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Abstract

We present a conditional experiment involving a parametric amplifier and an avalanche photodetector to generate highly
nonclassical states of the radiation field. The nonclassicality is robust against amplifier gain, detector efficiency and dark
counts. At the output all the generalized Wigner functions have negative values, and this is exploited in order to reveal the
nonclassicality through quantum homodyne tomography. 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Nonclassical states of light are relevant in many
fields, which ranges from fundamental tests of quan-
tum mechanics to applications in quantum communi-
cation and measurements [1]. In the last two decades
several schemes to generate different kinds of non-
classical light have been suggested, and some of them
have been implemented [2]. However, with the ex-
ception of squeezing, the generation and the detec-
tion of nonclassical light is experimentally challeng-
ing [3]. The aim of this Letter is to suggest a simple
scheme to verify the quantum nature of light in a state
as nonclassical as a Fock number state. Remarkably,
a closely related experimental realization has been re-
cently presented [4]. The main feature of our scheme
is its robustness against the possible imperfections of
the setup, such as finite amplifier gain, nonunit detec-
tor efficiency and the occurrence of dark counts.
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2. The vacuum free state

Let us consider an activeχ(2) crystal operating as
a nondegenerate parametric amplifier (NOPA, for de-
tails of the experimental setup see the end of the Let-
ter). The NOPA, pumped at frequencyωP = ωa +ωb,
couples two modesa andb (idler and signal modes)
via the medium nonlinearity. In the rotating-wave ap-
proximation, the evolution operator of the NOPA un-
der phase-matching conditions can be written asUλ =
exp[λ(a†b† − ab)], where the “gain”λ is proportional
to the interaction time, the nonlinear susceptibility, and
the pump intensity. For vacuum input, we have spon-
taneous parametric down-conversion and the output
state is given by the twin-beam

(1)|ψ〉 =
√

1− ξ2
∞∑
n=0

ξn|n〉a ⊗ |n〉b, ξ = tanhλ.

We now consider the situation in which one of the two
beams (say, modeb) is revealed by an ideal avalanche
on/off photodetector, i.e., a detector which has no
output when no photon is detected and a fixed output
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when one or more photons are detected. The action
of an on/off detector is described by the two-value
POVM,

(2)Π̂0
.=

∞∑
k=0

(1− ηA)
k|k〉〈k|, Π̂1

.= Î − Π̂0,

ηA being the quantum efficiency. The outcome “1”
(i.e., registering a “click” corresponding to one or more
incoming photons) occurs with probability

(3)P1 = 〈ψ|Î ⊗ Π̂1|ψ〉 = ηAξ
2

1− ξ2(1− ηA)

and, correspondingly, the conditional output state for
the modea is given by

(4)�̂1 = 1

P1
Trb

[|ψ〉〈ψ| Î ⊗ Π̂1
]
.

In the Fock basis we have

(5)�̂1 = 1− ξ2

P1

∞∑
k=1

ξ2k[1− (1− η)k
]|k〉〈k|.

The density matrix in Eq. (5) describes apseudo-
thermal state, where the vacuum component has been
removed by the conditional measurement. Such a state
is highly nonclassical, as also discussed in Ref. [5]. In
the limit of low gainλ � 1 the conditional statê�1
approaches the number state|1〉〈1| with one photon.
The Wigner functionW(α) of state (4) exhibits nega-
tive values for any gainλ and quantum efficiencyηA.
In particular, in the origin of the phase space we have

(6)W(0) = − 2

π

1− ξ2

1+ ξ2

1− ξ2(1− ηA)

1+ ξ2(1− ηA)
.

One can see that also the generalized Wigner func-
tion for s-orderingWs(α) = −2/(πs)

∫
d2γ W0(γ )×

exp[2/s|α − γ |2] shows negative values fors ∈
(−1,0). In particular, one has

Ws(0)= −2(1+ s)

π

(1− ξ2)

(1− s)+ ξ2(1+ s)

(7)× 1− ξ2(1− ηA)

(1− s) + ξ2(1+ s)(1− ηA)
.

If we take as a measure of nonclassicality the lowest
index s∗ for which Ws is a well-behaved probability
(regular, positive-definite) [6], Eq. (7) says that for�̂1
we haves∗ = −1, i.e.,�̂1 describes a state as nonclas-
sical as a number state.

The fact that all the generalized Wigner functions
have negative values may be exploited in order to re-
veal the nonclassicality of̂�1 through quantum homo-
dyne tomography. In fact, one has

Ws(0) = Tr
[
�̂1Ŵs

]
,

(8)Ŵs = 2

π

1

1− s

(
s + 1

s − 1

)a†a

,

and, therefore [7],

(9)Ws(0) =
∫

dx pηH (x)RηH

[
Ŵs

]
(x),

wherepηH (x) is the probability distribution of a ran-
dom phase homodyne detection (with quantum effi-
ciencyηH ) andRηH [Ŵs](x) is the tomographic kernel
for the operatorŴs , which is given by [8]

(10)RηH

[
Ŵs

]
(x) = 2ηH

π

Φ
(
1;1/2;− 2ηH x2

(1−s)ηH−1

)
(1− s)ηH − 1

,

whereΦ(a,b; z) is the confluent hypergeometric func-
tion. RηH [Ŵs ](x) is a bounded function fors < 1 −
η−1
H which represents the maximum index of the Wig-

ner functionWs(0) that can be reconstructed by ho-
modyne tomography with efficiencyηH . In Fig. 1 we
show a typical reconstruction ofWs(0) for different
values ofs, λ andηA.

3. Inclusion of dark counts

Besides quantum efficiency, i.e., lost photons, the
performance of a realistic photodetector are also de-
graded by the presence of dark-count, i.e., by “clicks”
that do not correspond to any incoming photon. In or-
der to take into account both these effects we use the
simple scheme depicted in Fig. 2.

A real photodetector is modeled as an ideal pho-
todetector (unit quantum efficiency, no dark-count)
preceded by a beam splitter (of transmissivity equal to
the quantum efficiencyη) whose second port is in an
auxiliary excited statêν, which can be a thermal state,
or a phase-averaged coherent state, depending on the
kind of background noise (a thermal or Poissonian).
If the second port of the beam splitter is the vacuum
ν̂ = |0〉〈0| we have no dark-count and the POVM of
the photodetector reduces to that of Eq. (2). For the
second port of the BS excited in a generic mixture
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Fig. 1. Reconstruction of the Wigner function in the origin of the phase-space by (Monte Carlo simulated) homodyne tomography (sample
of 5 × 104 data at random phase). Left: reconstruction ofW−0.5(0) versus gainλ, for ηA = 60% andηH = 70%. Right: reconstruction of
W−0.3(0) versus the avalanche photodetector quantum efficiencyηA, for λ = 0.5 and homodyne quantum efficiencyηH = 80%. In both plots
the solid line is the theoretical value, and the inset shows the detection probabilityP1.

Fig. 2. Model for a realistic photodetector.

ν̂ = ∑
s νss |s〉〈s| the POVM for the on/off photode-

tection is given by (̂Π1
.= Î − Π̂0)

(11)Π̂0 =
∞∑
n=0

(1− η)n
∞∑
s=0

νssη
s

(
n + s

s

)
|n〉〈n|.

The density matrices of a thermal state and a phase-
averaged coherent state (withM mean photons) are
given by

(12)ν̂T = 1

M + 1

∑
s

(
M

M + 1

)s

|s〉〈s|,

(13)ν̂P = e−M
∑
s

Ms

s! |s〉〈s|.

In order to reproduce a background noise with mean
photon numberN we consider the statêν with average
photon numberM = N/(1 − ηA). In these case we
have

(14)Π̂T
0 = 1

1+N

∑
n

(
1− ηA

1+ N

)n

|n〉〈n|,

(15)

Π̂P
0 = e−N

∑
n

[
(1− ηA)

nLn

(
−N

ηA

1− ηA

)]
|n〉〈n|,

whereT andP denotes thermal and Poissonian, re-
spectively, andLn(x) is the Laguerre polynomial of
ordern. The corresponding detection probabilities are
given by

(16)PT
1 = 1− 1− ξ2

[1+ N](1− ξ2)+ ηAξ2 ,

(17)

PP
1 = 1− 1− ξ2

1− ξ2(1− ηA)

× exp

[
−N

1− ξ2

1− ξ2(1− ηA)

]
.

For smallN the two models lead to the same detection
probability at the first order inN , PT

1 � PP
1 = P1 +

O[N2], with

(18)P1 = ηAξ
2

1− ξ2(1− ηA)
+ (1− ξ2)2

[1− ξ2(1− ηA)]2N.

In the following we will use the Poissonian back-
ground, and omit the indexP . The conditional output
state, after the observation of a click, is now given by

�̂1 = 1

P1

(
1− ξ2)
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Fig. 3. Reconstruction of the Wigner function in the origin of the phase-space by (Monte Carlo simulated) homodyne tomography (sample of
5×104 data at random phase). Left: reconstruction ofW−0.3(0) versus gainλ, for ηA = 70%,ηH = 80%, andN = 0.05. Right: reconstruction
of W−0.4(0) versus quantum efficiencyηA for λ = 0.8, ηH = 75%, andN = 0.08. In both plots the solid line is the theoretical value, and the
inset shows the detection probabilityP1. IncreasingN would generally need a larger threshold forηA.

×
∑
n

ξ2n
[
1− (1− ηA)

n

eN
Ln

(
− NηA

1− ηA

)]
(19)× |n〉〈n|

and the generalized Wigner functionWs(0) in the ori-
gin of the phase space is

Ws(0)= 2(1− ξ2)

πP1

{
1

(1− s) + ξ2(1+ s)

(20)−
exp

[−N
(1+s)+2ξ2(1+s)(1−ηA)

(1+s)+ξ2(1+s)(1−ηA)

]
(1− s)+ ξ2(1− ηA)(1+ s)

}
.

The Wigner functionW(0) for s = 0 (as well as for
s < 0) is no longer negative for all values of parame-
ters. On the other hand, there is a large range of val-
ues of the quantum efficiencyηA and the gainλ giv-
ing negativeWs(0) with s accessible by homodyne to-
mography with realistic values of the homodyne effi-
ciencyηH . In other words, the generation and the de-
tection of nonclassicality are robust also against the
occurrence of dark counts in the avalanche condition-
ing photodetector. In Fig. 3 we show a typical recon-
struction ofWs(0) for different values of parameters.

4. About the experimental implementation

In a practical implementation the NOPA consists of
a type-II phase-matched KTP crystal that is pumped

by the second harmonic of a Q-switched and mode-
locked Nd:YAG laser. Previously, such a NOPA has
been employed with parametric gains> 10 (|ξ |2 >

0.9), to generate highly quantum-correlated twin-
beams of light at 1064 nm [9]. By appropriately choos-
ing the input quantum state, a similar setup was then
used to demonstrate the production of squeezed-vacu-
um state with a high degree (5.8± 0.2 dB) of squeez-
ing [10]. In the present context, the twin-beams, which
are easily separable because of their orthogonal po-
larizations resulting from type-II phase matching, can
be separately detected; beama with a homodyne de-
tector to verify nonclassicality, and beamb with an
avalanche photodetector. The main challenge in the
present experiment is the achievement of high de-
grees of overlap (mode-matching efficiency) between
the down-converted and the LO modes. Such over-
lap is nontrivial in pulsed, traveling-wave experiments
owing to the distortion of the down-converted modes
that is caused by the spatio-temporally Gaussian pro-
file of the pump beam. The mode mismatch results
in a decreased overall quantum efficiency. However,
with suitable choice of LOs,ηH > 70% has been
achieved [11], an adequate value for the present ex-
periment (cf. Figs. 1 and 3). In the measurements on
beamb, the main challenge will be the selection of the
appropriate mode, which can be performed by exploit-
ing quantum-frequency conversion, a process that has
been previously demonstrated [12].
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5. Conclusions

In conclusion, we presented a robust experiment
to verify the quantum nature of light. This goal is
achieved by a conditional scheme, where one of the
entangled twin-beam exiting a NOPA is revealed by
an avalanche photodetector, leaving the other one in a
pseudo-thermal state with no vacuum component. The
nonclassicality, as well as its verification by homodyne
tomography, are robust against amplifier gain, detector
efficiency and dark counts.
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