
Computer Physics Communications 215 (2017) 235–245

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

GPU-accelerated algorithms for many-particle continuous-time
quantum walksI

Enrico Piccinini a,c,*, Claudia Benedetti b, Ilaria Siloi c, Matteo G.A. Paris b,d,
Paolo Bordone c,d

a Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione ‘‘Guglielmo Marconi’’ - DEI, Università di Bologna, I-40136 - Bologna, Italy
b Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 - Milano, Italy
c Dipartimento di Scienze Fisiche, Informatiche e Matematiche — FIM, Università di Modena e Reggio Emilia, I-41125 - Modena, Italy
d Centro S3, CNR-Istituto di Nanoscienze, I-41125 - Modena, Italy

a r t i c l e i n f o

Article history:
Received 2 December 2016
Received in revised form 31 January 2017
Accepted 10 February 2017
Available online 24 February 2017

Keywords:
GPU
CUDA
Continuous-time quantum walks

a b s t r a c t

Many-particle continuous-time quantum walks (CTQWs) represent a resource for several tasks in quan-
tum technology, including quantum search algorithms and universal quantum computation. In order to
design and implement CTQWs in a realistic scenario, one needs effective simulation tools for Hamiltonians
that take into account static noise and fluctuations in the lattice, i.e. Hamiltonians containing stochastic
terms. To this aim, we suggest a parallel algorithm based on the Taylor series expansion of the evolution
operator, and compare its performances with those of algorithms based on the exact diagonalization of
the Hamiltonian or a 4th order Runge–Kutta integration. We prove that both Taylor-series expansion
and Runge–Kutta algorithms are reliable and have a low computational cost, the Taylor-series expansion
showing the additional advantage of a memory allocation not depending on the precision of calculation.
Both algorithms are also highly parallelizable within the SIMT paradigm, and are thus suitable for GPGPU
computing. In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle
system over lattices of increasing dimension, showing that the speedup provided by GPU computing, with
respect to the OPENMP parallelization, lies in the range between 8x and (more than) 20x, depending on
the frequency of post-processing. GPU-accelerated codes thus allow one to overcome concerns about the
execution time, and make it possible simulations with many interacting particles on large lattices, with
the only limit of the memory available on the device.
Program summary

Program Title: cuQuWa
Licensing provisions: GNU General Public License, version 3
Program Files doi: http://dx.doi.org/10.17632/vjpnjgycdj.1
Programming language: CUDA C
Nature of problem: Evolution ofmany-particle continuous-timequantum-walks on amultidimensional

grid in a noisy environment. The submitted code is specialized for the simulation of 2-particle quantum-
walks with periodic boundary conditions.

Solution method: Taylor-series expansion of the evolution operator. The density-matrix is calculated
by averaging multiple independent realizations of the system.

External routines: cuBLAS, cuRAND
Unusual features: Simulations are run exclusively on the graphic processing unit within the CUDA en-

vironment. An undocumentedmisbehavior in the random-number generation routine (cuRAND package)
can corrupt the simulation of large systems, though no problems are reported for small and medium-size
systems. Compiling the code with the -arch=sm_30 flag for compute capability 3.5 and above fixes this
issue.

© 2017 Elsevier B.V. All rights reserved.

I This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author at: Dipartimento di Ingegneria dell’Energia Elettrica e
dell’Informazione ‘‘Guglielmo Marconi’’ — DEI, Università di Bologna, I-40136 -
Bologna, Italy

E-mail address: enrico.piccinini@unibo.it (E. Piccinini).

http://dx.doi.org/10.1016/j.cpc.2017.02.014
0010-4655/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2017.02.014
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.02.014&domain=pdf
http://dx.doi.org/10.17632/vjpnjgycdj.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:enrico.piccinini@unibo.it
http://dx.doi.org/10.1016/j.cpc.2017.02.014

236 E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245

1. Introduction

Quantum walks (QWs) are a generalization of classical ran-
dom walks to the quantum regime. They were first introduced in
the discrete-time version [1] and later as continuous-time quan-
tum walks (CTWQs) in the context of quantum computation and
decision trees [2]. In this framework, it has been shown that
single-particle quantum walk-based algorithms may outperform
the classical counterpart in terms of traveling time through a
graph. Since then, QWs, both in the continuous- and discrete-time
versions, have been the subject of extensive studies. Besides, QWs
have been generalized to many-particle quantum walks, where
the time evolution of the walkers depends upon their statistics,
indistinguishability and kind of interaction [3–7]. CTQWs on more
complex structures, e.g., complex graphs, have been also the fo-
cus of more recent analysis [8–11]. Overall, CTQWs have been
proved a useful tool in a variety of contexts, ranging from transport
through a graph [12], to quantum search algorithms [13,14], graph
isomorphism testing [15–17] and universal quantum computa-
tion [18,19].

In realistic experimental scenarios, imperfections in the fabri-
cation of the lattice may induce Anderson localization of the walk-
ers [20–23], whereas stochastic fluctuations of the environment
may come into play destroying the quantumness of the system,
i.e., the superposition of states and the phase coherence, and, in
turn, its peculiar propagation features characterized, for instance,
by the single-particle position variance [24–27]. A more realistic
description for noisy quantum walks should therefore take into
account the noise that may affect the evolution of the walkers. A
convenientway to describe noise is to introduce suitable stochastic
terms in the Hamiltonian, in order to model static or dynami-
cal fluctuations that may affect both the on-site energies or the
tunneling amplitudes of the walkers [25,26,28]. The dynamical
evolution of the QW is then obtained as the ensemble average over
all possible realizations of the stochastic processes mimicking the
noise. In practice, the ensemble average is computed numerically
as an average over a finite number of realizations: the larger the
number of the realizations, themore accurate the simulation of the
CTQW.

Evaluating the dynamics of a many-particle state over a noisy
lattice requires the numerical solution of a set of differential equa-
tions that include stochastic terms [29]. The total number of equa-
tions to solve grows rapidly as long as the numbers of nodes, parti-
cles, and realizations increase, thus making the problemmore and
more computationally demanding with longer execution times. In
fact, codes for simulating many-particle CTQWs have been devel-
oped for high-performance clusters with distributedmemory [30].
On the other hand, the evolution of computer architectures to-
wards multicore processors even in stand-alone workstations en-
abled important cuts of the execution time by introducing the
possibility of running multiple threads in parallel and spreading
the workload among cores. This possibility was boosted up by
the general purpose parallel computing architectures of modern
graphic cards (GPGPUs). In the latter, hundreds or thousands of
computational cores in the same single chip are able to process
simultaneously a very large number of data. It should also be
noted that an impressive computational power is present not
only in dedicated GPUs for high-performance computing, but also
in commodity graphic cards, which make modern workstations
suitable for numerical analyses. In order to exploit such a huge
computational power, algorithms must be first redesigned and
adapted to the SIMT (Single InstructionMultiple Thread) and SIMD
(Single Instruction Multiple Data) paradigms and translated then
into programming languages with hardware-specific subsets of
instructions. Among them, one of the most diffuse is CUDA-C, a
C extension for the Compute Unified Device Architecture (CUDA)

that represents the core component of NVIDIA GPUs. As a matter
of fact, the use of GPUs for scientific analysis, which dates back
to mid and late 2000s [31–35], dramatically boosted with a two-
digit yearly increasing rate since 2010. Just looking at the compu-
tational physics realm, several GPU-specific algorithms have been
proposed in the last three years, e.g., for stochastic differential
equations [36], molecular dynamics simulations [37,38], fluid dy-
namics [39,40], MetropolisMonte Carlo [41] simulations, quantum
Monte Carlo simulations [42], and free-energy calculations [43].

The evolution of many-particle QWs in a noisy environment
can be classified as an embarrassing parallel problem, since there is
little to none communication among realizations. Problems of this
kind take great advantage of GPGPU computing, since the solving
algorithms can be designed to run directly on the GPU in such a
way that communications are implemented via sharedmemory on
the device (graphic card) and data transfer between the host (CPU)
and the device and v.v. is limited to unavoidable input/output
operations.

In this paper, we have compared parallel algorithms for CTQWs
evolution in a noisy environment based on the exact diagonaliza-
tion of the Hamiltonian, the 4th order Runge–Kutta integration
method and the Taylor-series expansion of the evolution operator.
Solutions that avoid the diagonalization of the Hamiltonian (be-
sides those implemented in this work, see also, e.g., Refs. [44–47])
result in a lower computational cost and pave the way to highly
parallelizable algorithms within the SIMT paradigm, thus leading
to a straightforward implementation directly on the GPU.We have
then benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for
a 2-particle system over a lattice of increasing dimensions and
have shown that the GPU speedup with respect to the OPENMP
parallelization fluctuates from 8x to more than 20x, depending
on the frequency of post-processing. Thus, GPU-accelerated codes
allow the design of simulations involving many particles or large
lattices, with the only limit of the memory available on the device.

The paper is organized as follows: In Section 2 we discuss
and derive efficient algorithms for the dynamics of CTQWs; in
Section 3 we provide the main details on their implementation
and in Section 4 we compare the performances of the algorithms
on different CPUs and GPUs. Section 5 closes the paper with some
concluding remarks.

2. Algorithms for quantum walks in a noisy environment

Let us consider a q-dimensional regular lattice hostingm quan-
tum particles, and let Ni and 2ki be the numbers of mesh elements
(nodes) and of neighbors to be considered along the ith direction.
The system in hand is described by an Nm⇥Nm matrix, storing the
elements of the Hamiltonian H and by a Nm vector for the wave-
function , where N = Q

iNi is the total number of mesh nodes.
When k = P

i2ki ⌧ N , the Hamiltonian H is largely sparse with a
maximum filling factor (mk + 1) /Nm.

Since we are interested in quantum walks in a noisy environ-
ment, transitions from node ↵ to node � are ruled by a determinis-
tic (c↵�) and a stochastic (⇠↵�) parameter, independently of which
of the m particle jumps between them. Let x = {x1, x2, . . . , xm}
and y = {y1, y2, . . . , ym}, where (xs, ys) 2 [1,N], be the initial and
final sets of nodes of a transition. The deterministic coefficients
c read: cxsys = c↵,� , for any s 2 [1,m] such that xs = ↵ and
ys = � . The same applies for the stochastic coefficients ⇠ . These
terms switch between multiple values at random times during the
simulation (switching times) in order to describe (generally time-
dependent) fluctuations induced by lattice imperfections and/or
external sources of noise. Let

x̂ = x̂(x1, x2, . . . , xm) = 1 +
mX

s=1

Ns�1(xs � 1) ,

ŷ = ŷ(y1, y2, . . . , ym) = 1 +
mX

s=1

Ns�1(ys � 1) ;

E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245 237

in the position basis, the elements of the Hamiltonian Hx̂ŷ read

Hx̂ŷ =

8
>><

>>:

cx̂x̂ + ⇠x̂x̂, if ŷ = x̂
cxsys + ⇠xsys if 9(xs, ys) such that xs

is connected to ys
0 otherwise

. (1)

The termsHx̂x̂ quantify both the on-site energies of the walkers
and the interaction energy among particles, whereas the termsHx̂ŷ
with x 6= y describe the tunneling amplitudes between neighbor-
ing sites.

The interaction energy among particles is included in the di-
agonal deterministic terms cx̂x̂. A significant example concerning
the case of nearest neighbor interaction is reported in Ref. [26].
The repulsive or attractive nature of the interaction does not play
a role on the dynamics of the particles here, as also noted in [48].
The applicability and the performances of the algorithm are also
independent of the specific kind of interaction, since dealing with
a different process only changes the numerical entries on the
diagonal elements of the Hamiltonian and does not affect the
features of our code. Moreover, our code is independent on the
statistical nature of the particles, since Hamiltonian (1) conserves
the statistics. This implies that we are able to describe both bosons
and fermions dynamics by a suitable input parameter setting either
symmetrized or anti-symmetrized initial quantum state. Then, the
time evolution preserves the initial symmetry.

Hamiltonian (1) allows us to describe a large variety of phys-
ical systems, ranging from many-particle QWs [25,26], to Bose-
Hubbard and Fermi-Hubbard models [49–51], where the dynami-
cal noise has been a very challenging issue to address so far, due
to the computational complexity of the problem. The ability to
explore in a systematic and detailedway the effect of the stochastic
noise on the dynamics of many-particle systems is a relevant tool
to better describe realistic systems and to open up the road to the
full understanding of the mechanisms of transport and diffusion
over complex networks.

In particular, the decoherent dynamics of two interacting par-
ticles hopping on a one-dimensional noisy lattice has been re-
cently addressed [26], showing that accelerated codes allow one
to explore very different dynamical regimes upon tuning the ratio
between the time scale of the noise and the interaction among
the walkers. Under appropriate initial conditions, the dynamics
in the presence of fast noise (e.g., fast decaying autocorrelation
function) leads to a faster propagation with respect to the uni-
tary evolution, as detected by the variance of the single particle
probability distribution � 2(⌧); on the other hand, in the slow
noise regime (e.g., slow decaying autocorrelation function) the
system displays an Anderson-like localization, and propagation is
suppressed. Results are reported in Fig. 1. As it is apparent from
the plots, the behavior of the two fermions with next-neighbor
interaction (and starting from next-neighbor sites) is very close, at
least qualitatively, to that of two bosons with on-site interaction
(and starting from the same site).

The time evolution of the system is provided by the Schrödinger
equation

ih̄
d| i
dt

= Ĥ| i, (2)

where h̄ is the reduced Planck constant; the knowledge of | (t)i
at each time step yields the Nm ⇥ Nm density matrix ⇢(t) =
| (t)ih (t)|, which is used to evaluate the average over realiza-
tions h⇢(t)i and eventually further post-processed to calculate any
desired observable quantity.

Consequently to the introduction of random terms, in order to
avoid overweighting of outliers and produce a reliable ensemble

Fig. 1. Single particle variance � 2 as a function of the dimensionless time ⌧ for
two interacting fermions (left) and bosons (right) starting fromnext-neighbors sites
and same site, respectively. In the present case fermions interact when occupying
neighboring sites, while bosons the same site. Each panel considers a different
interaction strength V , whose value is normalized to the next-neighbors hopping
probability. The noiseless evolution (solid black line) is here compared with the
one obtained in fast noise regime (dashed red line), where the stochastic terms ⇠↵�
(↵ 6= �) switch between values ±0.9 with a switching rate (normalized to next-
neighbors hopping probability) equal to 10.0.

average it is required to run a sufficiently large number R of
simulations (a.k.a. realizations, usually R � 1000), and then av-
eraging the density matrix. In order to speed-up the calculation
and significantly cut the execution time, realizations can be run
in parallel, as they are independent from each other. However, in
the parallel execution, memory usage rapidly increases because
at least a Hamiltonian matrix Hi and a wave-function i must be
stored for each realization i. As amatter of fact, memory occupancy
may become quickly an issue when the grid size or the number of
particles increases.

238 E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245

2.1. Diagonalization of the Hamiltonian

If we suppose that the Hamiltonians Hi do not change signifi-
cantly within the time-step �t , Eq. (2) can be solved in the quasi-
static approximation. The exact time evolution of a QW is provided
by the well-known eigenproblem

(Ĥi � Ei)| ii = 0, (3)

that yields the eigenvalues "ij and the eigenvectors wij of the ith
Hamiltonian. The evolution of the wave function is then given by

| i(t + �t)i =
X

j

exp
✓
� i

h̄
"ij�t

◆
|wijihwij| i(t)i. (4)

The pseudocode for the parallel implementation is given in
Algorithm 1.

Algorithm 1 Pseudocode for solving the CTQW dynamics via diag-
onalization of the Hamiltonian matrix
1: Initialize Hamiltonians Hi
2: Initialize switching times
3: while time t < tmax do

4: for all realizations do F Begin Parallel Section
5: Diagonalize Hi ! {"ij,wij}
6: | i(t + �t)i P

j e
� i

h̄ "ij�t |wijihwij| i(t)i
7: Update switching times
8: Hi Hi(t + �t)
9: end for F End Parallel Section,⇠ O(N3m)

10: t t + �t
11: if postprocessing then

12: h⇢(t)i 1
R

P
i| i(t)ih i(t)| F ⇠ O(N2m)

13: Post-process h⇢(t)i
14: end if

15: end while

It is worth noticing that (a) this algorithm requires a large
number of computationally intensive events of the order⇠ O(N3m)
and (b) it is necessary to store Nm eigenvectors of Nm components
per realization, which is exactly the same memory space that the
dense Hamiltonian matrix would occupy. As a matter of fact, this
issue may jeopardize the efficiency of the code, even in the case of
a parallel implementation.

2.2. Integration of ordinary differential equations

Going back to the general solution of Eq. (2), we may directly
tackle the time-dependent Schrödinger equation as a set of or-
dinary differential equations for the vector | ii and solve it by
means of standard integration techniques that dispose of the cal-
culation of the eigenstates. A widely-used integration scheme is
represented by the 4th-order Runge–Kutta method.

In this case, there is no need of allocating a memory space
as large as a dense Hamiltonian would require. The Hamiltonian
topology, i.e., how nodes are connected to each other, is known
a-priori from the definition of the mesh, and holds true for all
of the realizations. In principle, up to mk + 1 non-null elements
are present in each row of the Hamiltonian. As a consequence,
each of the Nm ⇥ Nm Hamiltonians Hi can be stored as a Nm ⇥
(mk + 1) reduced matrix H̃i. A common Nm ⇥ (mk + 1) topology
matrix holding the indexes of non-null elements also adds. Since
transitions from node ↵ to node � and v.v. share the same rate, the
symmetry of H̃i allows for further memory savings down to Nm ⇥
(mk/2 + 1) elements. These relationships hold true for a regular
lattice; in the case of a general graph, where each site is connected
to a variable number of other nodes, the approach is still applicable

with the only difference that the number k of non-null elements
per row in the topology matrix is replaced by the number of
connections.

The 4th-order Runge–Kutta procedure lets the wave-functions
| ii evolve by means of the linear combination of 4 intermediate
states |K (j)

i i, j = 1 . . . 4. The evaluation of any component belong-
ing to the jth intermediate state requires only the knowledge of the
wave-function at the current time step, the reduced Hamiltonian
and the (j� 1)-th state at the indexes stored in the corresponding
row of the topology matrix. Since nodes are topologically equiva-
lent to each other, SIMD and SIMT paradigms apply, allowing for
a second degree of parallelization over nodes. The parallelizations
over realizations and over nodes can be collapsed into a larger
loop (RNm steps), which may better balance the computational
burden assigned to each computing unit. The pseudocode for the
implementation of the 4th-order Runge–Kutta method is reported
in Algorithm 2.

Algorithm 2 Pseudocode for solving the CTQW dynamics via in-
tegration of the Schrödinger equation using the 4th-order Runge–
Kutta method
1: Define Hamiltonian topology
2: Initialize reduced Hamiltonians H̃i
3: Initialize switching times
4: while time t < tmax do

5: for all realizations do F Begin Parallel/SIMT Section
6: for j = 1! 4 do

7:
⇣
| ii, |K (j�1)

i i, H̃i,
⌘
! |K (j)

i i
8: end for

9: | i(t + dt)i P4
j=1 µj|K (j)

i i
10: Check norm of | i(t + dt)i
11: Update switching times
12: H̃i H̃i(t + �t)
13: end for F End Parallel/SIMT Section,⇠ O(RNm)
14: t t + �t
15: if postprocessing then

16: h⇢(t)i 1
R

P
i| i(t)ih i(t)| F ⇠ O(RN2m)

17: Post-process h⇢(t)i
18: end if

19: end while

The scheme in Algorithm 2 requires a single loop of sums and
products; the algorithmic complexity of time evolution is thus
reduced to the order ⇠ O(RNm), with a large speedup compared
to the case discussed in Section 2.1. The most computationally
intensive routine is now represented by the calculation of the
average density-matrix, order ⇠ O(RN2m), whose number of calls
may vary depending on the desired precision of the output.

The 4th order Runge–Kutta method does not conserve the
norm, and intermediate checks and corrective actions are required
to avoid unphysical outcomes. It may also happen that the norm
of | i(t)i strongly deviates from its theoretical value within a
single time step. In order to fix this issue two strategies may be
devised. In the first one, higher-order Runge–Kutta methods can
similarly be implemented to reach a better accuracy within the
same time step, but memory allocation would grow since a larger
number of intermediate states are required. On the other hand,
one could reduce the time step in such a way that the cumulative
error does not drive the simulation far away from its correct path.
The immediate shortcoming is the increase of the running time
inversely proportional to the step reduction; nonetheless, this
solution becomes mandatory if it is not possible nor convenient to
increase the memory allocation.

E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245 239

Fig. 2. Projected execution time required for diagonalizing 106 times a symmetric
matrix in single precision with theMKL 11.2 library. The tests have been performed
on 4 CPU cores, as this configuration preliminarily proved to maximize the overall
performance.

Fig. 3. Runtime difference between Algorithms 2 and 3 on a K40 board as a function
of the post-processing rate. The 4th order Runge–Kutta method is on average 2 s
faster, which becomes a negligible time as long as the size of the problem increases.

2.3. Series expansion of the evolution operator

Algorithm 2 may be modified in order to make the memory
allocation independent of the required precision and slightly re-
duced with respect to the Runge–Kutta integration method. Upon
introducing the evolution operator Ûi(�t), such that

| i(t + �t)i = Ûi(�t)| i(t)i,
we may rewrite Eq. (2) in terms of Ûi(�t) instead of | i(t)i, i.e.,

ih̄
d Ûi(�t)

dt
= Ĥi Ûi(�t). (5)

The formal solution is given by

Ûi(�t) = exp
✓
� i

h̄
�tĤi

◆
.

Upon expanding Ûi(�t) in Taylor series we have

Ûi(�t) = 1 +
✓
� i

h̄
�tĤi

◆
+ 1

2

✓
� i

h̄
�tĤi

◆2

+ · · ·+

+ 1
n!

✓
� i

h̄
�tĤi

◆n

+ o
✓✓
� i

h̄
�tĤi

◆n◆
;

(6)

the wave-function can be recast as

| i(t + �t)i =
nX

j=0

|� (j)
i (t)i+ o

✓✓
� i

h̄
�tĤi

◆n

| i(t)i
◆

, (7)

where

|� (0)
i (t)i = | i(t)i,

and

|� (j)
i (t)i = �1

j
i
h̄
�tĤi|� (j�1)

i (t)i.
The pseudocode for the evolution of the wave-functions by

means of the expansion of the evolution operator in Taylor series is
shown in Algorithm 3. In order to understand the similarities and
the differences between the two methods, let us remind that the
coefficientsµj in the Runge–Kutta expansion are, in general, deter-
mined by an educated fitting of a formal Taylor series expansion of
the unknown functions in such a way that the truncation error is
the same. Due to the exponential form of the evolution operator,
there is also a perfect coincidence between the nth order Taylor
series expansion and the nth order Runge–Kutta method [52].
The advantage of the Taylor expansion is represented by the
progressive updating of | i(t)iwith the help of the auxiliary vector
|�i(t)i, which is overwritten at each step of the expansion loop.
Thus, thememory allocation of auxiliary variables does not depend
any more on the precision of the calculation, without increasing
the algorithmic complexity. Notice that at the same time, all the
arguments discussed in Section 2.2 about the heaviest routines
(and the influence of the time step on the results) still hold true.

Algorithm3 Pseudocode for solving the CTQWdynamics via Taylor
series expansion of the evolution operator
1: Define Hamiltonian topology
2: Initialize reduced Hamiltonians H̃i
3: Initialize switching times
4: while time t < tmax do

5: for all realizations do F Begin Parallel/SIMT Section
6: |�(0)

i (t)i | i(t)i
7: | i(t + �t)i | i(t)i
8: for j = 1! n do

9: |� (j)
i (t)i � 1

j
i
h̄�tĤi|� (j�1)

i (t)i
10: | i(t + �t)i | i(t + �t)i+ |�(j)

i (t)i
11: end for

12: Check norm of | i(t + dt)i
13: Update switching times
14: H̃i H̃i(t + �t)
15: end for F End Parallel/SIMT Section,⇠ O(RNm)
16: t t + �t
17: if postprocessing then

18: h⇢(t)i 1
R

P
i| i(t)ih i(t)| F ⇠ O(RN2m)

19: Post-process h⇢(t)i
20: end if

21: end while

3. Implementation

Algorithms 1–3 have been implemented to run on multicore
shared-memory workstations and graphic accelerators, making
use for linear algebra of the BLAS and LAPACK or the cuBLAS
and CULA [53] libraries on the host system and on the device,
respectively.Wehave not tackled any advancedmemory optimiza-
tion: as it will be discussed in Section 4, benefits brought in by
a highly-optimized code are not expected to further increase the
performance gain significantly.

240 E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Execution time of the OPENMP code for different rates of post-processing. 4(a): 1/10 time steps; 4(b): 1/25 time steps; 4(c): 1/100 time steps; 4(d): 1/250 time steps;
4(e) and 4(f): 1/1500 time steps. Panel 4(f) refers to the execution time of the single-core case.

As far as Algorithm 1 is concerned, we envisage two workflows
for parallel execution. On the one hand, would memory not be
an issue, one can split realizations among non-communicating
cores in such a way that, even though the single realization is
serialized, a number of realizations are handled at the same time.
On the other hand, it may be convenient to serialize realizations
and decrease the single-realization running time by spreading
the matrix diagonalizations and the matrix–matrix products on
multiple cooperating cores. In principle, the latter solution can be
pushed farther if a large number of computing cores are available
to the programmer, as it is the case of GPUs.

The execution times required by the diagonalization of sym-
metric matrices with single precision data (ssyev function of the
Intel MKL 11.2 library) have preliminarily been measured for 3
Intel processors, then the outcomes have been projected over 106

calls, which is the typical number of diagonalizations required for
the problem in hand. As shown in Fig. 2, a simulation may last for
years, which is a virtually infinite time for a computational physics

problem. According to CULA white-papers [53], the corresponding
routine ported to GPUs may achieve a speedup ranging from 3x to
10x, a condition that still prevents any investigation from complet-
ing within an affordable time.

Algorithms 2 and 3 have been implemented bymeans of 15 ker-
nels directly on the GPU, then the corresponding OPENMP versions
have been derived by replacing kernel invocations with loops. This
approach allows for a direct execution time comparison since the
number of floating-point operations is basically the same between
host and device execution.

The two algorithms share the same 4-stage workflow (1. ini-
tialization; 2. wave-function evolution; 3. Hamiltonian update;
4. density-matrix calculation and post-processing) and approxi-
mately 90% of the code. Contrarily to Algorithm 1, where the
limiting factor is primarily represented by time, the limiting factor
of Algorithms 2 and 3 is given by the memory required to store
the (symmetric, complex) density-matrix h⇢(t)i and the wave-
functions | i(t)i. Top level, high-performance solutions for GPGPU

E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245 241

(a) (b)

(c) (d)

(e)

Fig. 5. Execution time of the GPU code for different rates of post-processing. 5(a): 1/10 time steps; 5(b): 1/25 time steps; 5(c): 1/100 time steps; 5(d): 1/250 time steps; 5(e):
1/1500 time steps.

computing like NVIDIA Tesla K80 offer up 24 GB of GPU-RAM,
which cap the maximum size around 51000 rows (e.g., q = 2,
m = 2, N1 · N2 = 225).

4. Performance evaluation

In order to evaluate the performance of Algorithms 2 and 3
we tested the case of unidimensional, 2-particle, nearest-neighbor
CTQWs with periodic boundary conditions (i.e., q = 1, m = 2,
k = 2) and random noise on the tunneling energies. Simulations of
1500 time steps for R = 1000 realizations, with different rates for
post-processing (from 1 out of 1500 to 1 out of 10 time steps) have
been run on the following hardware:

• Intel CPU: Core i5-4570R@ 2.7 GHz and 8 GB RAM (4 cores),
OS X 10.10.5

• Intel CPU: Core i7-3770 @ 3.4 GHz and 4 GB RAM (4 cores),
64-bit Linux OS

• Intel CPU: Xeon E3-1241 v3 @ 3.5 GHz and 16 GB RAM (4
cores), 64-bit Linux OS

• NVIDIA GPU: Tesla M2050 with 3 GB VRAM, ECC enabled,
Compute capability 2.0, CUDA Toolkit 5.0

• NVIDIA GPU: Tesla K40 with 12 GB VRAM, ECC enabled,
Compute capability 3.5, CUDA Toolkit 7.5

• NVIDIA GPU: Tesla K80 with 24 GB VRAM, ECC enabled,
Compute capability 3.7, CUDA Toolkit 7.5

• NVIDIA GPU: GeForce GTX980 with 4 GB VRAM, no ECC,
Compute capability 5.2, CUDA Toolkit 6.5.

242 E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Performance comparison for different rates of post-processing. 6(a): 1/10 time steps; 6(b): 1/25 time steps; 6(c): 1/100 time steps; 6(d): 1/250 time steps; 6(e) and
6(f): 1/1500 time steps. In panel 6(f) the comparison at post-processing rate 1/5000 time steps refers to the single-core execution.

The OPENMP source code has been compiled with the Intel
C++ Compiler (ICC) version 15.0.3 for Linux and version 15.0.7
for OS X; the CUDA source code with the NVIDIA CUDA Compiler
(NVCC), with no further optimizations other than those provided
by default. Preliminary runs on GPUs proved that 256 threads per
block maximize the efficiency.

The execution times of the 4th order Runge–Kutta and of the
series expansionmethods are basically the same. Depending on the
hardware, very few seconds in favor of one algorithm or the other
are reported; differences become negligible as long as the size of
themesh increases (see Fig. 3 for tests performed on the Tesla K40).
Therefore, we proceed in the analysis only with Algorithm 3 and
assume that the same conclusions hold true also for Algorithm 2.

Fig. 4 illustrates the execution time of the Series expansion
algorithms as a function of the problem size for the three CPUs

under test. The running times for Core-i7 and Xeon E3 processors
exhibit a similar qualitative behavior: clear performance losses
around 7500 and 12500 rows, and, in general, a very similar shape
of the execution time vs. matrix size curve. These evidences are
lacking in the Core-i5 case, where the execution time steadily
increases as a function of the matrix size without any particular
gain or loss. Since the main difference between the Core-i5 and
the Core-i7/Xeon E3 cases regards the compiler and the associated
mathematical library (ICC 15.0.3 for Linux instead of ICC 15.0.7
for OS X), we attribute the underperformance to a failing code
optimization or bad memory handling specific of the compiler-
mathematical library bundle.

The analogous execution time comparison for the codes run-
ning on the four GPUs is shown in Fig. 5. All tests are completed
in less than 1 h, with running times very similar to each other.

E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245 243

(a) (b)

(c)

Fig. 7. Scaling behavior on Tesla K40 GPU 7(a) and Xeon E3 CPU 7(b) for different sizes of the mesh (from 1600 to 10000 rows), as a function of the number of realizations.
The corresponding speedup is illustrated in panel 7(c).

The only exception is represented by the Tesla M2050 board
that underperforms its competitors, though retaining a substantial
gain over any OPENMP execution. In general, the fastest runs are
achieved with the GeForce GTX980 board thanks to a superior
clock rate. Notice that GeForce boards are not certified for GPGPU
computing due to lack of ECC memory, and uncontrolled bit-flips
or erratic bits in the memory locations devoted to the storage
of | i(t)i can jeopardize the reliability of the outcomes of the
simulations. Though uncommon, this aspect deserves care and
double checks are mandatory in presence of odd results.

In order to provide an overall comparative review of the perfor-
mances, we chose the Core-i5 as the reference processor and we
calculate the simulation speedup as

Speedup = CPU or GPU-under-test execution time
Core i5-4570R 4-thread execution time

. (8)

Data are shown in Fig. 6. GPU implementation becomes efficient,
i.e., with a speedup greater than 1, roughly about 1000 rows, when
the workload starts to fill completely the computational power of
theGPUs, and the higher clock rate of the CPUdoes not compensate
any longer for the reduced number of computing units. Since a
matrix size greater than 1000 rows is a very common case for
many-particle CTQWs (i.e., a lattice as small as N ⇠ 32 for the
two-particle case), GPU computing sounds a viable and efficient
option to pursue in order to reduce the execution time down to
the minute-to-few-hour range. It is important to stress that the
simulation speedup strongly depends on the post-processing rate.
For an output generation as frequent as 1 out of 10 time steps
(panel a) a gain about 5x-7x is obtained; the gain rises up to 8x-9x
for an average post-processing rate of 1 out of 25 time steps (panel
b) and up to a 10x-13x for a moderate output generation around

1 out of 100 time steps (panel c). Panels d and e refer instead to
cases where the calculation of the density matrix is progressively
reduced down to a single time per simulation. In other words,
this is the speedup achievable for the pure evolution of the wave-
functions, which settles in the 20x range and more. By compar-
ing data reported in panels 4(e) and 4(f) of Fig. 4, the OPENMP
parallelization introduces a further 2.5-3x gain with respect to the
single-core execution, this boosting up the speedup at a minimum
gain around 60x for the pure evolution of the wave functions, as
shown in Fig. 6(f), and around 15x when a high post-processing
frequency is required.

The speedupdepends also on the number of realizations consid-
ered during parallel execution. About a+3x gain is observed when
the number of realizations increases from 500 to 5000 (Fig. 7),
irrespectively of the size of the mesh. While the GPU codes scale
with the number of realizations (as should be according to the
discussion of Sections 2.2 and 2.3), a performance loss is found
for the OPENMP implementation. For the sake of truth, we recall
that the OPENMP code was derived from the CUDA code with the
strict constraint of adhering as much as possible to it and allowing
a fair direct comparison of the computational burden, without in-
troducing any further memory or algorithmic optimizations. Since
the performance loss does not significantly depend on the size of
the problem in hand, but only to the number of realizations, this
poor behavior can primarily be ascribed to the larger number of
calls to the BLAS functions.

The influence of the post-processing rate in GPU execution is
even more evident from the shape of the curves of Fig. 5 that
changes from parabolic to linear. Though not immediate at first
sight, the same also applies for the curves of Fig. 4 and is val-
idated by numerical regression. Further information stem from

244 E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245

(a) (b)

(c) (d)

(e)

Fig. 8. Code profiling and relative weight of the four execution stages for a frequent (8(a) and 8(c)) and for the tiniest (8(b) and 8(d)) output generation rate. The pie-charts
8(e) show the time required by the sub-components of the wave-function evolution stage for matrix sizes identified by letters A and B. No substantial difference is found
between the two cases.

code profiling. We have tracked the execution time of the four
stages composing the software for the two opposite cases of very
frequent and tiny output generation on the K40 board (Fig. 8):
the initialization and the Hamiltonian update stages contribute
with a negligible running time (less then 0.3% in total), while the
wave-function evolution and the density-matrix calculation and post-
processing stages largely prevail.

The running time in case of a very limited output generation is
substantially dictated by the wave-function evolution stage, which
grows linearly with the size of the problem as discussed in Sec-
tion 2. On the contrary, in case of a frequent output generation,
the heaviest stage is represented by density-matrix calculation and
post-processing, whose influence quickly grows up and saturates
about 90% of the total execution time. Going into details, more
than the 99.3% of the time spent for post-processing is required

by the cublasCher library function that builds up the average
density-matrix h⇢(t)i. As a consequence, the peaks in panels a, b
and c of Fig. 6 are due to outperforming conditions of the cuBLAS
library. Also in the wave-function evolution stage most of the time
is spent in calls to system or library functions (see Fig. 8(e)). As
a matter of fact, even for large matrices (i.e., Nm > 10 000),
only up to approximately one third of the time is dedicated to
the series expansion, whereas the remainder is due to device-
to-device memcopy and norm evaluation (cublasScnrm2 and
cublasCsscal). Aswe already pointed out,memory optimization
for speed using, e.g., shared memory on the device, was not a goal
of the present work. From the time profiling above, we do not
believe it worth the effort: highly-optimized solutions able to cut
the execution time of the computational kernels by a factor of 2 or
3 would only bring a very modest benefit around 1 min or less.

E. Piccinini et al. / Computer Physics Communications 215 (2017) 235–245 245

To obtain a further significant speedup it is instead mandatory
to implement new kernels for linear algebra, other than those
provided by the cuBLAS library.

5. Conclusions

The availability of a simulation tool for evolving many-particle
CTQWs in a noisy environment represents a crucial prerequisite
for the investigation of quantum many-body systems and for the
implementation of effective quantum algorithms in realistic situa-
tions. In essence, the dynamics of amany-particle state over a noisy
lattice can be associated with the solution of a set of stochastic
differential equations. However, the need to post-process a large
number of data in order to achieve information for anymeasurable
quantity makes the problem much more resource-demanding. In
fact, as long as the number of particles and/or the dimensional-
ity of the domain increase, limiting factors such as the memory
occupancy and the time required to run the simulations quickly
become very challenging issues and determine whether a simu-
lation scheme can or cannot provide results within the available
computational power.

Though numerically accurate, the standard Hamiltonian diag-
onalization method is not feasible even for small systems and
alternative numerical solutions must be sought. Among them, we
have shown that the 4th order Runge–Kutta integration method
and the Taylor-series expansion of the evolution operator have a
low computational cost and provide reliable data. Moreover, they
are highly parallelizablewithin the SIMT paradigm, and this allows
the straightforward, direct implementation on GPUs.

After developing the codes, we have benchmarked four NVIDIA
GPUs and three quad-core Intel CPUs for a 2-particle system over a
lattice of increasing dimensions. GPU execution enables significant
cuts of the running time of batches of thousands of simulations
down to the minute-to-few-hour range. The speedup with respect
to OPENMP parallelization stays in the range from 8x to more
than 20x, depending on the frequency of post-processing. Our
results show that GPU-accelerated codes allow one to overcome
concerns about the execution time and make it possible to design
simulations involving many particles or large lattices, whose only
limit is dictated by the memory available on the device.

Acknowledgment

This work has been supported by EU through the Collaborative
Project QuProCS (Grant Agreement 641277), by UniMI through
the H2020 Transition Grant 15-6-3008000-625, and by UniMoRe
through FAR2014.

References

[1] Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48 (1993) 1687–1690.
[2] E. Farhi, S. Gutmann, Phys. Rev. A 58 (1998) 915–928.
[3] Y. Omar, N. Paunkovi¢, L. Sheridan, S. Bose, Phys. Rev. A 74 (2006) 042304.
[4] Y. Lahini, M. Verbin, S.D. Huber, Y. Bromberg, R. Pugatch, Y. Silberberg, Phys.

Rev. A 86 (2012) 011603.
[5] C. Benedetti, F. Buscemi, P. Bordone, Phys. Rev. A 85 (2012) 042314.
[6] L. Wang, L. Wang, Y. Zhang, Phys. Rev. A 90 (2014) 063618.
[7] X. Qin, Y. Ke, X. Guan, Z. Li, N. Andrei, C. Lee, Phys. Rev. A 90 (2014) 062301.

[8] M. Faccin, T. Johnson, J. Biamonte, S. Kais, P. Migda™, Phys. Rev. X 3 (2013)
041007.

[9] F. Caruso, A. Crespi, A.G. Ciriolo, F. Sciarrino, R. Osellame, Nat. Comm. 7 (2016)
11682.

[10] A. Schreiber, A. Gábris, P.P. Rohde, K. Laiho, M. ítefa¨ák, V. Poto£ek, C.
Hamilton, I. Jex, C. Silberhorn, Science 336 (2012) 55–58.

[11] A. Makmal, M. Tiersch, C. Ganahl, H.J. Briegel, Phys. Rev. A 93 (2016) 022322.
[12] O. Mülken, A. Blumen, Phys. Rep. 502 (2011) 37– 87.
[13] A.M. Childs, J. Goldstone, Phys. Rev. A 70 (2004) 022314.
[14] S. Chakraborty, L. Novo, A. Ambainis, Y. Omar, Phys. Rev. Lett. 116 (2016)

100501.
[15] B.L. Douglas, J.B. Wang, J. Phys. A 41 (2008) 075303.
[16] J.K. Gamble, M. Friesen, D. Zhou, R. Joynt, S.N. Coppersmith, Phys. Rev. A 81

(2010) 052313.
[17] S.D. Berry, J.B. Wang, Phys. Rev. A 83 (2011) 042317.
[18] A.M. Childs, Phys. Rev. Lett. 102 (2009) 180501.
[19] A.M. Childs, D. Gosset, Z. Webb, Science 339 (2013) 791–794.
[20] Y. Lahini, Y. Bromberg, D.N. Christodoulides, Y. Silberberg, Phys. Rev. Lett. 105

(2010) 163905.
[21] A. Schreiber, K.N. Cassemiro, V. Poto£ek, A. Gábris, I. Jex, Ch. Silberhorn, Phys.

Rev. Lett. 106 (2011) 180403.
[22] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F.

De Nicola, F. Sciarrino, P. Mataloni, Nat. Phot. 7 (2013) 322–328.
[23] J. Ghosh, Phys. Rev. A 89 (2014) 022309.
[24] F. De Nicola, L. Sansoni, A. Crespi, R. Ramponi, R. Osellame, V. Giovannetti, R.

Fazio, P. Mataloni, F. Sciarrino, Phys. Rev. A 89 (2014) 032322.
[25] C. Benedetti, F. Buscemi, P. Bordone, M.G.A. Paris, Phys. Rev. A 93 (2016)

042313.
[26] I. Siloi, C. Benedetti, E. Piccinini, J. Piilo, S. Maniscalco, M.G.A. Paris, P. Bordone,

Phys. Rev. A 95 (2017) 022106.
[27] A. Beggi, F. Buscemi, P. Bordone, Quantum Inf. Process. 15 (2016) 3711–3743.
[28] C. Lee, A. Rai, C. Noh, D.G. Angelakis, Phys. Rev. A 89 (2014) 023823.
[29] P. Hänggi, H. Thomas, Phys. Rep. 88 (1982) 207–319.
[30] J.A. Izaac, J.B. Wang, Comput. Phys. Comm. 186 (2015) 81–92.
[31] A.G. Anderson,W.A. Goddard III, P. Schröder, Comput. Phys. Comm. 177 (2007)

298–306.
[32] J.A. Anderson, C.D. Lorenz, A. Travesset, J. Comput. Phys. 227 (2008) 5342–

5359.
[33] J. Tölke, M. Krafczyk, Int. J. Comput. Fluid Dyn. 22 (2008) 443–456.
[34] T. Preis, P. Virnau, W. Paul, J.J. Schneider, J. Comput. Phys. 228 (2009) 4468–

4477.
[35] M. Januszewski, M. Kostur, Comput. Phys. Comm. 181 (2010) 183–188.
[36] J. Spiechowicz, M. Kostur, L. Machura, Comput. Phys. Comm. 191 (2015)

140–149.
[37] D. Tamascelli, F.S. Dambrosio, R. Conte, M. Ceotto, J. Chem. Phys. 140 (2014)

174109.
[38] J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse, S.C.

Glotzer, Comput. Phys. Comm. 192 (2015) 97–107.
[39] L.S. Smith, Q. Liang, Comput. & Fluids 88 (2013) 334–343.
[40] M. Januszewski, M. Kostur, Comput. Phys. Comm. 185 (2014) 2350–2368.
[41] J.A. Anderson, M.E. Irrgang, S.C. Glotzer, Comput. Phys. Comm. 204 (2016) 21–

30.
[42] Y. Lutsyshyn, Comput. Phys. Comm. 187 (2015) 162–174.
[43] M. Januszewski, A. Ptok, D. Crivelli, B. Gardas, Comput. Phys. Comm. 192 (2015)

220–227.
[44] M.D Feit, J.A Fleck Jr., A. Steiger, J. Comput. Phys. 47 (1982) 412–433.
[45] H. De Raedt, Comput. Phys. Rep. 7 (1987) 1–72.
[46] J.L. Richardson, Comput. Phys. Comm. 63 (1991) 84–94.
[47] C. Leforestier, R.H Bisseling, C. Cerjan, M.D Feit, R. Friesner, A. Guldberg, A.

Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R.
Kosloff, J. Comput. Phys. 94 (1991) 59–80.

[48] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J.H. Denschlag, A. Daley, A.
Kantian, H. Buchler, P. Zoller, Nature 441 (2006) 853.

[49] M. Valiente, D. Petrosyan, J. Phys. B 41 (2008) 161002.
[50] F. Hofmann, M. Potthoff, Phys. Rev. B 85 (2012) 205127.
[51] D. Jaksch, P. Zoller, Ann. Phys. 315 (2005) 52–79.
[52] J. Butcher, Numerical Methods for Ordinary Differential Equations, second ed.,

Wiley, Chichester, 2008.
[53] J.R. Humphrey, D.K. Price, K.E. Spagnoli, A.L. Paolini, E.J. Kelmelis, Proc. SPIE

7705 (2010) 770502.

http://refhub.elsevier.com/S0010-4655(17)30066-8/sb1
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb2
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb3
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb4
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb4
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb4
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb5
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb6
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb7
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb8
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb8
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb8
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb9
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb9
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb9
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb10
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb10
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb10
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb11
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb12
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb13
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb14
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb14
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb14
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb15
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb16
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb16
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb16
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb17
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb18
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb19
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb20
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb20
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb20
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb21
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb21
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb21
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb22
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb22
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb22
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb23
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb24
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb24
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb24
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb25
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb25
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb25
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb26
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb26
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb26
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb27
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb28
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb29
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb30
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb31
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb31
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb31
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb32
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb32
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb32
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb33
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb34
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb34
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb34
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb35
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb36
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb36
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb36
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb37
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb37
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb37
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb38
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb38
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb38
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb39
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb40
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb41
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb41
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb41
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb42
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb43
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb43
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb43
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb44
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb45
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb46
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb47
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb47
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb47
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb47
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb47
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb48
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb48
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb48
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb49
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb50
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb51
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb52
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb52
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb52
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb53
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb53
http://refhub.elsevier.com/S0010-4655(17)30066-8/sb53

	GPU-accelerated algorithms for many-particle continuous-time quantum walks
	Introduction
	Algorithms for quantum walks in a noisy environment
	Diagonalization of the Hamiltonian
	Integration of ordinary differential equations
	Series expansion of the evolution operator

	Implementation
	Performance evaluation
	Conclusions
	Acknowledgment
	References

