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Abstract

We address the problem of sensing the curvature of a manifold by performing measurements
on a particle constrained to the manifold itself. In particular, we consider situations where
the dynamics of the particle is quantum mechanical and the manifold is a surface embedded
in the three-dimensional Euclidean space. We exploit ideas and tools from quantum estima-
tion theory to quantify the amount of information encoded into a state of the particle, and to
seek for optimal probing schemes, able to actually extract this information. Explicit results
are found for a free probing particle and in the presence of a magnetic field. We also address
precision achievable by position measurement, and show that it provides a nearly optimal
detection scheme, at least to estimate the radius of a sphere or a cylinder.

Keywords Quantum sensing - Curvature

1 Introduction

In order to describe the kinematics and the dynamics of a physical system, from now on a
particle, one should at first specify the manifold where the dynamics of the particle takes
place, i.e. the manifold where the particle propagates. Depending on the nature of the sys-
tem, this manifold may be flat or characterized by a curvature. In modelling a system,
geometrical constraints are often postulated by looking at basic principles, or on the basis of
general considerations. However, a question arises on whether it may be possible to obtain
information about the manifold by a purely operational approach, i.e. by performing mea-
surements on the system under investigation. Besides the fundamental interest, sensing the
curvature has potential applications, e.g. due to the interest in two-dimensional curved sys-
tems, to describe physical effects such as Aharonov-Bohm oscillations [1], formation of
Landau levels [2—6] and quantum Hall effect [7].

In this paper, we address the problem of probing a manifold by performing measurements
on a particle constrained to move on the manifold itself. In particular, we focus on estimating
the curvature of a manifold, and consider regimes where the dynamics of the particle is
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quantum mechanical. To this aim, we employ ideas and tools from quantum estimation
theory in order to quantify the information that is actually available according to the laws of
quantum mechanics. In addition, we look for the optimal measurement, able to extract the
maximum information about the curvature, as well as the optimal preparation of the particle,
i.e. the preparation which is most sensitive to the curvature of the underlying manifold.

As a first step in this endeavour, we review the possible approaches to derive the
Schrodinger equation for a particle constrained to a manifold, possibly subjected to an exter-
nal field [8—16]. As we will see, there are at least two inequivalent approaches, one of which
is more adherent to the physical situation we have in mind. We review the two approaches
in order to establish our notation and, in particular, we discuss in some detail the differences
and the similarities between the two methods, to illustrate the rationale behind our choice.

In order to quantify the available information about the curvature, that may be extracted
by means of a measurement on the particle, we employ ideas and tools from quantum param-
eter estimation (QPE) theory [17-22]. QPE generalizes to the quantum case the problem
of point estimation arising in classical statistics. There, the problem is to infer the value
of a parameter by sampling from the population of a random variable, whose distribution
depends on the parameter itself. An estimate of the parameter is built from the data sam-
ple using a point estimator, i.e. a parameter-space valued function of data, and the task is
to optimise the estimation strategy with respect to a suitable figure of merit. Moving to
the quantum mechanical case leads to the introduction of a quantum statistical model, i.e.
a family of density operators, describing the possible states of a quantum system. An esti-
mate of the parameter is here obtained by performing a measurement and then processing
its outcomes via a suitable estimator. The main task is to make the optimal choice of both
the measurement scheme and the estimator, in order to achieve the most precise determi-
nation of the parameter of interest. The central figures of merit in optimizing estimation
of a parameter are the Fisher information (FI) and its quantum generalisation, the quantum
Fisher information (QFI).

The paper is structured as follows. In Section 2 we review the possible approaches to
quantization on a curved manifold, i.e. the Lagrangian approach based on the use of gen-
eralised coordinates, and the Hamiltonian one, where one considers the particle in R3, but
forced to a two-dimensional manifold by a steep potential, which is constant on the sur-
face and increases sharply in the normal direction. We illustrate the differences and the
similarities between the two approaches by the specific examples of a particle constrained
to a sphere, a cylinder, and a torus. In Section 3 we briefly review classical and quantum
estimation theory, introducing the quantum Fisher information as a measure of information
about a parameter contained in a family of quantum states. In Section 4 we analyze in some
details the precision that may be achieved in estimating the curvature of a manifold by a
free quantum probe, i.e. a particle that is affected only by the constraining potential forc-
ing it to stay on the surface. In particular, we evaluate the quantum Fisher information for
the radius of a sphere and a cylinder, and analyze its scaling properties with respect to time
evolution and the radius itself. In Section 5 we consider a charged quantum probe and ana-
lyze the performances of estimation protocols in the presence of an external magnetic field.
As we will see, the external field is a resource which allows one to estimate the radius by
performing measurements on a stationary state, while without a field we need to measure
the probe after a given time evolution. In Section 6 we study the Fisher Information for a
position measurement, and show that it provides a nearly optimal detection scheme, at least
for the sphere and the cylinder, i.e. the Fisher Information shows the same scaling of the
QFI, which represents its upper bound. Section 7 closes the paper with some concluding
remarks.
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2 Schrodinger Equation for a Particle Constrained to a Manifold

The common procedure to quantize a Hamiltonian system consists in introducing canon-
ical coordinates and substituting them with self-adjoint operators, satisfying the usual
commutation relations. When the underlying space is Euclidean, no significant problem
is encountered. The position and momentum operators are defined (in the position space
representation) as follows:

Qv(g) =q¥(q)  Py(q) = —ihd,¥(q). )

The only subtlety in this case is related to operator ordering ambiguities. Indeed, it is well-
known that the quantum Hamiltonian is not uniquely defined by its classical limit. That is,
there exist in general multiple Hermitian operators, i.e. multiple functions of Q and P, which
give rise to the same phase space function when Q and P are replaced by ¢ numbers. When
instead the underlying space is not Euclidean, but has a metric dependent on the coordinates,
there is the additional problem that a naive quantization along the lines of (1) may lead
to operators that are not self-adjoint, or do not satisfy the usual commutation relations. A
known example is that of spherical coordinates, where the operator ihdy is not self-adjoint.

This kind of problem may be solved in two different ways. The first approach is to use
generalised coordinates, i.e. to assume that the only space existing is the manifold itself,
equipped with its metric, and to quantize the system on the manifold itself [8]. The sec-
ond approach [10] requires instead to consider the particle as living in R, but forced to
move only on the manifold by a steep potential, which is constant on the surface, whereas
it increases sharply for every small displacement in the normal direction. Following this
second approach, one can write the usual Schrodinger equation in the full Euclidean space,
with the addition of the constraining potential term, and then separate it into two equations,
corresponding to the dynamics in the normal direction and along the surface. It may be
naively expected that the two methods always give rise to the same dynamics; however, this
is not necessarily the case. In fact, there are examples in which the two procedures lead to
different Hamiltonians and, in turn, to different dynamics.

2.1 Quantization: Lagrangian

Let us consider a particle of mass M, moving on a manifold with metric tensor g. The
Christoffel symbols are defined as

P 1 pA
Fuo' = Eg (Opgonr + 00 8ui — 958u0), (2)
and allow one to build the following Riemann tensor:
A A
Rﬁpv :8pFﬂv—3vFﬁp+Fw ZA—FM o (3)
The Ricci scalar is obtained by contracting over the indexes of Riemann tensor as follows:
R=g""R},,. 4)

The classical Lagrangian of the particle is given by:
L =5Mgijq q" + QAig"q; — QV, ®)

where Q is a scalar constant, while A; and V are functions of the ¢’s, which may be inter-
preted as the vector and the scalar potentials respectively, describing the interaction between
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a particle with charge Q and an electromagnetic field. With this interpretation (5) is the clas-
sical Lagrangian of a single charged particle interacting with an electric and magnetic field.
Upon quantizing the generalised coordinates g; the following Schrodinger equation may be
derived for the particle on the manifold [8]

'ha\p 2 (\/_ )+.§ R\I!
ih— = —
9t 2MJdetg g’ &8

n iOh 0
2M./detg dq'
iQh ; 0V 0?

= ol — + = VA AW Vv, 6
+Mg a+2Mgz,+Q (6)

detgg"fAj)xp

where & is a free parameter, i.e. we may assign to & any real value and obtain the same
classical theory in the limit 7 — 0. In the case of a free particle, the above Schrodinger
equation reduces to

oW h? P oW h?
e = % (/detgg—)+&_R. 7
e = T amyaets gt VI8 ) Ty 0

The above quantization procedure is completely general and works for every manifold with-
out the need to embed it in an Euclidean space. However, this very feature, and the presence
of the free parameter &, pose conceptual and practical problems. On the one hand, it is
often the case that one has to study a particle living on a two-dimensional surface, knowing
however that it is in reality embedded in the usual three-dimensional space. On the other
hand, with this approach one would not be able to consider the effects of any normal field
(e.g. a magnetic field normal to the surface), since an additional dimension is unavoidably
required, which is not contemplated by the theory. This sort of problems can be solved by
an alternative quantization [10, 11], which we are going to review in the following section.

2.2 Quantization: Constraining Hamiltonian

A more direct quantization procedure may be obtained by considering the particle as living
in Euclidean space, but forced to stay on a thin layer of space around a surface by a steep
potential [10]. Following this approach, there is no need to quantize directly on the curved
space, because the particle actually lives in the full Euclidean space, where the Schrodinger
equation is unambiguous. Due to the nature of the confining potential, the Schrodinger equa-
tion and the wave function may be factorized in a normal and a surface parts, provided that
the confining potential depends on a squeezing parameter, and that the larger this parameter
is, the thinner the allowed region normal to the surface. The Schrodinger equation for the
surface part may be written as [10]

OV h? { 1 ( = anl>
_— = - . e —
ot 2M | \/detg 9q’ &8 aq’

+ (iTr[a]z — det[a]) \p} , (8)
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where « is a matrix, whose elements «;; are the coefficients of the expansion of the deriva-
tives of the normal versor on the tangent plane. In fact, it can be shown, and is also quite
intuitive, that the derivative of the normal versor belongs to the tangent plane:

2
8qf X_: “aql 361’ ®

It is interesting to note that these coefficients can be expressed as a function of the metric g
and of the second fundamental form 4 as follows

1 1
ajp = ———(g12h21 — gh11) a2 = ———(g21h11 — g11h21)
det[g] det[g]
1 1
= hoy — h = — hy1 — h 10
o] detlg ](812 2 — 8g2nhi2) ax detlg ](glz 21 — &11h22). (10)

If we now introduce the notation

Vi( __ﬁ_z 1 2 _
q1,q2) : i 4Tr[oc] det[a] ), (11)

the quantity V(q1,q2) may be interpreted as the surface potential due to the constraining. In
terms of the mean curvature C and the Gaussian curvature K we may write

2
Vi(q1, q2) = —h—(c2 ~-K), (12)
2M

where

1 det[A]
= h hi1 —2g12h12), K = .
> detlg] (g11h22 + g22h11 g12h12) detlg]

Besides the constraining potential, one may consider the particle subject to a scalar potential
V and a vector potential A;. Remarkably, it can be shown [14] that no coupling appears
between the field and the surface curvature and that, with a proper choice of the gauge, the
surface and the transverse dynamics are still factorized. For the surface part, we have

hZ
1o, W = Jdetgg 22 4 vow
M = T M Jdetg aq 5g7 (Vdet s )+

lQh
2M«/det
+1Qh iy, \1/ 0?

TA; AW VU, 14
T 8 g T i +0 (14)

(13)

8 1
—( det gJA R4

with Q being the charge of the particle and V; the surface potential. If we compare this
equation with (6), we realize that they are quite the same except for the term containing the
Ricci scalar, that in (14) is replaced by the term containing the surface potential.

2.2.1 Examples #1: the Sphere
Let us consider the surface of a sphere of radius A, parametrized in spherical coordinates,

i.e. the latitude 6 € [0,7] and the longitude ¢ € [0,27]. The metric matrix elements are
given by

200 = A%, 8pp = A2 sin® 6, 840 = 8oy = 0. (15)
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It follows that the Ricci scalar is given by R =2/A% and the surface is parametrized as
r(0,¢) = (A sinf cosg,A sinf sing,\ cosf). The normal vector is n(6,¢) = r/A, and it is
straightforward to see that

on 1 or

= - . (16)
90,¢) 1930, 9)
Upon comparing the above equation with (9), we see that:
agp =gy = 1/A, gy =0agpg =0 (17)

and it follows that Vs =0. In this case, by choosing the parameter & in (6) equal to zero, the
two quantization procedures lead to the same Schrodinger equation.

For a charged particle constrained to a sphere, and subject to the effect of a constant
magnetic field B directed along the positive z-axis (6 =0), we have

. hz 2 1 2

A2 sin“ 0
+iQBha w4 B2Q?%)2 sinzé\p a18)
oM ? SM '

2.2.2 Examples #2: the Cylinder

We now consider a particle on a cylinder. The points on the surface have coordinates (x =
p cosf,y = p sinf,z), where z € R, 6 € [0,27], and p € [0,+00]. The surface of a cylinder
of radius A may be parametrised by the vector r(z,0) = (A cosf,A sinf,z), and the metric is
given by

gz=1, g0 =>" guw=_gs =0 (19)
Since the metric does not depend on the coordinates (6,z), it immediately follows that the

Ricci scalar vanishes. In order to evaluate the o matrix let us consider the normal versor
n = (cos6, sind, 0), together with its derivatives:

on on 1 or

M _y, m_ 10T (20)

0z 00 1 a0
It follows that:

g = 1/A, oy =09 =ag, =0. 21)
and the surface potential
hZ
T sMAY

does not depend on the coordinates. Notice that in this case there is no possible choice of

the parameter £ making the Schrodinger equation (6) equal to that obtained from the con-
straining Hamiltonian approach, i.e. Equation (14). This happens because the Ricci scalar is
zero, while the surface potential is not. On the other hand, the two Hamiltonians differ only
by the presence of the surface potential, which is a constant, and therefore they give rise to
the same dynamics.

If a magnetic field B is present, it will have a radial component, which we denote
by B, and a normal component directed along the z-axis, which we denote by Bj. The
radial component may be always chosen in order to have 8 =0 without loss of generality.
Such a magnetic field, in the gauge where the transverse component of the vector poten-
tial is zero (A, =0), may be obtained from the following vector potential: (Ag, A;, Ay) =
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(%kz Bo, AB1sin@, 0). It follows, after some intermediate steps, that the the Schrodinger
equation is given by

I A ihQB
ihoW = ——— (9— +a§\y> LI P

2M \ A2 2M

ih.QB
LGB paw

h2
W,
SM A2

(22)

2
)LZ QZ ﬁ
2M 4

+ stin29> v —

2.2.3 Examples #3: the Torus

In the following, we are not investigating in details quantum sensing on a torus. It is how-
ever of interest to briefly mention it, in order to present a specific example where the two
quantization methods lead to unavoidably different Hamiltonians and dynamics. A torus is
the surface generated by rotating a circle in three-dimensional space, about an axis copla-
nar with the circle. As such, it is specified by two parameters: the radius r of the circle and
the distance R from the center of the circle to the center of the torus. A point on the surface
of a torus is identified by two angles: 6 € [0,2], which tells the angle on the circle, and
¢ € [0,27], which measures the angle around the center of the torus. The corresponding
parametrization reads as follows:

x(@,¢) =(R+rcosb)cose, y(@,¢) = (R+rcosb)sing, z(0,¢p) =rsinf, (23)

and the metric is given by ggg = 12, 8pp =(R+r cosh)?, 80¢ = 840 =0. The normal versor
is thus 7 = (cosf cos¢, cosd sing, cos@)T, and the o matrix is given by

1 cos 6 0 (24)
agg = —, Opp = ————, Qpp = ogp = 0.
0o r ¢ R +rcosf 0% 99
The corresponding surface potential reads as follows
h? R?
Vs(0,¢) = (25)

~ 8M r2(R +rcos6)?’
The Ricci scalar of the torus is given by

2cosf

= (26)
r(R 4+ rcosf)

and this means that the two procedures of quantization unavoidably lead to different Hamil-
tonians. In fact, there is no choice of the parameter & that can make the two Hamiltonians
equal. Furthermore, the difference between the two Hamiltonians is not a constant, but
rather it depends on the coordinates. For a free particle, the Hamiltonian obtained with a
constraining potential leads to following Schrodinger equation:

R [82  sin6d 93 R 2
ihow = —-— | 20 Z0700 P+ v, @27
2M | r r (R +rcosf) 2r(R 4+ rcos9)
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3 Quantum Parameter Estimation

Let us consider a family of quantum states p;, that are labeled by the values of a parameter
of interest. In our case, the family consists of the possible states of a particle on the manifold,
and the parameter corresponds to its curvature. We refer to the particle as a quantum probe
for the parameter A. In order to estimate A, we perform the same measurement on repeated
preparations of the quantum probe, and then suitably process the sample of outcomes. Let us
denote by X the observable measured on the probe, and by p(x|)) the conditional distribution
of the outcomes, assuming that the true value of the parameter is A. We also assume to
perform N independent repeated measurements on the probe. Once X has been chosen and
the sample x = {x1,...,xy} has been collected, we process the data by an estimator A = A(X),
i.e. a function from the space of data to the set of possible parameter values. The estimated
value of the parameter is the average value of the estimator over data, i.e.

A= / dxp(X|M)A(X), (28)

where p(x|A) = ]_[,ICV=1 p(xk|A), owing to the independence of the M measurements. The
precision of our estimation procedure is quantified by the variance of the estimator, i.e.:

Vy = Vari = /dxp(xM) [hx) — 7] (29)

The smaller V;, the more precise the estimation procedure.

For any (asymptotically) unbiased estimator, 1.e. any estimator satisfying the condition
A — X for N > 1, there is a bound to the best achievable precision, given by the celebrated
Cramér-Rao (CR) inequality:

Ve, > — 30
P2 NE (30)
where F', is the so-called Fisher information (FI)
2
F, = fdxp(xlk) [8xlogp(x|)x)] . (31)

The most precise measurement to infer the value of A is thus the measurement maximising
the FI, where the maximisation is performed over all possible observables of the probe. To
perform such maximisation analytically, one defines the symmetric logarithmic derivative
L, (SLD) of the quantum statistical model, defined as the operator that satisfies the relation

(Lypy + 03 L5)
2

Then, the quantum CR theorem states that the optimal quantum measurements are those
corresponding to the spectral measure of the SLD, and consequently F;, < H, = Tr[p; L%],
where H, is usually referred to as the quantum Fisher information (QFI). The quantum CR
inequality then states that:

= 0,0y (32)

iz = 33
N, (33)
which represents the ultimate bound to precision, i.e. a bound taking into account both the
intrinsic (quantum), and extrinsic (statistical), source of fluctuations affecting the estimator.
Upon solving the eigensystem for the family of quantum states p;, we may write p; =
> P ‘qﬁn) (¢, |, where both the eigenvalues and the eigenvectors do, in general, depend on
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the parameter of interest. One can then prove that the QFI can be written in the following
convenient form:

(8)»/0}1)2 (Ion - pm)2 2
H;, E o + ngem o T o (@020, (34)

where the sum runs over the support of p;.The first term in (34) is the FI of the distribution
of the eigenvalues p,, whereas the second term is a positive definite, genuinely quantum,
contribution, explicitly quantifying the potential quantum enhancement of precision. When
the condition F) = H, is met, the corresponding measurement is said to be optimal. If
equality is satisfied in (33), the corresponding estimator is said to be efficient.

As it will be clear in the following, the family of states we are going to consider is made
of pure states, p, = |, ) (], for which we have ,0% = p,. From this, it follows that:

n

010 = 3)»/),2\ = (0,0,) 05 + 05(95.05). (35)

Comparing this equation with the definition of the Symmetric Logarithmic Derivative (32),
it immediately follows that for a pure quantum statistical model the SLD is given by

Ly =20,p = 2(10:9) (Y| + [¥) (09D (36)

Inserting this expression into the definition of the QFI, and using the fact that (9, ¥ |¥x)
is purely imaginary, we arrive at

Hy = 4 ((029310:02) = [@020w3)[) (37)

In the following, we are going to employ the above results to assess the performances of a
quantum probe with the purpose of estimating the curvature of a manifold, e.g. the radius of
a spherical or cylindrical surface. To this aim, let us denote by E; and |¢;) the eigenvalues
and the eigenvectors of the (time independent) particle Hamiltonian on the manifold, and
write the generic pure state as [/;) = > i€ |¢ ;). The state at time # may written as

it
——E;
W= cje B0 1g;), (38)

J

where information about X is encoded in the eigenvalues and the eigenvectors. As such, we
have: ) )
it 174
-2 Ej -7 Ej
003) =Y cjda|e B 1o+ D cje b T1ang)). (39)
J J
Upon exploiting (38) and (39), we may then calculate (3, 1,|9,v¥); and |(WA|8A¢A)I|2
and, in turn, the QFI. In the case of a free particle on a sphere, we will explicitly calculate the
QFI for a localized wave-packet, without needing to know its expansion on the Hamiltonian
eigenstates. In other cases, e.g. a particle in the presence of a magnetic field, we will limit
ourselves to compute the QFI for some relevant family of states, such as those obtained by
a superposition of the ground state and a generic eigenstate of the system.

4 Sensing the Curvature by a Free Particle

In this section, we use the tools of quantum parameter estimation in order to assess the
maximum precision that may be achieved in estimating the curvature of a manifold by a
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free quantum particle. By free, we mean that the particle is affected only by the constraining
potential that forces it to stay on the surface. The rationale behind this approach is that
quantum systems are inherently sensitive to the parameters of their Hamiltonians, which
may be exploited to precisely estimate the values of those parameters by performing suitable
measurements on them [23-32]. This idea has been recently exploited to develop a new
approach to probe macroscopic systems, based on the quantification and optimisation of the
information that can be extracted by an interacting quantum probe as opposed to a classical
one. In particular, in this Section, we evaluate the Quantum Fisher Information of (37) for
the radius of a sphere, either using a generic pure state or an initially localized wave packet
as quantum probes. We also discuss the optimization of the probe’s initial preparation. We
then follow the same procedure for the case of a cylinder.

4.1 Free particle on a sphere

The free Hamiltonian for a particle on a sphere of radius Amaybe written as

0 ), 05
H, = — cotfdyg + 05 + 40
’ ZMAZ( ’ o sin20) @0
J2
= —, 41
2M A2 “h

where J denotes the angular momentum operator. The time independent Schrodinger
equation H,|W) = E|V¥) has finite and separable solutions for

QEMM) /(W) = j(j + 1),

with j € N. The eigenfunctions are the spherical harmonics, i.e.

|Wjm) = //d9d¢ sin6Y;n (0, 9)10, ¢) (42)

m| —m
/%+1u—mm

: = (— 2 m img
Yim(0, ) = (—1) o (mel)!P] (cos0)e'™?, (43)

where P]’." (x) are the Legendre polynomials with m € Z and — j < m <. The ket |0,¢) in
(42) denotes a localised state on the sphere, i.e.:

1
(¢',010,¢) = 8(¢' — P)8(cos®’ —cos0) = ———8(¢' —¢)3(0" —0), (44

| sin 6|

(@, 01Wjm) = Yim(0, P). (45)
The corresponding eigenvalues are given by
i +1)
Eipy=——7"——. 46

They do not depend on m and are (2j + 1) —degenerate. We notice that while the eigenvalues
do depend on the curvature of the manifold, i.e. on the radius of the sphere, the eigenvec-
tors do not. This means that preparing the particle in any given energy eigenstate and then
performing a measurement cannot provide any information about the curvature. In order to

@ Springer



2924 International Journal of Theoretical Physics (2019) 58:2914-2935

see this more explicitly, let us remind that the spherical harmonics provide an orthonormal
basis on the sphere. Thus, we may expand any state as

o0 J
=D > i), @7)

j=0m=—j

where the amplitudes cj;, do not depend on A for any initial preparation of the probe particle.
At the generic time ¢, the evolved state is given by

oo —l—tE'
W) =3 ) cme B W) (48)

j=0m=—j

We are now in the position of using (37) to evaluate the quantum Fisher information for the
parameter A, encoded in the generic evolved state |/, ). In order to calculate the two terms
involved in the QFI, we need to compute the derivative of the state. Using the shorthand

Domi =25 _OZm__], we have

it
——Ejn ot
0:95) = Y cime I’ —zﬁ(axEjm)]|wjm>
mj

~~Ejm [ithj(j+ 1)
= Zije h _W] |\Djm>» (49)
where we have used the relation
2
0, Ejm = _XEjm' (50)
Using the above equations, we arrive at
K 2.2 2
@0109) = 255 a2 G + D, (51)
mj

where we used the normalisation condition for the spherical harmonics. Following similar
steps, we also have:

. th .
(Vs 1005) = zm?qmﬁm +1), (52)
2 2
RAERZNE _szﬁ (ch J(J-i-l)) : (53)

With the help of the preceding relations, we may now write down two expressions for the QFI,
either in terms of the fluctuations of the Hamiltonian, or of the squared angular momentum:

tzhz i
H), = Z|c,m| PG+ - (Dcw J(J+1)) (54)
mj
_ if_; ((%2> (H,) ) 126; . <AH§>, (55)
(0D -le)
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where, for a generic operator O, (O) stands for (Y, |O|¥ ;). Upon recalling the quantum
Cramér-Rao inequality, we can conclude that longer time evolutions lead to a quadratic
improvement in the achievable precision. This agrees with physical intuition, since time
evolution leads to a spreading of the wave-function, i.e. it makes the particle feel more the
effects of the curvature. Notice that at time ¢ =0 the quantum Fisher information vanishes,
i.e. a static measurement is completely uninformative in order to estimate the radius. Equa-
tion (54) also shows that the smaller the radius, the more precise the estimation procedure,
as one may have intuitively expected. Notice that the dependence on A is quite strong, i.e.
the achievable precision increases quickly as the radius decreases. At the same time, the
dependence of the QFI on the energy fluctuations tells us that, in order to optimally probe
the curvature, we need the particle to be prepared in a superposition of energy eigenstates,
i.e. that quantum effects represent a resource for the task of estimating the radius.

Let us now look for some specific particle initial preparations, in order to precisely esti-
mate the radius, assuming that the overall mean energy E of the particle is fixed. In order to
maximise the QFI, see (54), optimal states should exhibit a broad spread in energy. We there-
fore expect them to be superpositions of different energy eigenstates with eigenvalues as far
as possible from E. Since E is the mean energy, we need superpositions of some eigen-
states with energy larger than E, and some with smaller energy. For the sake of simplicity,
and since the energy spectrum is bounded from below, we consider here only superpositions
of two energy eigenstates, one of which is the ground state of the system, and seek for the
second eigenstate in order to maximise the QFI. Candidate optimal states are thus of the form

|@jm) = cosa|Woo) + sinaeiﬂ|\lljm),

where the eigenstates of the free Hamiltonian |W},,) have been defined in (47), and «, B €
2

[0,277) are the coefficients of the superposition. Since Egg =0 we have E = E im SIn~ o and
<<pjm ‘AH% <pjm> = E]-zm sin” «cos® a, (57)
and, therefore,
2
a %Ez tan12 o %)
o, 2.0 2
= 56! (j + 1)7sin”® acos” a. (39)

The above expression for the QFI indicates that the best probing preparation is a superposi-
tion of the ground state and an energy eigenstate with the highest possible energy (angular
momentum), compatible with experimental constraints. For fixed value of j, the optimal
superposition is a balanced one, i.e. « = /4, whereas for fixed value of the mean energy,
the optimal superposition is a strongly unbalanced one, i.e. a state |¢;;;) with j >> 1 and small
o < 1(while keeping fixed E ~ E jm(xz).

Overall, the above requirements, are quite challenging from the practical point of view.
Thus, we now concentrate our attention on a more realistic example, i.e. that of an initially
localized wave packet on the sphere, which is then left free to evolve. Assuming the particle
is initially localized in a generic point on the sphere, the state reads as follows:

Vi) = //d9d¢ sin0yr,(0)16, ¢), (60)
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where the wave-function v, (€) is given in terms of the Von Mises distribution on the sphere,
i.e.
K
© 1 K 5 cosf 61
= — - e .
Vi 47 \ sinhx

The quantity « is a concentration parameter. The larger k, the more concentrated the distri-
bution about the origin. For vanishing « one obtains the uniform distribution on the sphere.
The mean energy of this state is given by

hZ

Be = (v, HIV,) = T (e cothe = 1), (62)

M2

which increases linearly with k. Energy fluctuations are instead given by

h4
2 _ 2(H _ 2
<1/fK AH ‘w,()_ . [1 Y (2 coth K>] 63)
leading to the following expressions for the QFI
12 1?
Hy, = 1+ (2= coth?x)| (64)
2= 6 ;
1612 )
= WEKg(K), (65)
1+ «2 (2 —coth? «
gk) = ( ) (66)

(1 — k cothk)?

Upon comparing (65) with (59), we conclude that localized states show the same scaling of
optimal superpositions with respect to the mean energy. Concerning localisation, we have

2
g(K):l—i—; k> 1

12
g(/c)’:lJrK—2 Kk K1 (67)

which confirms the advantages of employing a quantum state (i.e. a coherent superposition)
in order to probe the curvature.

4.2 Free particle on a cylinder

According to the results of Section 2.2.2, the free Hamiltonian for a particle constrained on
an infinite cylinder of radius A may be written as

(e 5, 1
=—— |2 +03°+ — 68
He 2M(Az+ ) (©8)

1 (72, R
=—[=2+pP>P- ], 69
2M(A2+ Co42 %)

where 6 € [0,27) is the angular coordinate, z € R is the axial coordinate and J,, P, are the
angular and the linear momentum operators along the z-axis, respectively. The corresponding
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Schrodinger equation is separable in an angular and an axial part. The eigenvectors of .
are given by the common eigenstates of the commuting operators L, and P;.

| Prm) = //d@dzcbkm(Q, 210, z) (70)

1
D (0, 7) = — %™ (71)
27'[

where k is a real number, while m is an integer number in order to satisfy the boundary
condition (0 +2m,z) = ®(0,z). The corresponding eigenvalues are given by

g, = EIL. (72)

Y W az)

In (70), |6,z) denotes localized states, satisfying the relations:
(2, 0|®rm) = Pm(0, 2) (73)
(,0'10,2) =8(z' —2)8(8" —0) (74)

A generic preparation of a particle of the cylinder may be thus written as

— Z / dkc (k)| Do) - (75)

which evolves in time, acquiring a dependence on A, according to:

it
_Z Etm
) =X [ dkene B 00 76)

In order to calculate the QFI, we need the derivative of the state with respect to the cylinder
radius A. From (72), we have

oo, 1
0y Epm = _W m- — 4_1 ) (77)
and therefore
itE - |
EIRVES ;fdkcm(k)e h |:MA3 (m - Z)] | D). (78)

Following the same procedure as for the sphere, we arrive at:

2
@2 10203) = 62 [ dkento? ( ) (79)

(Y l051,) = 32 / dklem (k) ( ) (80)

2
2 t2h2 1
[(Waloay;)| = VG [ijfdmcm(knz (mz—zﬂ : (81)
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The QFI is thus given by
4 2h2 2
Hy = 1\22)\6 Zfdk|cm(k)| (m ——) |:Z/dk|cm(k)| (m ——)} ,
412 ~
_ m((AJZ) ) (82)

As it is apparent from (82), the QFI does not contain any terms depending on the linear
momentum. This is intuitively correct, since monitoring the motion of the particle along the
z-axis cannot provide any information about the curvature of the cylinder. On the other hand,
the QFI is proportional to the variance of the squared angular momentum along the z-axis,
which can be seen as the variance of the rotational energy of the particle. This confirms the
results already obtained for the sphere. In order to see this more explicitly let us choose a
probing particle which is not moving along the z-axis, i.e. |c,u(k)|? = 8(k)p,, Where p,,, with
Zm pm = 1, is a generic distribution for the angular momentum. With this choice, (82) can
be rewritten as:

420 [—  —\21 —
— 4 _ 2 s — s
H, = 11236 |:m <m ) ], ms = ;m DPm.- (83)
For a uniform distribution p,, = 1/(2J), m € [—J,J], and for large J, we have
—= . R G AN (4
~ 6M222 YT asMn8 T 5h2A2

For a probing particle prepared in a superposition |¢ ;) = [ (|Poo) + |Poys)) the scaling
is the same, with a more favourable numerical factor:
N £ PRIt 167 o

E=mr = me T

(85)

5 Sensing the Curvature by a Charged Particle in a Magnetic Field

In this section, we discuss sensing protocols involving a charged quantum probe which,
besides being constrained to the surface, is subject to an external magnetic field. As we will
see, the presence of an external field enhances precision, i.e. it represents a resource in the
estimation of curvature.

5.1 Sphere in a Magnetic Field

In Section 2, we have discussed the Schrodinger equation for a particle of charge Q and
mass M, constrained to the surface of a sphere with radius A and subject to a magnetic field
B directed along the positive z-axis. The corresponding, time-independent, Hamiltonian may
be written as:

2 20232 cin2
1 OBh B QA7 sin“ 6
Hsp = — d t6o d d _—. 86
sB 2M}\,2|:0+CO 9+sn¢9 ¢i|+12M ¢+ M (86)
HD HY, (87)

where we have already emphasized the presence of two terms, the first one HO B containing

terms up to the first power in the variable y = OB, and the second one, HAEB) which is of the
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order O(y?). Eigenvalues and eigenvectors of 7, may be found perturbatively, based on
the observation that the eigenvectors of the free Hamiltonian Hy, i.e. the vectors |W;;,) of

(42), are also eigenvectors of ”H,E%) with eigenvalues

K2 QBh
(0) .
EQ — 1 — . 88
Up to order O(y?), we have Ejm = E(O) + Ej(n?,where
1 I Q2 2
Ej) = (Wi Mg W) = 22 /fdechpsme (0, §) sin> 0Y; (6, ¢).
2 p2 2
B —1
=(—1)’”Q m ] 22, (89)

aM (25 +3)2j -1

and some standard identities involving associated Legendre polynomials have been
employed. The corresponding eigenvectors |Ej,,) evaluate to:

1 (Wi | H W)
|Ejm> = |\Ijjm> + E 0 0 |lIJKlL> s (90)
VN E;) — EQ

where N is a normalisation factor and

KW#Ejm

E\)—EQ = DG+ 1) = ke + D] + (m — OB O1)
Jm 2M )\‘2 ’

Q

(W |1 Wim) = 8jcbmp ) + 27 =—— //d@dcpsm@ 5.0, 9)sin® Y (0, )

Q
8M

= 8j/<3mqu(nl1) + )\-2 m (Sj,K—Z + 8j,/c+2) s (92)

: o ; D —m—1
2j+D2j=32j -1
The perturbative ground state in the presence of a magnetic field is thus given by:
1
|E00) = ——== (IW00) + &(A)|¥20)), 94
1+ g2(x
Q2 BZ}\A
) = 95)
¢ 36/5h

Remarkably, this is a A-dependent superposition of the unperturbed eigenvectors, and thus,
at variance with the case of a free particle, a measurement on the ground state of the system
does provide information about the curvature of the sphere. The QFI may be evaluated using
(37). To this aim we compute the derivative of the ground state and the following scalar
product:

9 9
195, E00) = ——2— |W20) — {g—*‘ﬂ |Z00). (96)
V1+g? I1+¢
(E00]05E00) =0, 7
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thus arriving at

HA:4< 028 )2:%—2)‘6 a:ﬂ (98)
1+ g2 (1 +a228)2’ 36351

The QFI vanishes both when A — 0, since H) =~ 9a*\Ofor) « 1, and when A — 00, since

1
Hj >~ 9/(a*A19) for A >> 1. It attains its maximum value Hj = 2%(135)71\/5 ~ 2.4,/a for

A= 3/ Saz)% -~ 0.94/a%, a value that may be changed by tuning the magnetic field (or
the charge of the quantum probe). Overall, we have that the presence of the external field is
a resource for curvature estimation. In particular, it allows to extract information even from
measurements on the ground state of the system, i.e. a stationary state, without the need to
measure the probe after a given time evolution.

5.2 Cylinder in a Radial Magnetic Field

In Section 2.2.2 we have written the Schroedinger equation for a particle of mass M, and
electric charge Q, moving on the surface of a cylinder with radius A immersed in a magnetic
field (22). Let us now focus on the specific case where the magnetic field has only a radial
component By, whereas the axial component is vanishing By =0. The Hamiltonian of the
system may be written as

P11 /1 AEOB 5202R2
Hcgz—ﬁ[p<z+a§)+a§]+i ilsin932+%sin29, (99)

0 1 2
HY H HE. (100)
We intend to find the eigenvalues and eigenvectors of H.p perturbatively, at first order in
the variable y = QB;.Tothis aim, we neglect the effects of the term "H%) and treat HEIB)

as a perturbation to the unperturbed Hamiltonian 7—[5(])3). The unperturbed eigenvalues Ejy,,
and eigenvectors |®y,,) are those of the free Hamiltonian, and are given in (72) and (70)

respectively. The eigenvalues are not changed by the perturbation since (P, |7-[£]l3) | D) =
0, whereas the perturbed eigenvectors |1 i) are given by:

1
(@ |HY |1 Phon)

1
Vim) = —= [ 1Prm) + D [Dep) | (101)
\/N K pkm En — E/cu
where AN is a normalisation factor and
Eim — E I’ (k> — k%) + s (m* — p?) (102)
m— = — —K —(m” —
k Y, IM )2 .
AhQB;
(@ | Y [ Prm) = k 8k — 1) [Sp—1.m + Spt1m] - (103)

The perturbed eigenstates in the presence of a magnetic field are thus:

1 20B23
1T km) = TN | Dpm) — 5 (Bkm| ®rm+1) + Bim—11Prm—1)) | » (104)
where S e
k 40°BiA°  2k*(4m? + 1)
By, = , =1 . 105
YT T+ 2m N=t+ B Q2m+1)2Q2m —1)2 (105)
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The above equations implies that the ground state is left unperturbed | Yoo) = |Pgo), whereas
the excited states are affected by the perturbations. In order to see the effect of the field on
the achievable precision, let us evaluate the QFI for a generic preparation |7 ), k# 0, of
the particle. The derivative of the statistical model evaluates to:

N 60 B )2
1057 kom) = —;Wmm = (Bunl @1 + Bt [Pim—1)) . (106)

The scalar products that are needed to compute the QFI may be found by a routine
calculation. The resulting QFI is given by

288a%k2(1 + 4m?))* B
i — a“k=(1 + 4m=) . a:&’ (107)
(1 — 4m?)2 + 8a?k*(1 + 4m?)x h

which vanishes as H;, o A% for A <« 1 and as H, o A~2 for A > 1,whereas it shows a
maximum for an intermediate value of A, which is a function of the external field and the
particle charge. The lowest useful excited state is |1"1¢), corresponding to H; =288a’A*/
(1 + 842A%), which is maximized by A = (2a)~ '3, leading to H) =24(2a)*?. Overall, we
have that, as in the previous case, the presence of an external magnetic field is a resource,
since it allows to acquire information on the radius even via a static measurement, i.e. even
when the system is prepared in a stationary state.

6 Sensing the Curvature by Position Measurements

In the previous sections, we have evaluated under different scenarios the QFI, which, by
means of the quantum Cramér-Rao theorem, sets the ultimate bound imposed by quantum
mechanics to the precision of any estimation protocol aimed at characterising the curvature
of a manifold. In this section, we turn our attention to position measurements, which rep-
resent the most natural choice to consider in realistic situations. For the sake of simplicity,
and to maintain the section self-contained, we focus our attention to the case of a free parti-
cle, and assess the performance of position measurements in the estimation of the radius of
either a sphere or a cylinder. To this aim, we evaluate the Fisher information, and compare
it to the corresponding quantum Fisher information.

The measurement of position for a particle on a sphere or a cylinder is described by the
following set of projectors:

b4 2w
(0, 9) =10, ¢) (@, 0], f dQ/ dpsinfng(0, ¢) =1, (108)
0 0

27
ez ) = |2, 8} 2, /RdZ/o ddme(8, ) = L. (109)

Let us start by focussing our attention on the case of the sphere. Given a generic preparation
|[Y) = ijcjmlllfjm) of the probe, the evolved state |y, ) is given in (48). The position
distribution at time ¢ is thus:

t 2

—i—Ejy,
P00 = 0. 01w = > cime B Vim0, 9)| (110)

jm
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and its derivative with respect to the radius:

P10, 910) = (0, 1 [1929,) (Wal + 192291116, ¢)

t
ht ) i_Ejm
= o | Zc;neh Y0, ) | x
jm
LE
x chmj(j-l—l)e h Y6, ) | +cc. (111)

Jm

The Fisher information is given by

3,1 (0, P11
FA://dequin@[ w10, IV (112)
(0, dI1)
which, using (110) and (111), may be written as
12 K2
F, = FWKS(A), (113)

.1
where the function K (1) depends only weakly on A, through the phase factor e nEm,
.1
For short time evolution, i.e. ¢ < (2MA2%)/h, we have e ' h%i
independent of A, i.e.:

m ~ 1 and K becomes

2
Y en imCanCimi (G + DYE (0, 0)Yim(0, ) + c.c.
Ks:f/d9d¢sin9[z e " ! ] (114

2
ijcjm ij @, 9)

Equation (113) implies that the Fisher information of position measurements shows the

same scaling
F, o t2/A5,

of the QFI in (56), i.e. position measurements provide a nearly optimal detection scheme
for the curvature of a sphere. In order to illustrate the behaviour for longer evolution times,
let us consider the ratio between the FI in (113) and the corresponding QFI of (56)

Ri/(A,y) = % = LX)Z (115)
Lo 4(AJ?)

This quantity is bounded by the Cramér-Rao theorem, i.e. 0< R;(A,y) < 1, with larger value
of R corresponding to situations where the performance of position measurements is closer
to the ultimate bound, thus providing a nearly optimal detection scheme. In Fig. 1 we show
R for a particle initially prepared in the superposition (cosy[Woo) + siny|W o))/ V2asa
function of y, for different values of # >> 1 and different values of j and A. The upper panels
are for j =1 and the lower ones for j =2. The left panels show the behaviour of R for =10
and the right ones for ¢ =100. In each panel, red circles illustrate results for A =0.1, blue
squares for A =1, and black rhombi for A = 10. As it is apparent from the plots, there always
exists a value of y for which R is considerably large, i.e. estimation by position measurement
is nearly optimal. We also notice that R is not a monotone function of ¢, j and A.

For the cylinder, measurements of position are described by the operators 7. in (108).
However, no information about the curvature may be obtained from measurements of the
axial coordinate, and the relevant information is encoded instead in the distribution of
the angular coordinate 6. For a generic preparation of the probe on the cylinder |y) =
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Fig.1 The R quantity defined in (115) as a function of the superposition parameter y. The upper panels are
for j =1 and the lower ones for j =2. The left panels show the behaviour of R for ¢ = 10 and the right ones for
t =100. In each panel, red circles illustrate results for A =0.1, blue squares for A =1, and black rhombus for
A =10. As it is apparent from the plot, there always exists a value of y for which R is non negligible

Dom f dkcy, (k)| Prn), the evolved state is given in (76), and the probability distribution of
a f-measurement is given by

€n — €
qt(emzf dz |(z. 01v,)|* = —Zym n=mbg (” D e
where
hz 2 1 *
€y = YT7E m- =], Yo = | dkey (k)c, (k). (117)
Therefore, we have
(en — €n)
t . —i—(€, — €
Mar(61) = 5 7o Zymn( n?) el BT )
so that the Fisher information provided by g;(6|A) may be written as
> 2
F, = I MzK ), (119)

where K.(}) is a function only weakly dependent on A, as we have already seen in the case
of the sphere. Equation (119) shows that the FI of ¢;(0|A) scales as the corresponding QFI
in (82), i.e. position measurements (actually 6-measurements) are nearly optimal for the
purpose of detecting the curvature of a cylinder. As we have seen for the sphere, K. becomes
independent of A for short times. Also the behaviour for long times is analogous to what we
have seen for the sphere.

@ Springer



2934 International Journal of Theoretical Physics (2019) 58:2914-2935

7 Conclusions

In conclusion, in this paper we have addressed the problem of estimating the curvature of a
manifold by performing measurements on a quantum particle constrained to propagate on
the manifold itself. In particular, we have focused on the case of two-dimensional manifolds
embedded in three-dimensional Euclidean space. We have considered the quantum probe as
living in the full Euclidean space, even if it is forced to remain within a thin layer of space
around the surface by a steep potential. As a matter of fact, due to the nature of the confining
potential, the Schrodinger equation and the wave function can be factorized into a normal
and a surface components, the latter one providing a natural description of the dynamics on
the given manifold.

Upon introducing tools from quantum estimation theory, we have first evaluated the ulti-
mate bound to the estimation precision for a free probe, i.e. a probe subject only to the
constraining potential, and have found universal scaling laws for the quantum Fisher infor-
mation in terms of the time evolution and the radius. In particular, we have shown that a
static measurement, i.e. a measurement performed right after the preparation of the probe,
is of no use for the purpose of estimating the curvature. Rather, the probe should be left free
to evolve on the manifold in order to acquire information about its curvature. We have then
looked at the precision bound in the presence of an external field, showing that the field rep-
resents a resource, since it allows to exploit static measurements, e.g. on the ground state of
the system, without the need to measure the probe after a given time evolution. Finally, we
have considered the performance of position measurements, proving that the corresponding
Fisher information exhibits the same scaling as the QFI with respect to the time of evolution
and the radius. Thus, position measurements provide a nearly optimal detection scheme, at
least when the unknown parameter is the radius of a sphere or a cylinder.

Our results, in addition to their fundamental interest, pave the way to applications based
on the quantification and optimisation of the information, extracted via a quantum probe,
about its ambient manifold. In particular, we foresee new developments in the design of
optimal probing strategies aimed at estimating classical geometrical parameters by means
of quantum probes, thus providing crucial ingredients for schemes of practical relevance.
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