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Sampling canonical phase distribution
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We suggest a method to measure the canonical~London! phase distribution of a single-mode radiation field
by a heterodyne or a multiport homodyne detector. The technique is based on sampling the overlap between the
signal mode and a phase coherent state.@S1050-2947~99!06212-5#

PACS number~s!: 42.50.Dv, 03.65.Bz
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The quantum description of the optical phase has b
debated for a long time@1#. However, there is a genera
agreement that the probability density

P~f!5
1

2p (
n,m50

`

%nmexp$ i ~n2m!f% ~1!

represents the canonical phase distribution for the sin
mode radiation field described by the density operator%̂ @2#.
The phase probability distribution of Eq.~1! was earlier in-
troduced by London@3#, and it also represents the limitin
distribution of the truncation approach of Pegg and Barn
@4#. In addition, it has been independently derived by H
strom @5# and Holevo@6# in the more general framework o
quantum estimation theory. More recently, it has also b
shown how to properly derive probability~1! starting only
from the correspondence principle and the Born statist
rule @7#. Finally, we mention that the probability~1! repre-
sents the overlap between%̂, the state under examination
and the so-called Susskind-Glogower phase states@8#

ueif&5 (
n50

`

exp$ inf%un&. ~2!

This last characterization is at the basis of the measurem
scheme that we are going to present in the following.

As a matter of fact, only a few schemes have been s
gested for the reconstruction of the distribution~1!, through
homodyning the input signal with an unconventional ref
ence state@9# or by tomographic reconstruction using a
proximate kernels@10,11#. On the other hand, a number o
experiments have been performed@12#, which lead to phase
distributions different from the canonical one and stron
dependent on the adopted measurement scheme. This
provoked the diffuse conviction that the quantum opti
phase can be defined only in connection with its meas
ment scheme~operational approach!, whereas canonical dis
tribution ~1! plays no relevant role, since it does not corr
spond to an observable quantity. The first statemen
certainly true, and it represents a general feature of the q
tum mechanical description of measurements@13#. On the
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other hand, we will show how the canonical phase distrib
tion may be directly sampled by means of realistic measu
ment schemes.

Our scheme is based on sampling the overlap^lu%̂ul&
between the input signal%̂ and an excited phase cohere
state~PCS! @16#

ul&5A12ulu2(
n50

`

lnun&, ~3!

which, in turn, approaches a Susskind-Glogower phase s
in the limit ulu→1. Phase coherent states are defined
eigenstates of the lowering operator

Ê25 (
n50

`

un&^n11u, Ê2ul&5lul&,

with eigenvalues within the unit circleulu,1, and average
number of photons given by

Nl5^lua†aul&5
ulu2

12ulu2
. ~4!

In the following, we first describe how to sample the overl
between two quantum states by means of a two-photocur
device such a heterodyne or a multiport homodyne detec
Then, we briefly resume how phase coherent states ca
effectively synthesized, and finally, we describe the pro
dure for sampling the canonical phase distribution of Eq.~1!.

A two-photocurrent device is a detector providing t
joint measurements of two noncommuting field quadratur
Three examples of such kind of detector are available
quantum optics: heterodyne@17#, eight-port homodyne
@18,19#, and six-port homodyne detectors@20#. The above
quoted detectors are fully equivalent in probing the fie
since they all measure the real and imaginary parts of
complex photocurrent@21#

Ẑ5a1b†, ~5!

@a,a†#51 being the signal mode and@b,b†#51 an idler
mode of the detector. The complex random variable
scribed by the photocurrentẐ is the sum of two complex
random variables pertaining to the two modes, respectiv
5136 ©1999 The American Physical Society
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The random outcomeszPC for Ẑ are thus distributed in the
phase space according to the convolution

K~z,z̄!5E
C

d2b

p2
Wa~b,b̄ !Wb~z1b,z̄1b̄ !, ~6!

whereWa(z,z̄) andWb(z,z̄) are the Wigner function of the
signal and the idler, respectively. The convolution accou
for the action of the measuring apparatus, which plays
role of a quantum filter@14#. Different choices for the state o
the idler mode lead to different phase space distributio
which provide a specific type of information concerning t
signal under examination@15#.

Wigner function is defined as

W~z,z̄!5E d2g

p
Tr$%̂D̂~g!%eg z̄2ḡz, ~7!

D̂(a)5exp$aa†2āa% being the displacement operator. B
means of the operatorial identity@22#

%̂5E
C

d2a

p
Tr$%̂D̂~a!%D̂†~a!, ~8!

it is straightforward to express the phase-space distribu
K(z,z̄) of Eq. ~6! in the following trace form:

K~z,z̄!5Tra$%̂aD̂~z!%̂bD̂†~z!%5Tra$%̂aP̂~z,z̄!%. ~9!

Equation~9! contains two crucial pieces of information.
~1! The joint measurement of Re(Ẑ) and Im(Ẑ) corre-

sponds to the measurement of a generalized observab
the signal modea. This generalized observable is describ
by the probability operator measure

P̂~z,z̄!5D̂~z!%̂bD̂†~z!, ~10!

%̂b being the preparation of the idler mode.
~2! The probability of zero counts represents a direct sa

pling of the overlap between the signal and the idler stat

K~0,0!5Tra$%̂a%̂b%. ~11!

In practice, each experimental event in a heterodyne or
multiport homodyne detector consists of the simultane
detection of two photocurrents which, in turn, trace a pair
conjugated field quadratures. Each event thus correspon
a point in the complex plane representing the field amplitu
The experimental sample of the phase-space distribu
K(z,z̄) is obtained upon dividing the plane into small bins
equal areaDQ5DzD z̄5DxDy ~with z5x1 iy), and then
building a histogramHi j by counting the number of point
which fall into each bin. For large enough samples of d
one may use small bins, such that the probability of z
counts can be reliably estimated from the number of cou
falling in the central bin,H00.K(0,0)DzD z̄. Of course, this
procedure, as any finite sampling of a quantum mechan
distribution, introduces a kind of coarse graining in the ph
space. However, no systematic errors affect the estima
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procedure itself. In fact, up to second order inz,z̄, we may
express the expected number of counts in the central bin
the linear relation@23#

1

DQ
H005K~0,0!1DQ3const, ~12!

from which K(0,0) can be easily extrapolated using bins
different areas. Therefore, sampling the overlap is stat
cally robust.

Since we have a method for sampling the overlap, the
of a phase coherent state as the idler beam provides a me
to measure the canonical phase distribution. Actually, an
teraction scheme involving nonlinearx (2) media has been
suggested for the generation of a PCS@24#. The setup is
based on parametric amplification of vacuum@25# followed
by up-conversion of the resulting twin beam@26#. Remark-
ably, an experimentally achievable working regime to a
proximate the PCS with a high conversion rate has b
individuated. In particular, the state with fidelityF.90% to
the nearest PCS can be obtained up toNl515. As we will
see, this is enough for the present purposes.

By using a phase coherent state as the idler of a t
photocurrent detector we have that the probability of z
counts approaches the overlapKl(0,0)5^lu%̂ul& between
the PCS and the signal%̂ under examination:

Kl~0,0!5~12ulu2! (
nk50

`

%nkulun1kei (n2k)f, ~13!

where%nk5^nu%̂uk& are the matrix elements of the signal
the Fock basis, andf5argl is the phase of the considere
PCS. In the limit of an excited PCS, i.e., forulu→1, we have

Kl~0,0! 5
ulu→1

^eifu%̂ueif&, ~14!

and thereforeKl(0,0) approaches the canonical phase pr
ability at the phase valuef. By varying this phase we can
explore the whole 2p window and, thus, sampling the ca
nonical phase distribution. For realistic values ofulu, lower
than unity, the normalized distribution

Pulu~f!5
1

N Kl~0,0!, f5argl, ~15!

N5~12ulu2! (
n50

`

%nnulu2n, ~16!

represents an approximation to the canonical phase distr
tion. Remarkably, for low excited states, i.e., in the relev
quantum regime,Pulu(f) is a good approximation toP(f)
already for a phase coherent amplitude of aboutulu.0.95,
corresponding to a relatively small number of photonsNl

.10.
In Fig. 1 we report some examples of phase distributio

for nonclassical states, which can be obtained by samp
the overlap. As is apparent from the plots, also using a P
with relatively low number of photons and a limited numb
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of scanning phases, we have a very good reconstructio
the relevant features of the distribution.

In order to measure how close the measured distribu
Pulu(f) is to the ideal oneP(f), we consider the Hilbert
one-distance

D~ ulu!5E
2p

p

dfuP~f!2Pulu~f!u. ~17!

FIG. 1. Phase distribution~histogram! for different quantum
states of radiation, as obtained by sampling the overlap with a s
phase coherent states. The solid line denotes the canonical dis
tion. In ~a! the distribution for a coherent stateua& with uau252
average photons. In~b! for a squeezed stateua,r & with uau
5sinh2r51, and thus a total number of photons equal to^a†a&
52, and in ~c! for a superposition of three coherent statesuc&
}ua&1uaeip/3&1uaei2p/3& with a51.51 ~total average photons
^a†a&51). The distributions have been obtained by sampling
overlap with phase coherent states with an average number of
tons equal to^lua†aul&510 ~i.e., ulu.0.95); 30 PCS’s with
equally spaced phases in@2p,p) have been used.
of

n

For values ofulu close to unity we may expandPulu(f) in
terms of (12ulu2). Up to first order we have

Pulu~f!.P~f!1n̄~12ulu2!P~f!

2
~12ulu2!

2p (
n,m50

`

%nm

n1m

2
ei (n2m)f, ~18!

wheren̄5Tr $%̂a†a% is the average number of photons in th
signal under examination. Substituting Eq.~18! into Eq.~17!
and using Eq.~4!, we obtain

D~ ulu!.
n̄

Nl
E

2p

p df

4p2U (
n,m50

`

%nmei (n2m)fS 12
n1m

2n̄
D U ,

which shows that the distance between the two distributi
scales as the ratio between the intensity of the signal and
one of the ‘‘probing’’ PCS.

Let us now conclude the paper, by summarizing the p
cedure to sample the canonical phase distribution.

~1! First, one has to consider the states coming from
upconversion of twin-beam states, which in turn comes fr
parametric amplification of the vacuum. These are states
reliably approach the PCS in an experimentally achieva
working regime and for a wide range of output intensities

~2! By means of a two-photocurrent detector, the over
between a phase coherent state and the input signal is
sured. This represents a sample of the canonical phase p
ability at the valuef, wheref is the phase of the considere
PCS, namely, the classical phase of the pump of the am
fier.

~3! Then, by varying the phase of the pump, the over
with different phase coherent states can be measured,
covering the whole 2p window.

The precision with which the phase distribution is me
sured mostly depends on two parameters. These are the
ber of measured data for each ‘‘sampling the overlap’’ e
periment and the number of phases used in scanning thep
phase window. In fact, the larger the sample of data is,
smaller can be the bins used to estimateK(0,0). On the other
hand, a large number of scanning values for the phase di
bution offers the possibility of a detailed characterization
the phase properties of the signal under examination.

The present measurement scheme is feasible with
rently avalailable quantum optical technology.
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