PHYSICAL REVIEW A VOLUME 53, NUMBER 4 APRIL 1996

Quantum state measurement by realistic heterodyne detection
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The determination of the quantum properties of a single-mode radiation field by heterodyne or double
homodyne detection is studied. The realistic case of not fully efficient photodetectors is considered. It is shown
that a large amount of quitgreciseinformation is available, whereas the completeness of such information is
also discussed. Some examples are given and the special case of states expressed as a finite superposition of
number states is considered in some detail.

PACS numbegs): 42.50.Dv, 03.65.Bz, 42.65.Ky

[. INTRODUCTION in progresg6]; however, a preliminary studly7] has indi-
cated that its determination of some field properties can be
In order to get information about a quantum state one hagery noisy relative to the direct measurements of the same
to measure some observable. A question immediately ariseguantities.
is this information complete? Namely, does it fully specify
the quantum state under examination? The answer is gener- Il. REALISTIC HETERODYNE DETECTION
ally negative: the measurement of only one observable
shows up only an aspect of a physical system whereas &
complete description requires a deeper inspection. Howeve ensity matrix in the coherent state representatielip| ) is
the_ measu.rement of several dlffererllt.observables qould % positive definite function and thus can be directly measured
quire considerable effort. Therefore it is a matter of interesk,, any quantum state of radiation field. Indeed, it is known
to compare the simplicity and the feasibility of a measure4t the so-called Husim® function W_, (&, @) =(a|p|a)
ment, or a set of measurements, with the provided amount %presents the outcome probability distributif—10 of
information. In addition, one has to weigh up the precision ofyoth the heterodyngl1] and the double homodyrid2] de-

such information. tection scheme when equipped with ideal photodetectors. On
The complete description of a quantum state is containeg¢he other hand, its smoothed versions,

in the density operatop, or for a pure state in the wave , | 2

function. Therefore a measurement leading to the density - d<g - a—p

matrix in some representation provides, in principle, all the Wy(a,a)= f Tw—l(ﬁ”g) exp< -2 1+s ) @
knowable information about the measured state. It has been

shown theoretically1] that the Wigner functionNy(a, «) emerge from realistic devices in which not fully efficient
[2] of a field mode can be reconstructed starting from thedetectors are involved. The parametetepends on quantum
homodyne measurements of a continuousgsef — 7, 7) of  efficiency ag13,14

field quadrature§<¢=1/2(ae*'*”+ a'e'?). Later this proce- 1

dure has been applied to coherent and squeezed $8tes s=1-27% " 2
using a finite set of phases, i=1,...,27, upon a smooth-
ing of experimental data. More recently a procedure suitable
to finite sampling has been suggested for recovering matri
elements in the Fock representati@l and the latest devel-
opments have extended the method to data coming from in- . d2a A

efficient detectord5]. These various procedures, unitarily o:(o):f_ (a,a0).7{0](a,a), ®)
referred to agjuantum tomographyprovide nice and pow- ™

erful tools for investigating the quantum properties of a ra- oA _ . i )

diation field leading to the maximum information achievableWhere.”{[O](«,«) is a nonoperatorial function related to
on the measured state. However, they require the detection §1€ S ordering, in the boson operator expansion, of the cor-
many field quadrature&,, j=,1,... N and thus a lot of responding observabled [16]. Denoting by {O}s the

repeated measurements on the state under examination.‘c'AOrderEd form of an operator we have, for example,
systematic approach to precision of quantum tomography is

In this paper a different approach to quantum-state mea-
rement will be investigated. The crucial remark is that the

Starting from heterodyne, or equivalently from double ho-
odyne[15], detection we can evaluate some quan@tyf
Interest as an average over the experimental distribution

1
a'a={a'a},+ 5(s—1),
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and thus Then, using properties of Laguerre polynomigl8], we ar-
rive at the formulgvalid for 0< ¢<arccos(t 72/2)]

. _ 1
Fd(a,a)=]a|*+ 5 (s 1), d2
2 L —— f “ Wy, i(a,a)
ire?) T Nrae
—~ _ 1 _
Fdn®(a, @) =|al*+(2s-1)|a|*+ 78(s=1), (9 n(1-e?)|al?
X 1—dt—, (12
for the mean photon number and for the number fluctuations.

Similarly, we can investigate the squeezing properties of the Equation(3) is also suitable for a reliable estimation of
examined state by means of tleordering of the field errors in the determination of the various expectation values.

quadrature fluctuations In a practical situation, in fact, one has at disposal a finite
sample ofWy(«,«) and thus the integral in formulés) has

3 — 1 o —2.2i to be replaced by the corresponding statistical samplin
FIRA(@,a)= Fla%e 29+ a?e?*12|al*+s], (6) P y ponding pling

0= Wy, @) 7 01(a; a;). 1
and also evaluate the uncertainty product. This procedure can © jezdata slaj. )7 Olay ) a3

be generalized in order to evaluate any field correlation _ R

which is of interest. In fact, anyt-ordered moment According to the law of large numbef approachegO) in
{a™Ma"*dy | with arbitraryt, can be written in terms of a the limit of infinite number of sampling data, whereas for a
finite number ofs-ordered moment by means of the formula finite sample we have a confidence inter@it 50, with

[16] 50 given by

n

(d+n)!
thaon+dy
f@ma =2

n\[s—t\" K - _
)(S—> {aThan*kl, 60= Ed We(aj,a)).72O](a;,a;)— 02 (14)
j e data

k 2
(7
. ] ) Some examples of the present reconstruction procedure can

where s is also arbitrary. The expectation value of any pe given by means of numerical simulations of realistic het-
t-ordered moment can thus be evaluated by an average ovgfodyne detection. In FidL | report the results for the mean
the different ordered distributiows(«, ). The special case photon numbexf) determination at different values of the

in which the parametersands are chosen to be=1 and  guantum efficiency for coherent states of different ampli-
s=1—27"'is of interest as it allows one to obtain the nor- yydes. Figure &) shows the results from heterodyne detec-
mal ordered field correlation@™a""“) in terms of a finite  tion and Fig. 1b) those from a direct photodetection. The
number of heterodyneneasured momenta™a**?),. We  two determinations are also compared in Fig)1in making

have such a comparison the same number of repeated measure-
n | ek ments on the field have to be considered. In a scheni¢ of
(afnan+dy= (d+mt/n _ E repeated measurements of the quantitythe accuracysx
K=o (d+k)!\ k 7 rescales agx=N~ Y2 The proportionality constant generally

& depends on the kind of detection. If the outcormeare dis-
da — k+d—k tributed around the true valueaccording to the probability
Xf T Wiz sle,a)a™at,  (8) p(x|x), the error for N repeated measurements is
always bounded by the CramRao inequality [19]

or in a more compact form ox=(FN)"Y2 F being the Fisher information

(=)t [ o F=[dx[d,p(x|x)]%/p(x]x). For Gaussian distributed data

(afnan+dy= - 'f_“wl_z (@)L a]?), one hasF=1/0?, with ¢ the variance of the distribution,
Uj ™ K and the lower bound for precision is achieved. In practical

9 situations, in order to evaluate the precisiéx, one takes
advantage of the central limit theorefh9], which assures
that the partial average over a block Nf data is always
Gaussian distributed around the global average over many
: blocks. Thus one evaluates precision by dividing the en-
dering semble of data into subensembles, and then calculates the

rms deviation of subensemble averages with respect to the

eno=">" (e~ L)karkak/ki, (10)  global one.

k From Fig. 1 it is apparent that the method works also for
low efficiency of the photodetectors even though the results
are slightly more noisy than those from direct detection.

‘ However, this level of introduced noise can be considered as
) Le(7]al?). admissible in view of the further qurmatlon available from
the same data sample. Moreover, it has to be notiseé
(11 Ref.[7]) that tomographic determination 6f) introduces a

where Lﬁ(x) denotes Laguerre polynomials. An interesting
application of Eq(9) lies in the evaluation of the expectation
value (%) of the shift operator. Starting from normal or-

we have, in fact,

1—¢'?
7

. d?a i
<e|n¢>:fTW12,]1(a,a)k§=:o<
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FIG. 1. Mean photon number determination by simulated heterodyne and direct detections for different values of the quantum efficiency
7. In (a) the results for three different coherent states of amplitaeel (circle), «=2 (square, and =3 (triangle are reported for
heterodyne detections. i) are reported the results from direct detections with the same number of repeated measurements on the same
coherent states. The confidence intervals of both the determinations are evaluated as usual, by dividing the whole sathgiéadh10
subensembles and then calculating rms deviation with respect to the global a®zagext In (c) the accuracy of the two kinds of
determination is compared. The noiée dB) added by heterodyne detection is shown as the ratio between the corresponding confidence
intervals.

very large amount of noise, even for unit quantum efficiencytribution. The distribution in Eq.15) does not coincide
Figure 2 illustrates the application in recovering field fluc- (even for »=1) with the canonical phase distribution
tuations on a squeezed state and a number state for differelrit0,20
values of the quantum efficiency.

Some further considerations are in order regarding the

determination of the phase. Heterodyne detection, in fact, is il i - i(n—m)e
by itself a phase detector as the marginal distribution P(¢)=(e"’ple'")= 277% € Pn,ms (16)
_[” 6 i and it is generally broadened relative ({t6). In Fig. 3 the
Ps(¢) fo pdp W(pe'®,pe ) (19 phase distribution obtained for a squeezed vacuum is re-

ported for experiments carried out with different values of

the quantum efficiency. The distributions broaden when the
represents a phase distribution of the measured [std{20. quantum efficiency decreases but the crucial information
We have thus at disposal not only the mean value of thebout phase bifurcatiof21] is also not lost for very ineffi-
phase and the fluctuations but also the whole probability diseient detectors.
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— Ill. DENSITY MATRIX RECONSTRUCTION

T ¥ T T T
| + R NN Let us now deal with the completeness of the information
| ] coming from heterodyne detection. Is it possible, as an ex-
b4 % o o © oo oo oo ample, to determine the whole number distribution? The ma-
I ] trix elementsp, . n in the Fock representation are the ex-
o I 1 pectation values of the generalized projectors
gel 1
| Bonei= k= 200l (a7
=[n}{n+k|l= .
n,n+k \/ml (n+d)!
A A a6 2 6 6 6 & 2 2
o 1 L t L 1 " 1 " 1 . i .
0.2 0.4 0.6 0.8 1 Using the Louisell expansion of the vacuyav]
n
— o (el
FIG. 2. Simulated determination of field fluctuations, for |0)0|= lim >, —a'PaP, (18
¢=0,m/2. Results for a squeezed state of total enefgy=1 e PP

equally distributed between coherent amplitude and squeezing and a
number statep=|1){(1| are reported. The upper and the lower R
curves are for the squeezed stage<(0,77/2, respectively, the cen-  we can writeP,, ;. in terms of normal ordered moments
tral one the result for the number stdisotropic field distribution
Samples of 10data are used and the confidence intervals are evalu-
in Fig. 1. “ —g)P
ated as in Fig B 1 iim > (—&) afn+pgn+prk
’ ntin+ky!, - !

The results obtained until now can be summarized in the (19
following assertions{i) starting from heterodyne detection
many properties of the measured state can be determined at
one go;(ii) this determination is slightly more noisy than the Equation(19) is suitable to apply to Eq7). After a straight-
corresponding ones from direct measurements of the sanferward calculation we get the reconstruction form(8afor
guantities one by one, even for unit quantum efficiency ofthe matrix elements
the photodetectors. However, this behavior is not unexpected
as heterodyne detection involves the joint measurement of
noncommuting observables, and thus the unavoidable addi- w q
tion of noise by first principle§22,23. This is not the case =(—)" n! D E a
of quantum tomography where each homodyne measuremeft* k" (n+k)!g=h \ »/ \n
is independently performed and noise is introduced by data

o d?a —_
processing itself. XJ7W1,27]—1(a,a)akLla(77|a|2). 20

Unfortunately, Eq(20) is not suitable for statistical sampling
as the interchange of integration and summation is not math-
ematically allowed [24]. The analytical expression of
Wy(a,a) is needed and thus some smoothing procedure on
sampled data is required, unavoidably introducing s@ne
priori hypothesis on the state under examinafi®®]. How-
ever, Eq.(20) is far from being a purely formal tool. In many
situations, in fact, one has some information about the con-
sidered state and thus some suggestions on parametrizing
Wigner functions. Moreover, the distributioM(«a,a) for
s< —1 are smoothed functions by themsely&8] and gen-
erally do not exhibit large or fast oscillations. Therefore we
may expect that the smoothing will not lead to a dramatic
loss of information and, at the same time, that it will not
introduce fake information. The completeness of information
coming from heterodyne detection cannot, anyhow, be
FIG. 3. Phase distribution from heterodyne detection for aclaimed in a general way.
squeezed vacuum with squeezing photéis= 1. The distributions The reconstruction of the entire density matfir the
are obtained with a sample of 1@ata for =0.25,0.5,0.75,1.0. Fock representatiorand thus a complete description of the
Broader distributions correspond to lower valuesyof state are possible for the special case of states with a finite

1000

Absolute Frequency
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TABLE |. Reconstructed density matrix along with the confidence intervals for the |$&¢%e(1/\/§)(|0>+i|2>). The experiment has
been simulated for quantum efficieney=0.9 using a sample of falata.

0.502+0.024 (0.004-i0.003)+ (0.022+i0.021) (0.00%i0.493)* (0.037+i0.038)
(0.004+i0.002)+ (0.021+10.022) —0.003+0.053 (—0.003+i0.002)*+ (0.018+i0.018)
(0.001+i0.493)+ (0.037-10.038)  (—0.003-i0.002)+ (0.018+i0.018) 0.506-0.031

—0.004£0.063

number of moments different from zero. Examples of suchscheme is transparent, however, it is recursive from above,
states are provided by finite superpositions of number statesamely, it determines the coefficiengs, from the highest
indexN to the lowest. In addition, the valu¢ of the nonzero
N components of the wave function has to be known in ad-
| )= > Wl N). (21)  vance. On the contrary, Eq?2) allows recovery of the ma-
n=0 trix elementsp,, ,, one by oneas an average over the experi-
mental distribution and the value df is not needed by the

The latter can be produced in a different manner in tgyh- aIgor_ithm. Bialynicka-Birula _and Bialynicki—BirgIa in30]
cavities[26,27 and also by a special nonlinear interaction considered the reconstruction problem starting from the

[28]. If the momentsa™a™ vanish forn or m beyond a knowledge of the photon number and ph&Begg-Barnejt

certain value the series in E€L9) are actually truncated and distributions. They suggested two different algorithms based
Eq. (20) becomes suitable to a statistical sampling on recursive iterations of fast Fourier transform from the

number representation to the phase domain. Their algorithms
work only for pure states whereas the present one can also be

(=" n! d?w — applied in the general case. In fact, the only requirement for
Prvkn =i mf 7 Wigpia,a)a writing Eq. (20) in the sampling-suited forn22) is that the

measured state possesses only a finite number of moments

1\P ‘ ) different from zero. This condition can obviously be fulfilled

P Lp+n(mlel®). (22 also by finite mixtures. It must also to be mentioned that a
detection scheme for the Pegg-Barnett phase distribution has
not been devised yet. Thus the phase distribution needed by

The value ofN has to be chosen large enough to ensure théhe algorithms in[30] can only be inferred by other state

cancellation of any momera™*iaN*i j j=0,1,.... In Mmeasurement schemes such as homodyning or quantum to-

practice one can start with a large valueNofand then opti- ~Mography.

mize it by means of some stability criterion. In any case the Apart from the above considerations | consider the reli-

precise value oN is not needed by the algorithm. In Table | ability of the present method in evaluating the confidence

| report the results of this procedure when applied to the statéterval on matrix element determinations as its main advan-
tage.

p+n
p

N—n—k

X
0

p

1
|y = E(|0>+ i12)), (23 IV. CONCLUSION

In conclusion, quantum-state measurement by heterodyne

using photodetectors with an overall quantum efficiency®" double homodyne detectors has been shown to provide a

equal to7=0.9. The reliability of the method is apparent. large amount o.f.quqe precise information. It cannot lead to a

The same degree of precision can be obtained with |Oweq:ompletg specification qf the measured state due to the sin-

efficiency using a larger sample. gularity in somes orderlng 6<—1) of operators. To_ the
The problem of reconstructing the density matrix of field knowledge of t_he author it represents,_at the curr_ent time, t_he

states with finite number occupation has been consideredest compromise between the conflicting necessity of precise

also by other authors, in particular in the context of the so2nd complete state measurement.

called Pauli phase retrieval problem, where two experimen-

tally determined probability distributions are needed. Or-

lowsky and Paul proposed j29] an algorithm to recover the ACKNOWLEDGMENTS

entire wave function(21), assuming that the moduli of the
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