamental constraints to noiseless amplification require
the fidelity of the output state to the ideally amplified coher-
ent state to approach unit value and the effective and nominal
gains to coincide with g eff = g in the limit of vanishing input
energies. Upon truncating the Taylor series expansion of the
NLA operator in its first order and fulfilling the previously raised
constraints, we derive the expression of the approximate NLA
operator [14]:

M(g ) = 1 + (g � 1)a †a . (3)

In the following, we refer to the state resulting from the action of
the approximate NLA in Eq. (3) on coherent input as (AC) |↵ia.
Its density matrix elements in the Fock basis may be expressed as
follows:

%n,m = e�n̄

A
n̄

n+m
2

p
n!m!

[1 + (g � 1)n][1 + (g � 1)m], (4)

where n̄ denotes the average photons number and A�1 a
normalization constant given by

A= 1 + (g 2 � 1)n̄ + (g � 1)2n̄2. (5)

As apparent from Eq. (3), the NLA with gain g = 2 reduces to
photon addition and photon subtraction [21] performed in
a sequence, a procedure that is experimentally available [14]
with current technology. It is worth noting that the model of
NLA considered throughout the paper presents several advan-
tages compared to other physical schemes, as demonstrated by
its performances quantified by the effective gain and fidelity
[14]. Besides the realistic implementations mentioned so far,
more abstract schemes for noiseless amplification have been
recently proposed [22–24]. Their operating principle is based
on a postselection of classical data collected from heterodyne
detection that emulate noiseless amplification. Despite being
experimentally friendly, as only feasible Gaussian operations are
required, the emulated NLA is not suited for our protocol due
to the restrictive need of being directly followed by a heterodyne
detection, thereby embedded within the detection stage.

3. STATIC AND DYNAMICAL PHASE DIFFUSION

This section is devoted to model the dynamics induced by a
phase diffusive classical environment on a CV system. In par-
ticular, we show that treating the environment as a classical
stochastic field (CSF) provides an effective description of the
dynamics, able to describe rich phenomenology that canonical a
master equations approach, usually derived from too restrictive
approximations, may not capture.

Let us consider a single bosonic mode interacting with
a CSF. The dynamics of the system is governed by the
total Hamiltonian, i.e., the sum of the free and interaction
Hamiltonians given, respectively, by

H0 = ~!0a †a , (6)
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Hi = ~a †a [F (t)e�i!t + F ⇤(t)e i!t ], (7)

where !0 is the proper frequency of the oscillator and F (t)e�i!

an external fluctuating field with a complex amplitude that
oscillates in time with a central frequency !. F (t) describes the
realizations of a stochastic process with zero mean, accounting
for the noise induced by the surrounding degrees of freedom,
and F (t)⇤ denotes its complex conjugate. As the interaction and
free Hamiltonians commute, the Hamiltonian operator in the
interaction picture reads (in units of~)

H = a †a [F (t)e�i!t + F ⇤(t)e i!t ], (8)

where the stochastic field F (t) assumes a dimension of fre-
quency. The Hamiltonian being self-commuting at different
times, i.e., [H(t), H(t 0)] = 0, the evaluation of the evolution
operator expression is made straightforward. As it appears, the
evolution operator coincides with a unitary phase shift:

U(t) = e i�(t)a†a , (9)

where �(t) =
R t

0 ds [F (s )e�i!s + F (s )⇤e i!s ] accounts for the
phase shift performed on the system and depends essentially
on the CSF. After expanding the initial state in a Fock basis, the
evolved density matrix at time t reads

%(t) =
⌦
U(t)⇢(0)U †(t)

↵
F

=
X

n,m

⌦
e�i�(t)(n�m)

↵
F %nm |nihm|, (10)

where h·iF represents the average over all possible realizations
of the stochastic process. From now on, we consider Gaussian
stochastic processes that are fully characterized by their two
first order statistics, i.e., the mean µ(t) = hF (t)iF and the
autocorrelation function K (t, t 0) = hF (t)F (t 0)iF . In par-
ticular, we will focus on stochastic fields with zero mean and an
autocorrelation matrix assuming a diagonal form:

hR [F (t)] R
⇥
F (t 0)

⇤
iF = hI [F (t)] I

⇥
F (t 0)

⇤
iF = K (t, t 0),

(11)

hR [F (t)] I
⇥
F (t 0)

⇤
iF = hI [F (t)] R

⇥
F (t 0)

⇤
iF = 0, (12)

where R[F (t)] and I[F (t)] denote, respectively, the real and
the imaginary parts of the stochastic field. The rearrangement
of the phase �(t) in terms of two distinct contributions coming
from the real and imaginary parts of the CSF simplifies remark-
ably the evaluation of the evolved density matrix. The average
in Eq. (10) reduces to the evaluation of the joint characteristic
function of two Gaussian variables:

he�i�(t)(n�m)iF = e� 1
2 (n�m)2� (t), (13)

with � (t) being a function that depends on the kernel of the
stochastic process:

� (t) =
Z t

0

Z t

0
ds ds 0 cos[!(s � s 0)]K (s , s 0). (14)

The evolved density matrix of Eq. (10) then simplifies to

%(t) =
X

n,m

e� 1
2 (n�m)2� (t)%n,m |nihm|. (15)

As it appears, the diagonal elements %nn are left unchanged
under the phase diffusion, thus preserving the occupation
probabilities, while the off-diagonal matrix elements vanish
exponentially. When � (t) displays a linear behavior in time, the
Gaussian process is said to be static. In that case, one recovers
the solution of the master equation that governs the evolution
of a system undergoing Markovian phase-diffusion noise. We
defer to a detailed discussion for the following parts where a
specific model of the Gaussian stochastic process (the power-law
process) will be analyzed.

4. QUANTUM PHASE-SHIFT KEYED
COMMUNICATION

In phase-modulation-based communication channels, M
symbols selected from a given ensemble are encoded using M
uniformly spaced phase shifts �l ranging from 0 to 2⇡ . The
encoding procedure is carried out by a phase-shift operation
U(�l ) on a seed single-mode state %0 that yields the deter-
ministic state %l = U(�l )%0U †(�l ). Next, the signal %l is sent
through a transmission line to a receiving station where phase
measurement, followed by a suitable inference strategy, is per-
formed so as to extract the information. A straightforward
strategy consists of dividing the ensemble of possible outcomes
to M intervals:

6l =

�l � 1

2
, �m + 1

2

◆

of width 1 = 2⇡/M and associate each measured phase that
falls into 6l with the corresponding symbol that the phase shift
�l accounts for. It is evident that the intervals 6l sum up to
[0, 2⇡). We point out that, naturally, one may opt for a different
inference strategy where a non-uniform width of the intervals
is chosen. As a symmetric choice is generally optimal, we adopt
the previously presented scheme that may be summarized in the
following terms: for each outcome � of the phase measurement,
if � 2 6l , then � 7! �l . The statistics of phase measurement
outcomes are described by a positive operator-valued measure
(POVM) {⇡(✓)}, where ✓ 2 [0, 2⇡). The recipe that provides
the probabilities of the receiver’s outcomes 5l reads as [25]

5l =
Z

6l

⇡(✓)d✓ . (16)

A covariant phase measurement can always be described by a
POVM {⇡(✓)} that assumes the following form:

⇡(✓) = 1
2⇡

1X

n,m=0

An,me�i(n�m)✓ |nihm|, (17)

where An,m = 2⇡hm|⇡(0)|ni are the elements of a positive and
Hermitian matrix A set by the chosen phase measurement. We
remark that the covariance of the phase measurement performed
by the receiver is ensured by the covariance property of {⇡(✓)}.
This implies

5l (✓) = U(�l )5(0)U †(�l ). (18)

Starting from Eqs. (17) and (16), we arrive at the compact
formula
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5l (✓) =
1X

n,m=0

An,m fn�m(l)|nihm|, (19)

where fd (l) = 1
2⇡

R
6l

e�id✓d✓ refers to as the resolution func-
tion. Since the phase shifts are equidistant (�l = 2⇡ l/M)
and the range of possible outcomes is uniform, the resolution
function assumes the following form:

fd (l) = e� 2⇡ ld
M

⇡d
sin

⇡d
M

. (20)

In order to quantify the performance of the phase-shift-
keyed (PSK) communication channel, we employ the
mutual information (MI) between output and input as a
suitable figure of merit that measures the amount of infor-
mation transferred along the transmission line at each use
of the channel. MI is given by I = S(O) � S(O|I ), with
S(O) = PM�1

l=0 p 0(l) log(p 0(l)) being the total informa-
tion available at the receiver (output) and S(O|I ) = PM�1

k=0

p(k)S(O|k) = PM�1
l ,k=0 p(k)p(l |k) log p(l |k) the conditional

information available at the output knowing which element
(�k) from the input ensemble was sent averaged over the pos-
sible inputs. We clearly notice that the MI is determined by
three quantities: the prior probability that a given symbol
(�k) carried by the state %k was transmitted, the probability
for the receiver to read out a given symbol (�l ), which reads
p 0(l) = PM�1

k=0 p(l |k)p(k), and finally, the conditional prob-
ability p(l |k) for the receiver to measure a phase (�l ) given
that the input symbol encoded in (�k) was transmitted. The
classical channel capacity, namely, the maximum information
reliably transferred through the transmission line per use, is
given by the maximum over the prior probability p(k) of the
MI. Throughout this paper, we assume a uniform prior. In
other words, the states %k are transmitted according to the same
probability, i.e., (p(�k) ⌘ p(k) = 1/M). Hence, the evaluation
of MI depends mainly on the conditional probability p( j |k),
and its expression reads

I = 1
M

M�1X

l ,k=0

p(l |k) log
Mp(l |k)

PM�1
k=0 p(l |k)

. (21)

The conditional probability p(l |k) is thought of as the proba-
bility that a measurement outcome belongs to the phase interval
6l when the state %k has been actually transmitted along the
channel. Owing to the covariance property of the POVM 5l , its
expression can be written as

p(l |k) = tr [%k5l ] = tr [%05l�k]

=
1X

n,m=0

An,m fn�m(l � k)%n,m . (22)

Also, making use of the symmetries of the resolution function
f�d (�l) = fd (l), and upon introducing the positive index
s = |l � k| ranging from 0 to M � 1, MI (21) simplifies to

I ⌘ I (M, n̄) = log M +
M�1X

s =0

q(s ) log q(s ), (23)

with n̄ being the average photons number of the input state and
q(s ) = P1

n,m=0 An,m fn�m(s )%n,m a function that can be per-
ceived as the probability that a phase difference of �s = 2⇡ s /M
between the input and output signal is registered independently
of the phase imprinted at the sending station.

Without loss of generality, we may assume real matrix
elements %n,m . It follows that the function q(s ) becomes

q(s ) = 1
M

"

1 + 2M
⇡d

1X

n=0

1X

d=1

An,n+d%n+d ,n

⇥ cos
2⇡ds

M
sin

⇡d
M

�
. (24)

The MI of a PSK communication channel thus depends essen-
tially on the seed state carrying the transferred information
(%0), the intrinsic characteristics of the channel, and the phase
measurement performed at the stage of the receiver (defined
through the matrix elements An,m).

In the present work, we analyze the performances of two
specific phase measurements: the canonical phase measure-
ment [25,26] and the angle margin of the Husimi Q-function
[27,28]. We emphasize the feasibility of the latter via heterodyne
or eight-port homodyne detection. Regarding the canonical
measurement, the matrix elements are given by An,m = 1,
whereas for the phase-space-based measurement, we have
An,m = 0[1+(n+m)/2]

(n!m!)1/2 , where 0[x ] is the Euler gamma func-
tion. We also notice that due to its appealing properties, the
canonical phase measurement is the optimal choice among the
phase POVMs. As its physical implementation remains an open
problem [29,30], we refer to as ideal phase measurement.

5. PHASE-SHIFT-KEYED QUANTUM
COMMUNICATION CHANNELS IN THE
PRESENCE OF NOISE

Quantum communication channels are characterized by
the seed state chosen at the stage of preparation, the intrinsic
properties of the channel, namely, the noise induced along the
transmission line, and the detection measurement performed
by the receiver. This section is devoted to assess the perfor-
mances of a quantum phase channel where the information is
imprinted onto the phase of an amplified coherent (AC) state
in the presence of static and dynamic phase diffusion. The
analysis will be drawn up either for ideal phase measurement or a
phase-space-based one that we dub “Q-measurement.”

A. Static Phase Diffusive Channels

Let us consider a traveling light beam in a static phase diffusive
environment. Under the Born–Markov approximation, the evo-
lution of the system is governed by the master equation

d
dt

%(t) = 0

2
L[a †a ]%, (25)

where L[O]% = 2O%O† � O O†% � %O O†, and 0 denotes
the phase noise factor. Given an initial seed ⇢0, the time evolved
density matrix is found to be
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⇢(t) =
1X

n,m=0

e� ⌧
2 (n�m)2

⇢n,m |nihm|, (26)

with ⌧ ⌘ 0t being the dephasing parameter. As mentioned
previously, the phase diffusive noise does not affect the diagonal
elements %n,n (preserves the energy) while canceling the coher-
ences. Let us now consider a seed signal prepared through the
action of a non-deterministic noiseless amplifier on coherent
states (ACs). Throughout the paper, we consider coherent sates
with zero initial phase. The density matrix elements of the seed
signal are thus given by Eq. (4). The transferred state along the
noisy channel corresponds to the time-evolved density matrix
(26), and its elements read

%n,m(t) = e� ⌧
2 (n�m)2

%n,m . (27)

Since the matrix elements of the received state are now iden-
tified, the evaluation of MI now depends only on the kind
of phase measurement performed at the receiver’s stage.
Concerning ideal phase measurement, i.e., An,m = 1, the
probability q(s ) in the presence of static phase noise is given by

qID(s ) = 1
M


1 + 2M

⇡d
cos

2⇡ds
M

sin
⇡d
M

⇥
1X

n=0

1X

d=1

%n+d ,ne� ⌧
2 (n�m)2

#

, (28)

whereas for Q-measurement, the probability q(s ) reads

qQ(s ) = 1
M


1 + 2M

⇡d
cos

2⇡ds
M

sin
⇡d
M

⇥
1X

n=0

1X

d=1

0 [1 + (n + m)/2]

(n!m!)1/2 %n+d ,ne� ⌧
2 (n�m)2

#

.

(29)

The MI IID and IQ of the two receivers are then evaluated by
substituting expressions (28) and (29) of qID(s ) and qQ(s ) in
Eq. (23), respectively. In the upper panel in Fig. 1, we report
MI IID and IQ as functions of the dephasing parameter ⌧ for
different seed signals, corresponding to different values of the
gain of the NLA. The mean photons number of the input coher-
ent state at the stage of the seed preparation is set to n̄ = 1, and
the cardinality of the alphabet is fixed to M = 20. We clearly
notice the detrimental effects of the unavoidable phase noise
on the amount of information transferred from the emitting
station to the receiver. Nonetheless, the AC states tend to reduce
the loss of information, yielding noticeable enhancement. As
it is apparent from the plots, larger gains of the NLA better
preserve the information flow either for an ideal receiver or a
Q-measurement-based one. From now on, we will focus on the
seed states prepared with an NLA calibrated, such as its nominal
gain is set to g = 2. Our choice is motivated by the experimental
feasibility of that particular amplifier.

As MI IID and IQ follow a similar qualitative behavior, we
report in the same figure (bottom panel on the left), the behavior
of their ratio RQ/ID = IQ/IID as a function of ⌧ , for different
input energies n̄. As expected, the ratio is not achieving unit

0.5 1.0 1.5 2.0
τ

0.5

1.0

1.5

IID

0.5 1.0 1.5 2.0
τ

0.2
0.4
0.6
0.8
1.0
1.2
1.4

IQ

1 2 3 4 5
τ

0.82
0.84
0.86
0.88
0.90
0.92

RQ/ID

Fig. 1. Upper panels: performances of the ideal and Q receivers,
namely, the mutual information IID (left) and QIQ (right), in the
presence of static noise as functions of the phase-noise parameter ⌧ for
different seed signals: the solid black line represents the standard coher-
ent state, while the dashed red, dotted blue, and dotted-dashed orange
lines denote AC states generated, respectively, with the following NLA
configurations: g = 1.2, 1.6, 2. Input energy of the primary coherent
state n̄ = 1. Lower panel, left: ratio RQ/ID = IQ/IID as a function of
⌧ for different values of mean photons number: n̄ = 0.5 (solid black),
n̄ = 1 (red dashed), and n̄ = 2 (blue dotted). Lower panel, right: 3D
plot of the ratio RQ = Ic /IAC as a function of ⌧ and n̄. The symbols
ensemble size is set to M = 20 in all plots.

value, thus confirming the optimality of the canonical phase
measurement. On the other hand, as it may be noticed from
the plots, when the energy of the signals increases, the perfor-
mances of the Q receiver approach those of its ideal counterpart,
especially for large values of the dephasing parameter. In order
to highlight the beneficial contribution of the NLA to enhance
MI, we use a 3D plot (bottom panel on the right) of the ratio
RQ = Ic /IAC as a function of input energy n̄ and the dephasing
parameter ⌧ for a number of symbols M = 20. Here Ic and IAC
account, respectively, for MI of a coherent seed signal and an
AC seed (with g = 2). The 3D plot reveals that MI obtained
with the AC state surpasses that of the standard coherent seed
signal. Furthermore, a monotonic increase in the ratio RQ with
n̄ for any fixed value of ⌧ is noticed. Thus, the weaker is the input
energy, the more substantial is the enhancement brought by the
NLA. These results show the beneficial advantages of the NLA
when used at the stage of seed preparation, in particular in the
regime of low energies.

We previously pointed out the optimality—in an ideal trans-
mission line—of the encoding–decoding scheme based on
Fock states transmitted following a thermal distribution and
photodetection at the stage of the receiver [2]. We recall that the
optimization is performed under a constraint on the mean pho-
tons number in the information-bearing system. When it comes
to realistic communications, however, the unavoidable presence
of noise distorts the transmitted states and alternative encoding–
decoding strategies may offer better performances. In fact, for
a lossy bosonic channel, it has been shown that an amplitude
coherent encoding (usually termed “amplitude-based” scheme),
where information is imprinted into the amplitude of coherent
states and extracted via heterodyne or double-homodyne detec-
tion, is indeed optimal. The capacity of the amplitude-based
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I

Fig. 2. Left panel: mutual information IID (dotted red) and the IQ

(dotted purple) receivers together with the capacity of amplitude-based
channel (solid blue) as functions of n̄ for M = 30. The considered
quantities are evaluated for ideal channels, namely, ⌘ = 1 and ⌧ = 0.
Right panel: 3D plots of the ratio RQ/amp = IQ/Camp as a function of ⌘
and ⌧ for different values of n̄: from top to bottom n̄ = 0.2, 1, 2.. The
number of symbols is set to M = 20.

scheme achieved by heterodyne detection is found to be

Camp(⌘) = log2(1 + ⌘n̄), (30)

where 0 < ⌘ < 1 denotes the loss parameter, and n̄ stands for the
mean number of photons of the coherent seed state.

In other to deepen our current analysis, we compare the
performances of the PSK scheme assisted by the NLA to those
of the amplitude-based one. First, we focus on the ideal channel,
namely, ⌧ = 0 and ⌘ = 1. In the right panel of Fig. 2, we show
MI for both the ideal IID and the Q receivers IQ along with the
capacity of the amplitude-based channel as functions of the
mean photons number. We set the symbols ensemble size to
M = 20. Since we intend to establish a comparison between
the two channels, the plots are realized for seed signals with
equal energies. As it appears from the plots, the two considered
schemes afford the same performances in the relevant regime
of weak energies (n̄ ⌧ 1). However, in the remaining range of
n̄, the ideal receiver yields some trivial improvement when the
average photons number does not exceed a certain threshold,
while the Q receiver becomes less efficient as n̄ increases.

Let us now compare realistic transmission lines, i.e., phase
channels with phase diffusion and amplitude channels with
loss. Since the experimental implementation of canonical
phase measurement remains unavailable, we will focus on the
performances of the Q receiver. In the right panel in Fig. 2, we
show a 3D plot of the ratio RQ/amp = IQ/Camp as a function of
the noise parameters ⌧ and ⌘ for different values of the mean
photons number (n̄ = 0.2, 1, 2). The plot reveals the existence
of a threshold value of n̄, above which the phase channel pro-
vides better performances. Moreover, we notice that the region
where the phase channel assisted by the NLA outperforms the
amplitude-based one becomes larger as the average photons
number decreases, thus proving its effectiveness in the relevant
regime of weak signals.

B. Phase-Shift-Keyed Channels in the Presence of
Dynamical Noise

The noisy channels considered so far were characterized by
static noise, i.e., a constant phase noise factor. As it happens,
the dynamic of the states transferred along the transmission
line is well described by a full quantum view under the Markov
assumption. In various situations [11,31–34], the interaction
of the quantum system of interest happens with a structured

environment; thus, the Markov approximation is no longer
appropriate. Generally, the theoretical description of quan-
tum systems interacting with correlation in time surrounding
degrees of freedom poses real issues. However, when the noise
introduced by the environment presents classical characteristics
as, for instance, Gaussian noise, the dynamics of the system
may be properly modeled by a CSF [35,36]. Furthermore,
beyond its simple formulation, the CSF description enables us
to investigate the impact of the memory effects induced by the
environment on the system.

In the following, we will address phase communication chan-
nels in the presence of dynamical Gaussian noise. We adopt the
physical model introduced in Section 3, where phase diffusion is
modeled by a CSF. Given a seed state %(0), the evolved density
matrix is given by Eq. (15) and can be rewritten as

%(t) =
Z

d�N (�, � )U(�)%(0)U †(�), (31)

where N (�, � ) is a normal distribution with zero mean and
a time-dependant variance � (t). It entirely characterizes the
stochastic Gaussian process (CSF) and is directly related to
its autocorrelation function through Eq. (14). (The Gaussian
approximation for N (�, � ) is valid for � (t) ⌧ 2⇡ ; otherwise,
a Von-Mises distribution for the angular variable � is used.)
The transformation (31) induced by the environment takes an
initial state %(0) to a statistical mixture of phase-shifted states
distributed according to a normal law around its initial phase. In
the following, we will treat the case of the power-law (PL) proc-
ess as an illustrative pattern of Gaussian CSF. The PL process is
characterized by the kernel K (t, t 0) = a�1

2
�0

(1+� |t�t 0|)a , where 0

stands for the phase diffusion parameter, and � = t�1
E , with tE

being the correlation time of the environment. As it happens,
for a null central frequency of the environment (! = 0), the
time-dependant variance � (t) reads

�PL(t) = 0

�


(1 + � t)2�a + � t(a � 2) � 1

a � 2

�
. (32)

In the limit where � ! 1, or equivalently, the environment’s
correlation time is negligible with respect to the interaction time
(tE ⌧ t), the variance reduces to

�PL(t) ' 0t, (33)

whereas for vanishing � , namely, in the presence of consequen-
tial memory effects (tE � t), it assumes the following form:

�PL(t) ' 0t2

2
(a � 1) . (34)

As it appears from Eq. (33), where the variance is linear in time,
we are back to the static situation where memory effects are neg-
ligible, and the CSF is well described in the Markovian approxi-
mation; thereby, MI shows the same behavior as in Fig. 2.

Let us now analyze the impact of memory effects on the
information transferred along a phase diffusive channel. The MI
for both the ideal and the Q receivers is evaluated by performing
the replacement e� 1

2 d2⌧ ! e� 1
2 d2� (t) in the expressions (28)

and (29), respectively. In the upper panels in Fig. 3, we report
variations of MI IID and IQ with respect to the interaction time
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Fig. 3. Upper panels: mutual information IID (left) and IQ (right)
as a function of the interaction time t in the presence of dynamical
phase diffusion for different values of the characteristic correlation
time tE : tE = 0.5 (dashed red), tE = 1 (dotted blue), tE = 5 (dotted-
dashed orange). We also report the plot of the mutual information in
the presence of static noise (black solid). Lower left panel: the ratio
RID/Q = IID/IQ as a function of t for the same configurations as in
the upper panels. The color code is also kept unchanged. Lower right
panel: 3D plot of the ratio RQ/amp = IQ/Camp as a function of ⌘ and t
for different phase-diffusion noises: from bottom to top, static noise,
noise with tE = 1, and noise with tE = 5. The remaining parameters in
all the plots are set as follows: n̄ = 2, M = 20, a = 3, and 0 = 1 so as to
be consistent with the static case.

t for different values of the environment’s correlation time tE .
For the sake of comparison, we also show MI for the static phase
noise. The plots reveal better performances for both the ideal
and Q receivers in the presence of dynamical noise. Moreover,
we observe that the larger is the correlation time, the better
preserved is MI. In fact, the decay rate drops for consequential
memory effects, whereas it is at its maximum for vanishing
tE as illustrated by the transition [Eq. (33)! (Eq. (34)] from
linear to quadratic variations in time of � (t). In the lower panel,
right side, we show the ratio RQ/ID = IQ/IID as a function of
the interaction time t for different values of tE . We observe a
decreasing ratio with respect to the correlation time, denoting
the dynamical phase noise disadvantages of the Q receiver
compared with the ideal one.

Let us now compare the performances to those of an
amplitude-based channel in the presence of noise. Once again,
we consider a dynamical noise originated from a long-range
PL process. Our results are depicted in the lower right panel in
Fig. 3, where we show a 3D plot of the ratio RQ/amp = IQ/Camp

as a function of the amplitude loss parameter ⌘ and the inter-
action time t for two values of the correlation time of the
environment (tE = 1, 5). In order to emphasize the contribu-
tion coming from the memory effects, we also report the 3D plot
of the ratio in the presence of static noise. It is worth noting that
we have considered here the regime of weak energies (n̄ = 0.2).
We clearly notice that the environment memory effects enhance
the performances of the noisy phase-based channel assisted
by the NLA with respect to the amplitude-based one. This is
illustrated by the increased area where the phase channel out-
performs its amplitude counterpart for higher time-correlated
environments. Overall, we conclude that memory effects are

a resource to preserve information in the presence of phase
diffusion.

6. CONCLUSION

We have investigated quantum phase communication channels
assisted by probabilistic NL amplification and assessed their per-
formances in the presence of static and dynamical phase noise.

First, we have shown that in the presence of Markovian noise,
NL amplification of the coherent seed signal improves the per-
formances for both ideal and feasible receivers. Moreover, upon
comparison with lossy coherent states, in the amplitude-based
scheme, we have shown the existence of a threshold on the loss
and phase-noise parameters, above which phase channels better
preserve the transfer of information. Then, we have shown that
in the presence of time-correlated noise, leading to dynamical
non-Markovian phase diffusion, the interplay between the use
of NLA and the memory effects provides a noticeable improve-
ment in performances, i.e., memory effects better preserve the
information transferred along the transmission line.

Overall, our results prove that quantum phase communica-
tion channels may be of interest for applications with current
technology and pave the way for their implementations in
realistic scenarios.
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