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Abstract
Continuous variable remote state preparation and teleportation are analysed
using Wigner functions in phase space. We suggest a remote squeezed state
preparation scheme between two parties sharing an entangled twin beam,
where homodyne detection on one beam is used as a conditional source of
squeezing for the other beam. The scheme also works with noisy
measurements, and provides squeezing if the homodyne quantum efficiency
is larger than 50%. The phase space approach is shown to provide a
convenient framework to describe teleportation as a generalized conditional
measurement, and to evaluate relevant degrading effects, such the finite
amount of entanglement, the losses along the line and the nonunit quantum
efficiency at the sender location.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Let us consider an entangled state described by a density matrix
R on a bipartite Hilbert space H1 ⊗ H2. A measurement
performed on one subsystem reduces the other one according to
the projection postulate. Each possible outcome, say x , occurs
with probability px , and corresponds to a different conditional
state �x

px = Tr12[R�x ⊗ I2], �x = 1

px
Tr1[R�x ⊗ I2]. (1)

�x is the probability measure (POVM) of the measurement
(acting on the Hilbert space of the first subsystem) and I2 the
identity operator on the second Hilbert space. Tr12[· · ·] denotes
the full trace, whereas Tr j [· · ·], j = 1, 2, denotes partial traces.

Equation (1) shows that entanglement and conditional
measurements can be powerful resources to realize (proba-
bilistically) nonlinear dynamics that otherwise would not have
been achievable through Hamiltonian evolution in realistic
media. Since entanglement may be shared between two dis-
tant users (the sender performing the measurement, and the
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receiver observing the conditional output), the inherent nonlo-
cality of entangled states permits the remote preparation of the
conditional states �x , a protocol that may be used to exchange
quantum information between the two parties sending only
classical bits [1]. A different kind of remote state preparation
is teleportation [2], where the measurement depends on an un-
known reference state which may be recovered at the receiver
location independently of the outcome of the measurement.

In this paper, we focus our attention on continuous
variable (CV) remote state preparation. In particular, we
analyse in detail an optical scheme for remote preparation of
squeezed states by realistic (noisy) conditional homodyning.
Our analysis is based on a phase-space approach, and this is
motivated by the following factors: (i) entanglement in optical
CV quantum information processing is provided by the so-
called twin-beam (TWB) state of two field modes |λ〉〉 =√

1 − λ2
∑

p λp|p〉|p〉, 0 < λ < 1; the corresponding Wigner
function is Gaussian; (ii) trace operation corresponds to the
overlap integral [5], and the Wigner function of a (realistic)
homodyne POVM is also a Gaussian.

By Wigner calculus we will be able to derive simple
analytical formulas for conditional outputs, even in the case of
noisy measurement at the sender location. In addition, we will
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show that the phase-space approach is a convenient framework
to describe CV teleportation as a conditional measurement, and
to evaluate relevant degrading effects, such as the finite amount
of entanglement, the losses along the transmission channel and
the nonunit quantum efficiency at the sender location.

2. Conditional measurement in phase space

TWB is the maximally entangled state (for a given, finite, value
of energy) of two modes of radiation. It can be produced
either by mixing two single-mode squeezed vacuum (with
orthogonal squeezing phases) in a balanced beam splitter [3]
or, from the vacuum, by spontaneous downconversion in a
nondegenerate parametric optical amplifier (NOPA) [4]. The
evolution operator of the NOPA reads as follows: Ur =
exp[r(a†b† − ab)], where the ‘gain’ r is proportional to the
interaction time, the nonlinear susceptibility and the pump
intensity. We have λ = tanh r , whereas the number of photons
of TWB is given by N = 2 sinh2 r = 2λ2/(1 − λ2). In view
of the duality squeezing/entanglement via balanced beam-
splitter [6] the parameter r is sometimes referred to as the
squeezing parameter of the twin beam. Throughout the paper
we will refer to mode a as ‘mode 1’ and to mode b as ‘mode 2’.
The Wigner function W [TWB](x1, y1; x2, y2) of a TWB is
Gaussian, and is given by (we omit the argument)

W [TWB] = (2πσ 2
+ 2πσ 2

−)−1 exp

[
− (x1 + x2)

2

4σ 2
+

− (y1 + y2)
2

4σ 2−

− (x1 − x2)
2

4σ 2−
− (y1 − y2)

2

4σ 2
+

]
where the variances are given by

σ 2
+ = 1

4 exp{2r} σ 2
− = 1

4 exp{−2r}. (2)

Specializing equation (1) for R = |λ〉〉〈〈λ| we have

px = 〈〈λ|�x ⊗ I2|λ〉〉 = (1 − λ2) Tr1[λa†a�x ]

�x = 1

px
Tr1[|λ〉〉〈〈λ|�x ⊗ I2],

(3)

where, in the expression of px , we have already performed the
trace over the Hilbert space H2. In the following, the partial
traces in equation (3) will be evaluated as overlap integrals in
the phase space. The Wigner function of a generic operator O
is defined as the following complex Fourier transform:

W [O](α) =
∫

d2γ

π2
eαγ̄−ᾱγ Tr[O D(γ )], (4)

where α is a complex number, and D(γ ) = eγ a†−γ̄ a is the
displacement operator. The inverse transformation reads as
follows [7]:

O =
∫

d2α W [O](α)e−2|α|2 e2αa†
(−)a†ae2ᾱa. (5)

Using the Wigner function the trace between two operators can
be written as

Tr[O1 O2] = π

∫
d2β W [O1](β)W [O2](β). (6)

2.1. Remote squeezed state preparation

Let us consider the optical scheme depicted in figure 1. A
TWB is produced by spontaneous downconversion in a NOPA,
and then homodyne detection is performed on one of the two
modes, say mode 1. The POVM of the measurement, assuming
perfect detection i.e. unit quantum efficiency, is given by

�x = |x〉〈x | |x〉 =
(

2

π

)1/4

e−2x2 ∑
p

Hp(
√

2x)√
2p p!

|p〉,
(7)

the |x〉 being eigenstates of the quadrature operator x =
1/2(a + a†). The Wigner function of the POVM �x is a delta
function

W [�x ](x1) = δ(x1 − x), (8)

whereas that of the term λa†a in the first of equations (3) is
given by

(1 − λ2)W [λa†a](x1, y1) = (2πσ 2)−1 exp

{
− x2

1 + y2
1

2σ 2

}
, (9)

where the variance σ depends on the number of photons of
the TWB as σ 2 = 1

4 (1 + N). Using equations (8) and (9) it is
straightforward to evaluate the probability distribution

px =
∫ ∫ ∫ ∫

dx1 dy1 dx2 dy2W [TWB](x1, y1; x2, y2)

× W [�x ](x1)

= (1 − λ2)

∫ ∫
dx1 dy1W [λa†a](x1, y1)W [�x ](x1)

= (2πσ 2)−1/2 exp

{
− x2

2σ 2

}
, (10)

and the Wigner function of the conditional output state

W [�x ](x2, y2) =
∫ ∫

dx1 dy1W [TWB](x1, y1; x2, y2)

× W [�x ](x1)

= (2π
2
1 2π
2

2 )−1/2 exp

{
− (x2 − ax )

2

2
2
1

− y2
2

2
2
2

}
. (11)

The parameters in equation (11) are given by

ax =
√

N(N + 2)

1 + N
x


2
1 = 1

4

1

1 + N

2

2 = 1
4 (1 + N).

(12)

Equations (11) and (12) say that �x is a squeezed-coherent
minimum uncertainty state of the form �x = D(ax )S(rx)|0〉,
i.e. a state squeezed in the direction of the measured quadrature
�x2 = 1/4e−2rx , with squeezing parameter given by rx =
1/2 log(1 + N). Notice that this result is valid for any
quadrature xφ = eia†aφxe−ia†aφ , and therefore the present
scheme, by tuning the phase of the local oscillator in the
homodyne detection, is suitable for the remote preparation
of squeezed states with any desired phase of squeezing. Of
course, we have squeezing for �x if and only if N > 0, i.e. if
and only if entanglement is present.

A question arises of whether or not the remote preparation
of squeezing is possible with realistic homodyne detection,
i.e. with noisy measurement of the field quadrature. The
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Figure 1. Schematic diagram of conditional homodyne for remote
squeezed state preparation. A TWB is produced by spontaneous
downconversion in a NOPA, and then homodyne detection is
performed on one of the two modes, say mode 1. Mode 2 is
squeezed if the homodyne quantum efficiency is larger than 50%.

POVM of a homodyne detector with quantum efficiency η is a
Gaussian convolution of the ideal POVM

�xη =
∫

dy√
2πσ 2

η

exp

{
− (y − x)2

2σ 2
η

}
|y〉〈y|, (13)

with σ 2
η = 1

4 (1−η)/η [8]. The corresponding Wigner function
is given by

W [�xη](x1) = (2πσ 2
η )−1/2 exp

{
− (x1 − x)2

2σ 2
η

}
. (14)

Using (14) one evaluates the probability distribution and the
Wigner function of the conditional output state; one has

pxη = [2π(σ 2 + σ 2
η )]−1/2 exp

{
− x2

2(σ 2 + σ 2
η )

}
(15)

W [�xη](x2, y2) = (2π
2
1η2π
2

2η)
−1/2

× exp

{
− (x2 − axη)

2

2
2
1η

− y2
2

2
2
2η

}
, (16)

where

axη = η
√

N(N + 2)

1 + ηN
x 
2

1η = 1

4

1 + N(1 − η)

1 + ηN


2
2η = 1

4 (1 + N).

(17)

As a matter of fact, the conditional output �xη is no longer
a minimum uncertainty state. However, for η large enough,
it still shows squeezing in the direction individuated by the
measured quadrature, i.e. �x2 < 1/4. In order to obtain the
explicit form of the conditional output state from the Wigner
function W [�xη](x2, y2) of equation (16), we use (5), arriving
at

�xη = D(axη)S(rxη)νth S†(rxη)D†(axη), (18)

where νth = (1+nth)
−1

∑
p[nth/(1+nth)]p |p〉〈p| is a thermal

state with average number of photons given by

nth = 1

2

{√
(1 + N)[1 + N(1 − η)]

1 + ηN
− 1

}
, (19)
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Figure 2. Schematic diagram of a teleportation scheme. In the
sender area (S), one part of a TWB is mixed with a given reference
state σ (the state to be teleported) in a balanced beam splitter, and
two orthogonal quadratures are measured on the outgoing beams by
means of two homodyne detectors with local oscillators
phase-shifted by π/2. After the measurement, in the receiver area
(R), the other part of the TWB is displaced by an amount
−α = −x − iy that depends on the outcome of the measurements
itself. The overall state, averaged over the possible outcomes, is the
teleported state.

and squeezing parameter given by

rxη = 1

4
log

(1 + N)(1 + ηN)

1 + N(1 − η)
. (20)

We have squeezing in �xη if 
2
1η < 1/4, and this happens for

η > 50% independently of the actual value x of the homodyne
outcome. The values of efficiency that can be currently realized
in a quantum optical laboratory is far above the 50% limit, and
thus we conclude that conditional homodyning on TWB is a
robust scheme for the remote preparation of squeezing.

2.2. Teleportation as a generalized conditional measurement

The scheme for optical CV teleportation is depicted in figure 2.
One part of a TWB is mixed with a given reference state σ

in a balanced beam splitter, and two orthogonal quadratures
x = 1/2(c + c†), y = i/2(d† − d) are measured on the
outgoing beams by means of two homodyne detectors with
local oscillators phase shifted by π/2. The other part of the
TWB is then displaced by an amount −α = −x − iy that
depends on the outcome of the measurements, and the resulting
state (averaged over the possible outcomes) is the teleported
state.

Overall, the measurement performed on the TWB is a
generalized double homodyne detection [9, 10] (equivalent
to generalized heterodyne), which can be described by the
POVM [10, 11]

�α = D(α)σT D†(α), (21)

. . .T denoting transposition. Therefore, using equation (3), one
has
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pα = 〈〈λ|�α ⊗ I2|λ〉〉
= (1 − λ2) Tr1[λa†a D(α)σT D†(α)]

�α = 1

pα

D(−α) Tr1[|λ〉〉〈〈λ|D(α)σT D†(α) ⊗ I2]D†(−α),

(22)

while the teleported state is given by

� =
∫

d2α pα�α

=
∫

d2αD(−α) Tr1[|λ〉〉〈〈λ|D(α)σT D†(α) ⊗ I2]D†(−α).

(23)

Using Wigner functions and taking into account that for any
density matrix

W [�T](x, y) = W [�](x,−y) (24)

W [D(α)�D†(α)](x, y) = W [�](x − xα, y − yα), (25)

with xα = Re[α] and yα = Im[α], one has

W [�](x2, y2) =
∫ ∫

dx1 dy1

∫ ∫
dxα dyα

× W [TWB](x1, y1; x2 + xα, y2 + yα)

× W [σ ](x1 − xα,−y1 − yα)

=
∫ ∫

dx1 dy1W [σ ](x1, y1)

∫ ∫
dxα dyα

× W [TWB](x1 + xα,−y1 − yα; x2 + xα, y2 + yα)

=
∫ ∫

dx1 dy1

πκ2
r

exp

{
− (x1 − x2)

2 + (y1 − y2)
2

κ2
r

}
× W [σ ](x1, y1)

=
∫ ∫

dx1 dy1

πκ2
r

exp

{
− x2

1 + y2
1

κ2
r

}
× W [D(α1)σ D†(α1)](x2, y2), (26)

with α1 = x1 + iy1 and κ2
r = exp{−2r}. From equations (26)

and (5) one has that the teleported state is given by

� =
∫

d2α

πκ2
r

exp

{
−|α|2

κ2
r

}
D(α)σ D†(α), (27)

which coincides with the input state only in the limit r −→ ∞,
i.e. for infinite energy of the TWB. Equation (27) shows
that CV teleportation with a finite amount of entanglement
is equivalent to a thermalizing channel with κr thermal
photons: this results has been obtained also with other
methods [12]. However, the present Wigner approach may
be more convenient in order to include other degrading effects
such as the nonunit quantum efficiency at the sender location
and the losses along the transmission channel.

Nonunit quantum efficiency at the homodyne detectors
affects the POVM of the sender, which becomes a Gaussian
convolution of the ideal POVM �α

�αη =
∫

d2β

π�2
η

exp

{
−|α − β|2

�2
η

}
�β, (28)

with �2
η = (1 − η)/η [8]. On the other hand, losses along

the line degrade the entanglement of the TWB supporting the
teleportation. The propagation of a TWB inside optical media
can be modelled as the coupling of each part of the TWB

with a non-zero temperature reservoir. The dynamics can be
described in terms of the two-mode Master equation

d�t

dt
≡ L�t = �(1 + M)L[a]�t + �(1 + M)L[b]�t

+ �M L[a†]�t + �M L[b†]�t (29)

where �t ≡ �(t), � denotes the (equal) damping rate, M
the number of background thermal photons and L[O] is the
Lindblad superoperator L[O]�t = O�t O† − 1

2 O†O�t −
1
2�t O O† . The terms proportional to L[a] and L[b] describe
the losses, whereas the terms proportional to L[a†] and L[b†]
describe a linear phase-insensitive amplification process. This
can be due either to optical media dynamics or to thermal
hopping; in both cases no phase information is carried. Of
course, the dissipative dynamics of the two channels are
independent of each other. The Master equation (29) can
be transformed into a Fokker–Planck equation for the two-
mode Wigner function of the TWB. Using the differential
representation of the superoperators in equation (29) the
corresponding Fokker–Planck equation reads as follows:

∂τ Wτ =
[

1

8

( 2∑
j=1

∂2
x j x j

+ ∂2
y j y j

)
+

γ

2

( 2∑
j=1

∂x j x j + ∂y j y j

)]
Wτ ,

(30)
where τ denotes the rescaled time τ = (�/γ )t , and γ = 1

2M+1
the drift term. The solution of equation (30) can be written as

Wτ =
∫

dx ′
1

∫
dx ′

2

∫
dy ′

1

∫
dy ′

2 W [TWB](x ′
1, y ′

1; x ′
2, y ′

2)

×
2∏

j=1

Gτ (x j |x ′
j )Gτ (y j |y ′

j) (31)

where W [TWB] is the initial Wigner function of the TWB, and
the Green functions Gτ (x j |x ′

j ) are given by

Gτ (x j |x ′
j ) = 1√

2π D2
exp

[
− (x j − x ′

j e
− 1

2 γ τ )2

2D2

]
,

D2 = 1

4γ
(1 − e−γ τ ).

(32)

The Wigner function Wτ can be obtained by the
convolution (31), which can be easily evaluated since the initial
Wigner function is Gaussian. The form of Wτ is the same as
that of W [TWB] with the variances changed to

σ 2
+ −→ (e−γ τ σ 2

+ + D2) σ 2
− −→ (e−γ τ σ 2

− + D2). (33)

Inserting the Wigner functions of the blurred POVM �αη and
of the evolved TWB in equations (22) and (23) we obtain the
teleported state in the general case, which is still given by
equation (27), with the parameter κr now given by

κ2
r −→ e−�t−2r + (2M + 1)(1 − e−�t ) + �2

η. (34)

Equations (27) and (34) summarize all the degrading effects
on the quality of the teleported state. In the special case of
coherent state teleportation σ = |z〉〈z| (which corresponds to
original optical CV teleportation experiments [3]) the fidelity
F = 〈z|�|z〉 can be evaluated straightforwardly as the overlap
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of the Wigner functions. Since W [z](α) = 2/πe−2|α−z|2 is the
Wigner function of a coherent state we have

F = 1

1 + e−2r−�t + (1 − e−�t )(2M + 1) + (1 − η)/η
.

The condition on the fidelity, in order to assure that the scheme
is a truly nonlocal protocol, is given by F > 1/2 [3], i.e.

e−2r−�t + (1 − e−�t )(2M + 1) + (1 − η)/η < 1.

Therefore, the bound on the quantum efficiency to demonstrate
quantum teleportation is given by

η >
1

2 − e−2r−�t − (1 − e−�t )(2M + 1)
.

If the propagation induces low perturbation, i.e. if � 
 0
and M 
 0, we have η > (2 − e−2r )−1, which ranges
from 1/2 to 1, and represents the range of ‘useful’ values
for the quantum efficiency. If � and M are not negligible
then, for the same initial squeezing, we need a larger value of
the quantum efficiency. Moreover, since quantum efficiency
should be lower than or equal to unity, η � 1, we may
derive a bound on the initial squeezing that allows us to
demonstrate quantum teleportation. This reads as follows:
e−2r � (2M + 1) − 2Me�t . Remarkably, if the number of
thermal photons is zero, i.e. if the TWB is propagating in a
zero-temperature environment, then any value of the initial
squeezing parameter makes teleportation possible, of course
if the quantum efficiency at the receiver location satisfies
η � (2 − e−2r−�t − 1 + e�t )−1.

3. Conclusions

A method for the remote preparation of squeezed states by
conditional homodyning on a TWB has been suggested. The
scheme has been studied using the Wigner function, which is
the most convenient approach to describe effects of nonunit
quantum efficiency at homodyne detectors. The method is
shown to provide remote squeezing if the quantum efficiency
is larger than 50%. Since downconversion correlates pairs of

modes at any frequencies ω1 and ω2 satisfying ω1 + ω2 = ωP ,
ωP being the frequency of the pump beam, the present method
can be used to generate squeezing at frequencies where no
media for degenerate downconversion are available [13].

The phase-space approach also has been used to
analyse CV teleportation as a conditional generalized double
homodyning on a TWB. In this case also the use of Wigner
functions represents a powerful tool to evaluate the degrading
effects of finite amount of entanglement, losses along the
transmission channel, and nonunit quantum efficiency at
sender location. A bound on the value of quantum efficiency
needed to demonstrate quantum teleportation has been derived.
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