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In general, a pair of uncorrelated Gaussian states mixed in a beam splitter (BS) produces a correlated state at the
output. However, when the inputs are identical Gaussian states the output state is equal to the input, and no cor-
relations appear, as the interference had not taken place. On the other hand, since physical phenomena do have
observable effects, and the BS is there, a question arises on how to reveal the interference between the two beams.
We prove theoretically and demonstrate experimentally that this is possible if at least one of the two beams is
prepared in a discordant, i.e., Gaussian correlated, state with a third beam. We also apply the same technique
to reveal the erasure of polarization information. Our experiment involves thermal states and the results show that
Gaussian discordant states, even when they show a positive Glauber P-function, may be useful to achieve specific
tasks. © 2013 Optical Society of America
OCIS codes: (270.5290) Photon statistics; (270.0270) Quantum optics; (270.6570) Squeezed states.
http://dx.doi.org/10.1364/OL.38.003099

Understanding the nature of correlations among quan-
tum systems is one of the major task of current research.
Quantum correlations, in fact, play a leading role in
understanding the very foundations of quantum mechan-
ics, and represent the basic resource for the development
of quantum technologies. Different quantities and strate-
gies to discriminate whether correlations have a quantum
nature or not [1–4] have been introduced, and it has also
been pointed out [5–7] that the criteria based on the in-
formational point of view, such as the quantum discord
[8–16], are somehow incompatible with the physical ones
based on the Glauber–Sudarshan phase–space approach
[17,18]. A paradigmatic example in quantum optics is
given by a thermal equilibrium state divided at a beam
splitter (BS). This state, which is characterized by
Gaussian Wigner functions, is indeed a classical one ac-
cording to the Glauber approach, however, the bipartite
state emerging from the BS displays nonzero Gaussian
discord and, thus, from the informational point of view
it contains a nonvanishing amount of quantum correla-
tions. It is also worth noting that, for Gaussian states,
the only bipartite states with zero Gaussian discord
are the factorized ones [11,19] and that there is evidence
that the Gaussian discord could be the ultimate quantum
discord for Gaussian states [12,20]. In general, if a factor-
ized state ϱ12 ! ϱ1 ⊗ ϱ2 undergoes a unitary interaction
described by the operator U12, then the evolved state
~ϱ12 ! U12ϱ12U

†
12 may be correlated. The total amount

of correlations can be quantified by the mutual informa-
tion I "~ϱ12# ! S"~ϱ1# $ S"~ϱ2# − S"~ϱ12# ! ΔS1 $ ΔS2, where
~ϱk ! Trh"~ϱ12#, h ≠ k, S"~ϱk# ! −Tr"~ϱk ln ~ϱk# is the von
Neumann entropy and ΔSk ! S"~ϱk# − S"ϱk#. From the
above equation we can see the rise of correlation is due
to an increase of entropy between the input and output
states ϱk and ~ϱk, respectively. It is clear that if ϱk ! ~ϱk,
then I "~ϱ12# ! 0 (provided that the input is a factorized
and thus uncorrelated state). For Gaussian states, this
happens when the inputs have the same covariance ma-
trix (CM) and U12 corresponds to a bilinear, energy-
conserving interaction described by HI ∝ a†b$ ab†,

where a and b are bosonic annihilation operators,
"a; a†# ! 1 and "b; b†# ! 1.

When the initial state ϱ12 and the evolved one ~ϱ12 are
exited in the same factorized state, they cannot be dis-
criminated and no correlations appear, as the interfer-
ence of the two beams had not taken place. On the
other hand, since physical phenomena do have observ-
able effects, and the BS is there, a question arises on
how to reveal the interference between the two beams.
In this Letter, we investigate the dynamics of correlations
in this kind of system and demonstrate, both theoretically
and experimentally, that revealing interference is pos-
sible by adding an ancillary mode 3 correlated with
one of the two beams, say beam 2. More explicitly, it
is sufficient that the bipartite state ϱ23 has nonzero Gaus-
sian discord to reveal the interference between mode 1
and 2 even when the local states ϱ2 ! Tr3"ϱ23#≡ ϱ1 are
identical and the interaction at the BS is not creating
any correlations between them. Let us consider two
generic zero-amplitude Gaussian states [21] ϱk !
S%rk&νth%Nk&S†%rk&, where νth%Nk& !

P∞
n!0 %Nk&n∕%1$

Nk&n$1jnihnj is a thermal equilibrium state with Nk ther-
mal photons and S%rk& ! expf%1∕2&rk"%a†k&

2
− a2k#g is the

squeezing operator, ak being mode operators, k ! 1; 2.
The 2 × 2 CM of the state ρk can be written as
σk≡σ%N tot;k;βk&, where σ%N;β&!Diagff$%N;β&;f

−

%N;β&g,
f'%N; β& ! %1∕2& $ N '

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
βN "1$ N%2 − β&#

p
and we intro-

duced the total number of photons N tot;k ! Tr"a†kakρk#
and the squeezing fraction β, with Nk ! %1 − β&N tot;k.
We have assumed rk > 0 without loss of generality. With
this notation, β ! 0 and β ! 1 correspond to the thermal
and the squeezed vacuum state, respectively, while
σ%0; 0&≡ σ0 is the CM of the vacuum state ϱ0 ! j0ih0j.
Under the action of a BS with transmissivity τ, the
initial 4 × 4 CM Σ0 ! σ1⊕σ2 of the two-mode state

ϱ1 ⊗ ϱ2 transforms as Σ0 → Σ%out& !
"
Σ1
Σ12

Σ12
Σ2

#
, where

Σ1 ! τσ1 $ %1 − τ&σ2, Σ2 ! τσ2 $ %1 − τ&σ1, and Σ12 !
τ%1 − τ&%σ2 − σ1&. Note that Σ12 ≠ 0 denotes the presence
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of correlation between the outgoing modes. Notice that
rewriting Σ12 ! τ%1 − τ&"%σ2 − σ0& $ %σ0 − σ1&#, we can
identify two different contributions: the one,
∝ %σ0 − σ1&, which is equal to that obtained by mixing
ϱ1 with the vacuum, i.e., ϱ2 ≡ ϱ0; similarly, the other,
∝ %σ2 − σ0&, corresponds to that obtained by mixing ϱ2
with ϱ1 ≡ ϱ0. On the other hand, interference cannot
be seen as the simple sum of two contributions and this
will be exploited later on in this Letter, in order to de-
scribe the results of our second experiment. As follows
from the above analysis, if the input modes are prepared
in the same initial state, i.e., σ1 ! σ2, then the output
beams are left in an uncorrelated, factorized state with
Σ0 ≡ Σ%out& and (Σ12 ! 0). In this case, the two above-
mentioned contributions cancel each others and the in-
teraction leaves the system unchanged. In order to reveal
interference, we correlate mode 2 with a third auxiliary
mode 3, i.e., we prepare ϱ23 ≠ ϱ2 ⊗ ϱ3 such that
ϱ2 ! Tr3"ϱ23# ! ϱ1 ! ϱ. Modes 1 and 2 are still left un-
changed and uncorrelated after the interference, but
now, because of the interaction, part of the correlations
shared between modes 2 and 3 are now shared between
modes 1 and 3. This monogamy effect [22] can be seen by
looking at the evolved CM of the whole state of the three
modes. The 6 × 6 CM of the initial state ϱ123 ! ϱ1 ⊗ ϱ23
reads Σ123 ! σ1⊕

"
σ2
δT23

δ23
σ3

#
, where σk is the 2 × 2 single-

mode CM of mode k ! 1, 2, 3, σ1 ! σ2 ! σ%N; β&, and
N is the total number of photons per mode. The block
δ23 ≠ 0 contains the correlations between modes 2 and
3, which show nonzero Gaussian A- and B-discord
[23]. After mixing mode 1 and 2 at the BS we have:

Σ123 → Σ%out&
123 !

0

@
σ%N; β& 0

!!!!!!!!!!
1 − τ

p
δ23

0 σ%N; β&
!!!
τ

p
δ23!!!!!!!!!!

1 − τ
p

δ23
!!!
τ

p
δ23 σ3

1

A: (1)

The comparison between input and output CMs shows
that while modes 1 and 2 are (locally) left unchanged
and uncorrelated, both of them are now correlated with
mode 3. Furthermore, the degree of correlations between
the modes 2 and 3 is decreased (δ23 →

!!!
τ

p
δ23) for the ben-

efit of the birth of correlations between the previously
uncorrelated modes 1 and 3 (0 →

!!!!!!!!!!
1 − τ

p
δ23). It is worth

noting that the birth (reduction) of correlation between
modes 1 and 3 (modes 2 and 3) is not merely due to the
transmission (reflection) of beam 2, but it is due to its
interference at the BS: beam 2 evolves in a two-mode cor-
related state, whose modes are thus correlated with
mode 3. For the sake of clarity, we addressed only sin-
gle-mode beams, but the same results hold also in the
presence of multimode Gaussian beams since the phe-
nomenon is essentially due to the tensor product nature
of the multimode state, and to the pairwise nature of the
interaction at the BS. In the experiment, we exploit cor-
relations among three spatial multimode pseudo-thermal
beams. We produce two independent unpolarized beams
with thermal statistics addressing 1 ns laser pulses at
532 nm on two independent rotating ground glasses
R1 and R2, with inhomogeneities of approximately
1 μm of size. The two speckled beams are collimated with
two lenses (L1 and L2) of f ! 1.5 m focal length put at a

distance f from the disks. Beam 1 is directly sent to a
balanced BS while the second is further divided into
beams 2 and 3 [Fig. 1(a)]. Each beam k ! 1, 2, 3, is then
sent to the corresponding detector D k, which is a portion
of a CCD sensor. The speckled beams are imaged by
means of a lens of focal lens f I ! 25 cm on the array
of pixels. Due to the presence of the lenses L1 and L2,
each speckle on the CCD array corresponds to a spatial
mode of the pseudo-thermal beam. For each beam k we
select an area Ak collectingM spatial modes and evaluate
the intensity I%j&k !

PM
m!1ha

†
m;kam;ki for each frame j of

the CCDwhere am;k is the field operator of them-th mode
impinging on the area k. The correlation between the
beams h and k is estimated by using the second-order
correlation coefficient ch;k ! %hIkIhifr − hIhifrhIkifr&∕
%Δfr%Ih&Δfr%Ik&&, where hFifr ! %N frame&−1

PN frame
j!1 F %j& is

the average over N frame frames and Δfr%Ik&2 !
hI2kifr − hIki2fr. It is worth noting that ch;k is independent
on the number of modes M , provided that all spatial
modes of each beam have the same intensity. In order
to align the setup, and to achieve the proper mode match-
ing at the BS, we first realize the superposition of the cor-
related areas A1 and A2 by alternatively stopping beam 1
or beam 2 and maximizing the correlation c%1&1;2 and c%2&1;2

between the beams outgoing the BS. We obtain c%1&1;2 !
0.97 and c%2&1;2 ! 0.96.

We then measure the correlations coefficients c%in&1;2 ,

c%in&1;3 , and c%in&2;3 of the initial state and c%out&1;2 , c%out&1;3 , and

c%out&2;3 of the states after the mixing of beam 1 and beam
2 in the BS. Experimental results are summarized in Fig. 2
and in Table 1, where we report the measured correla-
tions between the couples of beams before and after

Fig. 1. Revealing interference by continuous variable discord-
ant states: scheme of the two experimental setups.
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Fig. 2. Correlation coefficients among the three beams before
and after mixing of modes 1 and 2. The first plot (left) shows the
evolution of the correlation between beams 1 and 2. The second
plot (right) refers to correlations among beam 1 and 2 with
beam 3.
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the interaction with the BS averaging over N frame ! 50
frames. The mean values and the confidence intervals
(at 99%) are obtained from the raw data by taking
into account the bounded nature of the correlation
coefficients ch;k [24]. As it is apparent from Fig. 2 and
from Table 1, beams 1 and 2 are not affected by the pres-
ence of the BS (the small discrepancies between the mea-
sured correlation are due to the slightly imperfect mode
matching), whereas the interference between them is re-
vealed by the dramatic change in the correlations with
mode 3.
The significant role of discord in our protocol is illus-

trated in Fig. 3, where we show the behavior of the output
correlations c%out&1;3 and c%out&2;3 as functions of the discord
between modes 2 and 3 at the input. As it is apparent
from the plots, correlations at the output are monotone
functions of the initial discord. Nonzero correlations are
created for any value of initial discord. The three lines in
both panels of Fig. 3 correspond to three different values
of the transmissivity of the BS creating discord between
modes 2 and 3. As expected from the form of the CM in
Eq. (1), increasing the transmissivity of the BS increases
the output correlations between modes 2 and 3 at the
expense of correlations between modes 1 and 3.
In order to further clarify the role of the ancillary mode

3 we now consider a different scenario, where the two
input beams do not interact at the BS. As depicted in
Fig. 1(b), this is achieved by two half-wave plates λin;1
and λin;2, which set horizontal polarization (H) for beam
1, i.e., ϱ%H&

1 , and vertical polarization (V) for beam 2, ϱ%V&2 .
We assume that mode 2 and 3 have the same polarization.
Due to the different polarizations, modes 1 and 2 no
longer interfere at the BS. Rather, they both interact with
a vacuum mode with the same polarization entering the
other port of the beam, thus giving rise to two couples of
collinear, superimposed correlated beams one with V
polarization, the other with H polarization. Overall, we
have four modes, and the two states at the output are

distinguishable. If we put two polarization filters after
the BS, we can select beams with a fixed polarization
α ! H, V , which are Gaussian states with CM given by

(we set τ ! 1∕2) Σ%H&
out ! %1∕2&

"
σ%H&
1 $σ0
σ0−σ

%H&
1

σ0−σ
%H&
1

σ%H&
1 $σ0

#
and

Σ%V&
out ! %1∕2&

"
σ%V&2 $σ0
σ%H&
2 −σ0

σ%V&2 −σ0
σ%V&2 $σ0

#
, respectively, where σ%α&k are

the same as σk, k ! 1, 2, but now we emphasize the
polarization dependence α ! H, V . Thanks to the polari-
zation, we can clearly distinguish the correlations coming
from the off diagonal ∝ %σ0 − σ%H&

1 & and ∝ %σ%V&2 − σ0&. In
this experiment, the physical action that we want to re-
veal is the erasure of the information about the polariza-
tion. This is done as in the quantum erasure protocol for
discrete variables [25]: we insert two polarization
rotators set at 45° after the BS and on the path of
mode 3. After filtering, the resulting three H-polarized
(V -polarized) modes have the same CM as in Eq. (1)
for a suitable choice of the input total energy and squeez-
ing fraction. We measured the second-order correlation
coefficient between the two beams before and after the
BS without acting on their polarizations, obtaining
c%H;V;in&
1;2 ! −0.01 and c%H;V;out&

1;2 ! 0.97, respectively. In this
case, because of the orthogonal polarizations, the beams
do not interfere each other, and each input is divided into
two correlated parties. After the interaction, all the
beams are projected to the 45° polarization basis by
means of three half-wave plates λout;k and three polarizers
Pk oriented in the H direction, k ! 1, 2, 3 [see Fig. 1(b)].
Again, we measure correlation c%out&1;2 %@45°&, c%out&1;3 %@45°&,
and c%out&2;3 %@45°& between the corresponding beams. We
then perform the same measurement projecting the
modes onto the vertical basis removing the half-wave
plates [c%out&1;2 %@V&, c%out&1;3 %@V&, and c%out&2;3 %@V&]. In fact,
the erasure of information about polarization affects cor-
relations between beam 1 and 2 (see Table 2). The cor-
relations c%H;V;out&

1;2 ! 0.97 reduce to c%out&1;2 %@45°& ! 0.10
when the information about initial polarization is lost.
Analogously, beams 2 and 3, which show high correla-
tions in V basis, c%out&2;3 %@V& ! 0.97, loose correlation in

the 45° basis [c%out&2;3 %@45°& ! 0.53], while the uncorrelated
beam 1 and 3 gain correlation. Also in this case, the use of
discordant states for beams 2 and 3 reveals the physical
action, here the erasure, performed on beams 1 and 2,
despite the fact that this cannot be done by inspecting
the involved beams only.

In summary, while a pair of uncorrelated Gaussian
states mixed in a BS produce, in general, a correlated
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Fig. 3. Output correlations c%out&1;3 (left) and c%out&2;3 (right) as a
function of the initial discord between modes 2 and 3. In both
panels the red-dashed lines denote the curves for transmissivity
equal to 15%, the solid blue lines are for the balanced case, and
the green dot-sashed lines for transmissivity 85%.

Table 2. Measured Correlations between the
Beams h, k after the BS with Polarizersa at

45° and at V

c%out&1;2 %@45°& c%out&1;3 %@45°& c%out&2;3 %@45°&

0.10"−0.25;0.46# 0.54"0.27;0.80# 0.53"0.24;0.81#
c%out&1;2 %@V& c%out&1;3 %@V& c%out&2;3 %@V&

0.97"0.87;1.00# −0.01"−0.38;0.36# 0.97"0.84;1.00#
aWithout polarization selection we have c%H;V;in&

1;2 ! −0.01"−0.38;0.35#
and c%H;V;out&

1;2 ! 0.97"0.86;1.00#, see text for details.

Table 1. Measured Correlations between Beams
h, k Before (in) and After (out) the BSa

Beams h, k c%in&h;k c%out&h;k

1, 2 0.09"−0.28;0.46# −0.01"−0.38;0.35#
1, 3 −0.01"−0.38;0.36# 0.55"0.29;0.81#
2, 3 0.97"0.85;1.00# 0.62"−0.38;0.85#

aThe subscripts report the confidence intervals at 99%.
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bipartite state, two equal Gaussian states do not. No
correlations appear at the output, and the interference
cannot be detected looking at the two beams only. We
have proved theoretically and experimentally that this
task may be pursued using an ancillary beam, prepared
in a discordant state with one of the two inferring beams,
thus confirming that discord can be consumed to encode
information that can only be accessed by coherent
quantum interactions [26]. Our experiment involves
thermal states and the results show that Gaussian dis-
cordant states, even when they show a positive Glauber
P-function, may be useful to achieve specific tasks.
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