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The determination of the quantum properties of a single-mode radiation field by heterodyne or double
homodyne detection is studied. The realistic case of not fully efficient photodetectors is considered. It is shown
that a large amount of quitepreciseinformation is available, whereas the completeness of such information is
also discussed. Some examples are given and the special case of states expressed as a finite superposition of
number states is considered in some detail.
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I. INTRODUCTION

In order to get information about a quantum state one has
to measure some observable. A question immediately arises:
is this information complete? Namely, does it fully specify
the quantum state under examination? The answer is gener-
ally negative: the measurement of only one observable
shows up only an aspect of a physical system whereas a
complete description requires a deeper inspection. However,
the measurement of several different observables could re-
quire considerable effort. Therefore it is a matter of interest
to compare the simplicity and the feasibility of a measure-
ment, or a set of measurements, with the provided amount of
information. In addition, one has to weigh up the precision of
such information.

The complete description of a quantum state is contained
in the density operatorr̂, or for a pure state in the wave
function. Therefore a measurement leading to the density
matrix in some representation provides, in principle, all the
knowable information about the measured state. It has been
shown theoretically@1# that the Wigner functionW0(a,ā)
@2# of a field mode can be reconstructed starting from the
homodyne measurements of a continuous setwP@2p,p) of
field quadraturesx̂w51/2(ae2 iw1a†eiw). Later this proce-
dure has been applied to coherent and squeezed states@3#
using a finite set of phasesw i , i51, . . . ,27, upon a smooth-
ing of experimental data. More recently a procedure suitable
to finite sampling has been suggested for recovering matrix
elements in the Fock representation@4# and the latest devel-
opments have extended the method to data coming from in-
efficient detectors@5#. These various procedures, unitarily
referred to asquantum tomography, provide nice and pow-
erful tools for investigating the quantum properties of a ra-
diation field leading to the maximum information achievable
on the measured state. However, they require the detection of
many field quadraturesx̂w j

, j5,1, . . . ,N and thus a lot of
repeated measurements on the state under examination. A
systematic approach to precision of quantum tomography is

in progress@6#; however, a preliminary study@7# has indi-
cated that its determination of some field properties can be
very noisy relative to the direct measurements of the same
quantities.

II. REALISTIC HETERODYNE DETECTION

In this paper a different approach to quantum-state mea-
surement will be investigated. The crucial remark is that the
density matrix in the coherent state representation^aur̂ua& is
a positive definite function and thus can be directly measured
for any quantum state of radiation field. Indeed, it is known
that the so-called HusimiQ functionW21(a,ā)5^aur̂ua&
represents the outcome probability distribution@8–10# of
both the heterodyne@11# and the double homodyne@12# de-
tection scheme when equipped with ideal photodetectors. On
the other hand, its smoothed versions,

Ws~a,ā !5E d2b

p
W21~b,b̄ ! expS 22

ua2bu2

11s D , ~1!

emerge from realistic devices in which not fully efficient
detectors are involved. The parameters depends on quantum
efficiency as@13,14#

s5122h21. ~2!

Starting from heterodyne, or equivalently from double ho-
modyne@15#, detection we can evaluate some quantityO of
interest as an average over the experimental distribution

O5^Ô&5E d2a

p
Ws~a,ā !F s@Ô#~a,ā !, ~3!

whereF s@Ô#(a,ā) is a nonoperatorial function related to
the s ordering, in the boson operator expansion, of the cor-
responding observableÔ @16#. Denoting by $Ô%s the
s-ordered form of an operator we have, for example,

a†a5$a†a%s1
1

2
~s21!,

a†2a25$a†2a2%s12~s21!$a†a%s1
1

2
~s21!2, ~4!
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and thus

F s@ n̂#~a,ā !5uau21
1

2
~s21!,

F s@n
2̂#~a,ā !5uau41~2s21!uau21

1

2
s~s21!, ~5!

for the mean photon number and for the number fluctuations.
Similarly, we can investigate the squeezing properties of the
examined state by means of thes ordering of the field
quadrature fluctuations

F s@xŵ
2] ~a,ā !5

1

4
@a2e22iw1ā2e2iw12uau21s#, ~6!

and also evaluate the uncertainty product. This procedure can
be generalized in order to evaluate any field correlation
which is of interest. In fact, anyt-ordered moment
$a†nan1d% t , with arbitrary t, can be written in terms of a
finite number ofs-ordered moment by means of the formula
@16#

$a†nan1d% t5 (
k50

n
~d1n!!

~d1k!! S nkD S s2t

2 D n2k

$a†nan1k%s ,

~7!

where s is also arbitrary. The expectation value of any
t-ordered moment can thus be evaluated by an average over
the different ordered distributionWs(a,ā). The special case
in which the parameterst ands are chosen to bet51 and
s5122h21 is of interest as it allows one to obtain the nor-
mal ordered field correlationŝa†nan1d& in terms of a finite
number of heterodynemeasured momentŝa†kak1d&h . We
have

^a†nan1d&5 (
k50

n
~d1n!!

~d1k!! S nkD S 2
1

h D n2k

3E d2a

p
W122h21~a,ā !ak1dāk, ~8!

or in a more compact form

^a†nan1d&5
~2 !nn!

hn E d2a

p
W122h21~a,ā !adLn

d~huau2!,

~9!

whereLn
d(x) denotes Laguerre polynomials. An interesting

application of Eq.~9! lies in the evaluation of the expectation
value ^ein̂f& of the shift operator. Starting from normal or-
dering

ein̂f5(
k

~eif21!ka†kak/k!, ~10!

we have, in fact,

^ein̂f&5E d2a

p
W122h21~a,ā !(

k50

` S 12eif

h D kLk~huau2!.

~11!

Then, using properties of Laguerre polynomials@18#, we ar-
rive at the formula@valid for 0<f,arccos(12h2/2)#

^ein̂f&5
h

h211eifE d2a

p
W122h21~a,ā !

3expS h~12eif!uau2

12eif2h D . ~12!

Equation~3! is also suitable for a reliable estimation of
errors in the determination of the various expectation values.
In a practical situation, in fact, one has at disposal a finite
sample ofWs(a,ā) and thus the integral in formula~3! has
to be replaced by the corresponding statistical sampling

Ō5 (
jP data

Ws~a j ,ā j !F s@Ô#~a j ,ā j !. ~13!

According to the law of large numbersŌ approacheŝÔ& in
the limit of infinite number of sampling data, whereas for a
finite sample we have a confidence intervalŌ6dO, with
dO given by

dO5A (
jP data

Ws~a j ,ā j !F s
2@Ô#~a j ,ā j !2Ō2. ~14!

Some examples of the present reconstruction procedure can
be given by means of numerical simulations of realistic het-
erodyne detection. In Fig. 1 I report the results for the mean
photon number̂ n̂& determination at different values of the
quantum efficiency for coherent states of different ampli-
tudes. Figure 1~a! shows the results from heterodyne detec-
tion and Fig. 1~b! those from a direct photodetection. The
two determinations are also compared in Fig. 1~c!. In making
such a comparison the same number of repeated measure-
ments on the field have to be considered. In a scheme ofN
repeated measurements of the quantityx, the accuracydx
rescales asdx}N21/2. The proportionality constant generally
depends on the kind of detection. If the outcomesx̄ are dis-
tributed around the true valuex according to the probability
p( x̄ux), the error for N repeated measurements is
always bounded by the Crame´r-Rao inequality @19#
dx>(FN)21/2, F being the Fisher information
F5*dx̄@]xp( x̄ux)#2/p( x̄ux). For Gaussian distributed data
one hasF51/s2, with s2 the variance of the distribution,
and the lower bound for precision is achieved. In practical
situations, in order to evaluate the precisiondx, one takes
advantage of the central limit theorem@19#, which assures
that the partial average over a block ofNb data is always
Gaussian distributed around the global average over many
blocks. Thus one evaluates precision by dividing the en-
semble of data into subensembles, and then calculates the
rms deviation of subensemble averages with respect to the
global one.

From Fig. 1 it is apparent that the method works also for
low efficiency of the photodetectors even though the results
are slightly more noisy than those from direct detection.
However, this level of introduced noise can be considered as
admissible in view of the further information available from
the same data sample. Moreover, it has to be noticed~see
Ref. @7#! that tomographic determination of^n̂& introduces a
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very large amount of noise, even for unit quantum efficiency.
Figure 2 illustrates the application in recovering field fluc-
tuations on a squeezed state and a number state for different
values of the quantum efficiency.

Some further considerations are in order regarding the
determination of the phase. Heterodyne detection, in fact, is
by itself a phase detector as the marginal distribution

Ps~f!5E
0

`

rdr Ws~reif,re2 if! ~15!

represents a phase distribution of the measured state@14,20#.
We have thus at disposal not only the mean value of the
phase and the fluctuations but also the whole probability dis-

tribution. The distribution in Eq.~15! does not coincide
~even for h51) with the canonical phase distribution
@10,20#

P~f!5^eifur̂ueif&5
1

2p(
n,m

`

ei ~n2m!frn,m , ~16!

and it is generally broadened relative to~16!. In Fig. 3 the
phase distribution obtained for a squeezed vacuum is re-
ported for experiments carried out with different values of
the quantum efficiency. The distributions broaden when the
quantum efficiency decreases but the crucial information
about phase bifurcation@21# is also not lost for very ineffi-
cient detectors.

FIG. 1. Mean photon number determination by simulated heterodyne and direct detections for different values of the quantum efficiency
h. In ~a! the results for three different coherent states of amplitudea51 ~circle!, a52 ~square!, anda53 ~triangle! are reported for
heterodyne detections. In~b! are reported the results from direct detections with the same number of repeated measurements on the same
coherent states. The confidence intervals of both the determinations are evaluated as usual, by dividing the whole sample of 105 data in
subensembles and then calculating rms deviation with respect to the global average~see text!. In ~c! the accuracy of the two kinds of
determination is compared. The noise~in dB! added by heterodyne detection is shown as the ratio between the corresponding confidence
intervals.
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The results obtained until now can be summarized in the
following assertions:~i! starting from heterodyne detection
many properties of the measured state can be determined at
one go;~ii ! this determination is slightly more noisy than the
corresponding ones from direct measurements of the same
quantities one by one, even for unit quantum efficiency of
the photodetectors. However, this behavior is not unexpected
as heterodyne detection involves the joint measurement of
noncommuting observables, and thus the unavoidable addi-
tion of noise by first principles@22,23#. This is not the case
of quantum tomography where each homodyne measurement
is independently performed and noise is introduced by data
processing itself.

III. DENSITY MATRIX RECONSTRUCTION

Let us now deal with the completeness of the information
coming from heterodyne detection. Is it possible, as an ex-
ample, to determine the whole number distribution? The ma-
trix elementsrn1k,n in the Fock representation are the ex-
pectation values of the generalized projectors

P̂n,n1k5un&^n1ku5
a†n

An!
u0&^0u

an1d

A~n1d!!
. ~17!

Using the Louisell expansion of the vacuum@17#

u0&^0u5 lim
«→12

(
p

~2«!p

p!
a†pap, ~18!

we can writeP̂n,n1k in terms of normal ordered moments

P̂n,n1k5
1

An! ~n1k!!
lim

«→12
(
p

~2«!p

p!
a†n1pan1p1k.

~19!

Equation~19! is suitable to apply to Eq.~7!. After a straight-
forward calculation we get the reconstruction formula~3! for
the matrix elements

rn1k,n5~2 !nA n!

~n1k!!(q5n

` S 1h D qS qnD
3E d2a

p
W122h21~a,ā !akLq

k~huau2!. ~20!

Unfortunately, Eq.~20! is not suitable for statistical sampling
as the interchange of integration and summation is not math-
ematically allowed @24#. The analytical expression of
Ws(a,ā) is needed and thus some smoothing procedure on
sampled data is required, unavoidably introducing somea
priori hypothesis on the state under examination@25#. How-
ever, Eq.~20! is far from being a purely formal tool. In many
situations, in fact, one has some information about the con-
sidered state and thus some suggestions on parametrizing
Wigner functions. Moreover, the distributionsWs(a,ā) for
s<21 are smoothed functions by themselves@16# and gen-
erally do not exhibit large or fast oscillations. Therefore we
may expect that the smoothing will not lead to a dramatic
loss of information and, at the same time, that it will not
introduce fake information. The completeness of information
coming from heterodyne detection cannot, anyhow, be
claimed in a general way.

The reconstruction of the entire density matrix~in the
Fock representation! and thus a complete description of the
state are possible for the special case of states with a finite

FIG. 2. Simulated determination of field fluctuationsDxw
2 for

w50,p/2. Results for a squeezed state of total energy^n̂&51
equally distributed between coherent amplitude and squeezing and a
number stater̂5u1&^1u are reported. The upper and the lower
curves are for the squeezed state (w50,p/2, respectively!, the cen-
tral one the result for the number state~isotropic field distribution!.
Samples of 105 data are used and the confidence intervals are evalu-
ated as in Fig. 1.

FIG. 3. Phase distribution from heterodyne detection for a
squeezed vacuum with squeezing photons^n̂&51. The distributions
are obtained with a sample of 105 data forh50.25,0.5,0.75,1.0.
Broader distributions correspond to lower values ofh.
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number of moments different from zero. Examples of such
states are provided by finite superpositions of number states

uc&5 (
n50

N

cnun&. ~21!

The latter can be produced in a different manner in high-Q
cavities @26,27# and also by a special nonlinear interaction
@28#. If the momentsa†nam vanish for n or m beyond a
certain value the series in Eq.~19! are actually truncated and
Eq. ~20! becomes suitable to a statistical sampling

rn1k,n5
~2 !n

hn A n!

~n1k!! E d2a

p
W122h21~a,ā !ak

3 (
p50

N2n2k S p1n

p D S 1h D pLp1n
k ~huau2!. ~22!

The value ofN has to be chosen large enough to ensure the
cancellation of any momenta†N1 jaN1 i , i , j50,1, . . . . In
practice one can start with a large value ofN and then opti-
mize it by means of some stability criterion. In any case the
precise value ofN is not needed by the algorithm. In Table I
I report the results of this procedure when applied to the state

uc&5
1

A2
~ u0&1 i u2&), ~23!

using photodetectors with an overall quantum efficiency
equal toh50.9. The reliability of the method is apparent.
The same degree of precision can be obtained with lower
efficiency using a larger sample.

The problem of reconstructing the density matrix of field
states with finite number occupation has been considered
also by other authors, in particular in the context of the so-
called Pauli phase retrieval problem, where two experimen-
tally determined probability distributions are needed. Or-
lowsky and Paul proposed in@29# an algorithm to recover the
entire wave function~21!, assuming that the moduli of the
wave function are known in the position and momentum
representation. Their method involves solving blocks of non-
linear equations after a decomposition of the wave function
into Hermite polynomials. The resulting phase retrieval

scheme is transparent, however, it is recursive from above,
namely, it determines the coefficientscn from the highest
indexN to the lowest. In addition, the valueN of the nonzero
components of the wave function has to be known in ad-
vance. On the contrary, Eq.~22! allows recovery of the ma-
trix elementsrn,m one by oneas an average over the experi-
mental distribution and the value ofN is not needed by the
algorithm. Bialynicka-Birula and Bialynicki-Birula in@30#
considered the reconstruction problem starting from the
knowledge of the photon number and phase~Pegg-Barnett!
distributions. They suggested two different algorithms based
on recursive iterations of fast Fourier transform from the
number representation to the phase domain. Their algorithms
work only for pure states whereas the present one can also be
applied in the general case. In fact, the only requirement for
writing Eq. ~20! in the sampling-suited form~22! is that the
measured state possesses only a finite number of moments
different from zero. This condition can obviously be fulfilled
also by finite mixtures. It must also to be mentioned that a
detection scheme for the Pegg-Barnett phase distribution has
not been devised yet. Thus the phase distribution needed by
the algorithms in@30# can only be inferred by other state
measurement schemes such as homodyning or quantum to-
mography.

Apart from the above considerations I consider the reli-
ability of the present method in evaluating the confidence
interval on matrix element determinations as its main advan-
tage.

IV. CONCLUSION

In conclusion, quantum-state measurement by heterodyne
or double homodyne detectors has been shown to provide a
large amount of quite precise information. It cannot lead to a
complete specification of the measured state due to the sin-
gularity in somes ordering (s<21) of operators. To the
knowledge of the author it represents, at the current time, the
best compromise between the conflicting necessity of precise
and complete state measurement.
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TABLE I. Reconstructed density matrix along with the confidence intervals for the stateuc&5(1/A2)(u0&1 i u2&). The experiment has
been simulated for quantum efficiencyh50.9 using a sample of 106 data.

0.50260.024 (0.0042 i0.003)6(0.0221 i0.021) (0.0012 i0.493)6(0.0371 i0.038)

(0.0041 i0.002)6(0.0211 i0.022) 20.00360.053 (20.0031 i0.002)6(0.0181 i0.018)

(0.0011 i0.493)6(0.0372 i0.038) (20.0032 i0.002)6(0.0181 i0.018) 0.50060.031

20.00460.063
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