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Abstract

We address the initial value problem for one-dimensional second harmonic generation starting from a purely amplitude-
modulated fundamental wave. A general method to solve the problem in terms of a Schrodinger equation is presented, in¨
which the initial pulse-shape is taken as a potential. Several examples with the complete solution given in analytical form are
discussed. A much broader class of solutions can be found with the help of a single numerical integration. In particular,
solutions with incident pulses approximating a sech2-shape have been obtained. q 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

w xIn 1961 Franken et al. 1 found that a ruby laser beam
in crystalline quartz generates a very weak beam of UV
radiation, its frequency being two times that of the ruby
laser. This event marked the beginning of nonlinear optics.

w xShortly afterwards, Terhune et al. 2 achieved a conver-
sion efficiency of 20%, opening a wide range of possibili-
ties for the experimental investigation of this phenomenon.

Ž .The process of second harmonic generation SHG for a
w xcw beam was theoretically studied by Armstrong et al. 3 .

Later on, the laser pulses became shorter and shorter, and

1 E-mail: steudel@photon.fta-berlin.de
2 E-mail: paris@pv.infn.it

the walk-off of the pulses at fundamental and harmonic
frequencies became important. In fact, with the advent of
ultrashort pulses, non-stationary effects like group velocity
mismatch have become a problem of interest nowadays
w x4,5 . Actually, even in a one-dimensional theory, which
we have here in mind exclusively, nonlinear partial differ-
ential equations have to be solved.

In the case of a purely amplitude-modulated fundamen-
tal wave, the problem is governed by a second-order

w x Žequation named after Liouville 6 which should not be
confused with the Liouville equation in Statistical Mechan-

.ics . Even though this connection has been known since a
w xquarter of a century 7 , to the best of our knowledge no

attention has been paid to it in current text books on
nonlinear optics, or in articles on SHG. This is rather
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surprising since the Liouville equation is one of the few
examples of nonlinear equations for which the general
solution can be written down explicitly. Such a solvable
theory is very useful, and even under conditions where the
inherent idealizations are only approximately fulfilled could
be used as a zeroth-order approximation. Despite the gen-
eral solvability it is not quite obvious how to select, among
the solutions of the Liouville equation, the physically
relevant SHG solutions. Therefore, it is a matter of interest
to consider the following two questions, whose answers
characterize the purpose of the present paper.
1. How to solve the initial value problem for an incident

pulse of arbitrary shape at the fundamental frequency,
under the condition that there is no incident harmonic
wave?

2. Are there examples for which this problem has a fully
analytical solution?
Both problems are of physical relevance and experi-

w xmental interest 8–11,5,12 , and to our knowledge the
prescribed initial value problem has never been systemati-
cally studied. A particular type of analytical solutions with
the initial pulse being of squared Lorentzian shape was

w xfound by Akhmanov et al. 13 , cf., Section 4.3 in the
present paper.

Throughout this work, we will discuss a more general
approach and study this problem systematically. We will
give several new analytical solutions for experimentally
relevant initial pulses.

Our manuscript is organized as follows: In Section 2
we briefly review the basic equations describing one-di-
mensional SHG in the slowly varying amplitude approxi-
mation and establish the connection to the Liouville equa-
tion. Similarity transformations of evolution equations,
which are useful in the subsequent analysis, are discussed
in subsection 2.2. In subsection 2.3 we define Goursat and
Cauchy problems. Section 3 is the main part of the paper.
Here we show how the physically relevant initial value
problem is reduced to the Schrodinger equation, where the¨
initial pulse shape plays the role of a repulsive potential. In
Section 4 several examples are analyzed in detail. Analyti-
cal solutions are given for many realistic cases and a broad
class of exponentially decaying initial pulses is found with
the help of a single numerical integration. In Section 5 we
state our conclusions.

2. Second harmonic generation in one space dimension

2.1. SHG and the LiouÕille equation

In a second-order nonlinear medium, the interaction
between two quasi-monochromatic plane electromagnetic
waves, with slowly-varying complex electric field ampli-

Ž . Ž .tudes A x,t , A x,t and respective frequencies v and1 2 1

v s2v , is described by the two differential equations2 1
w x14

1
)E q E A syig A A ,x t 1 2 1ž /Õ1

1
2E q E A syig A . 1Ž .x t 2 1ž /Õ2

Here we assumed that the wave-numbers of both carrier
waves fulfil the phase-matching condition k s2k . The2 1

star denotes complex conjugation. x,t are laboratory space
and time coordinates. The coupling constant g is ex-
pressed as

2px Ž2.v 2
1

gs . 2Ž .2k c1

In order to write the equations of motion in a convenient
form we introduce characteristic coordinates

xsn ytqxrÕ synt , tsn tyxrÕ snt ,Ž . Ž .2 2 1 1

3Ž .
where the parameter n describing the group velocity mis-
match is given by

y1
ns 1rÕ y1rÕ , 4Ž .Ž .2 1

and introduce new amplitudes q ,q by taking1 2

y1 y1'A s 2 g q , A s2ig q . 5Ž .1 1 2 2

Ž .The inverse transformation of 3 is

xsxqt , tsxrÕ qtrÕ , 6Ž .1 2

and the derivatives are transformed according to

1 1
E sE q E , E sE q E . 7Ž .x x t t x t

Õ Õ1 2

In this way we arrive at the differential equations

1
)E q E q sE q sy2 q q ,x t 1 x 1 2 1ž /Õ1

1
2E q E q sE q sq . 8Ž .x t 2 t 2 1ž /Õ2

The scaling of the amplitudes is such that, up to a common
< < 2 < < 2scaling factor, q , q may be interpreted as photon1 2

current densities. The physical conditions included in the
present model can be summarized as follows:
1. Applicability of the slowly-varying amplitude approxi-

Ž .mation SVA , i.e. the pulses should still be long
compared to the wavelengths.

2. One-dimensionality in space, i.e. the transverse struc-
ture can be neglected.

3. The phase matching condition 2k sk for the wave1 2

numbers k are fulfilled exactly for the two carrier1,2

waves.
4. The group velocities Õ and Õ do not coincide, but1 2

5. the dispersion within either of the two pulses at fre-
quencies v and 2v can be neglected.0 0
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w xAccording to theoretical estimations 14 and experiments
w x5 these presumptions are quite realistic. E.g., for 100 fs
pulses with intensities above 100 GWrcm2 and long-focus
conditions in KDP or LiIO crystals, high conversion3

efficiencies can be achieved over crystal lengths of several
mm. Both pump depletion and group velocity dispersion
then become important and a non-stationary approach to
the problem is required. One may also think of a realiza-
tion in a planar optical waveguide.

The basis for applying the inverse scattering transform
Ž .method to Eqs. 8 with complex amplitudes was estab-
w xlished by Kaup 15 . Its full development, however, met

some particular difficulties which have not yet been solved.
Recently, Hamiltonian structures and particular solutions,

Ž . w xnot reducible to real ones, of 8 were established 16 .
Here we focus our attention on purely amplitude-mod-
ulated signals. Thus the amplitudes q and q are real, and1 2

Ž .the stars in Eqs. 8 can be omitted. Clearly, this further
approximation excludes important physical effects due to

w xphase mismatch and related applications 17 .
Let us now consider causality. In the 1q1 dimensional

world of the present SHG model, propagation occurs only
with velocities Õ and Õ . For definiteness we will assume1 2

Õ )Õ , normal group dispersion, such that n defined by1 2
Ž .4 is positive. One should notice, however, that our results
are easily transferred to Õ -Õ , i.e., anomalous group1 2

dispersion. The cone of future from xs ts0 is given by
the region

Õ t-x-Õ t , i.e. , x)0 , t)0. 9Ž .2 1

The signs of the characteristic coordinates x ,t are such
that causal action always occurs in the direction of increas-
ing coordinates.

w xIt was found by Bass and Sinitsyn 7 that in the case of
Ž .real amplitudes, the SHG problem of Eqs. 8 is solvable.

w xActually, it is ‘‘C-integrable’’ 18 , which means inte-
grable by change of variables. Indeed, one can see that

Ž .from Eqs. 8 with real waves q ,q we may eliminate q1 2 2

arriving at the Liouville equation

E E ln 4q2 sy4q2. 10Ž .Ž .x t 1 1

w xThe general solution is well known 6 and it is given by

1 FX
x GX

tŽ . Ž .
2q sy . 11Ž .1 22 F x qG tŽ . Ž .Ž .

Ž . Ž . Ž .In Eq. 11 F x and G t are arbitrary functions, which
depend only on x and t respectively. The primes denote
differentiations. The solution is completed by substitution

Ž . Ž .of Eq. 11 in Eqs. 8 , leading to

1 FXX
x 1 FX

xŽ . Ž .
q sy q . 12Ž .X2 4 F x 2 F x qG tŽ . Ž . Ž .

2.2. Similarity transformations

Ž . Ž .Given any solution q x ,t , q x ,t of the equations1 2

of motion, a two-parameter manifold of solutions can be

Ž . Ž .found by use of similarity scale transformations. Eqs. 8 ,
in fact, are invariant under the two following scale trans-
formations:

Ž .i The conformal transformation

xsax , tsat , q x ,t saq ax ,at ,Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜ ˜1 1

q x ,t saq ax ,at . 13Ž .Ž . Ž .˜ ˜ ˜ ˜ ˜2 2

Ž .ii The t-dilatation

tsb2t , q x ,t sbq x ,b2t , 14Ž .Ž .˜ ˜ ˜ ˜ ˜ ˜Ž .1 1

and the general similarity transformation is obtained as a
combination of both these types. Here a and b are real
numbers. Under conformal transformations all the four
quantities

d x q x ,t , dt q x ,t , ks1,2 , 15Ž . Ž . Ž .H Hk k

are invariant while, on the other hand, the t-dilatation does
not change the integral

dt q2 x ,t . 16Ž . Ž .H 1

In the context of the Cauchy problem discussed below, it
will be of interest to use only invariance transformations
that map the set of straight lines x'xqtsconst to
themselves. This restriction is fulfilled by the conformal
transformation, but not by the t-dilatation. Thus any par-

Ž .ticular solution of Eqs. 8 represents a one-parameter
family of solutions.

2.3. Goursat and Cauchy problems

Ž .To such a type of partial differential equations 8 one
may relate two typical initial value problems:

Ž .i The Goursat problem in which initial values are
given at characteristics

q 0,t sq t , t)0 ;Ž . Ž .1 10

q x ,0 sq x , x)0 . 17Ž . Ž . Ž .2 20

Ž . Ž .After substitution of the general solution 11 , 12 in Eqs.
Ž . Ž . Ž .17 the functions F x and G t can be determined by
quadratures.

Ž .ii The Cauchy problem in which the initial values are
given on some line that is not a characteristic. This is
usually the case, as from the physical point of view, it is
natural to give both fields q and q for xs0, i.e.,1 2

Ž . Ž .according to Eqs. 3 and 6 , for tsyx and tsxrn ,

q yt ,t sq t , q yt ,t sq t . 18Ž . Ž . Ž . Ž . Ž .1 10 2 20

w xIn a common situation encountered in experiments 19
there is an incident ground wave, q , with no incident1

harmonic wave, q . This is the Cauchy problem specified2

by q s0. In the following we will be concerned with20
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this problem, and we will refer to it as the restricted
Cauchy problem.

3. The restricted Cauchy problem

3.1. Solution

Let us write the restricted Cauchy problem in the form

q2 yt ,t s I t , q yt ,t s0 . 19Ž . Ž . Ž . Ž .1 1 2

Ž . Ž .Thus, starting from the general solution of Eqs. 11 , 12 ,
Ž . Ž .we have to determine the functions F x and G t . Upon

defining

K t 'F yt , 20Ž . Ž . Ž .

we get

K X
t GX

t 1 K XX K XŽ . Ž .
2 I t s , D t s s .Ž . Ž . X1 2 2 K KqGKqGŽ .

21Ž .

Ž .By elimination of G in 21 , we find

XXX XX 2K 3 K
� 4K ,t ' y sy4 I , 22Ž .X X 1ž /K 2 K

where the curly bracket denotes the Schwarzian derivative
w x Ž .20 . The function D t , defined in the second of Eqs.
Ž .21 , fulfils the Riccati equation

D
X sD2y2 I , 23Ž .1

which by taking

Dsyf
Xrf , 24Ž .

is connected to the Schrodinger-type equation¨

f
XX s2 I f . 25Ž .1

Ž . Ž .By comparison of Eqs. 24 and 21 we find

f
X 1 K XX

sy , 26Ž .X
f 2 K

and, by integration,

1
fs . 27Ž .X'K

Summarizing we may formulate the following ‘‘recipe’’
for solving the restricted Cauchy problem :

Ž .1. Given an initial pulse shape I t one first has to solve1
Ž .the second order differential equation 25 , which can

be viewed as a Schrodinger equation with repulsive¨
Ž .potential 2 I t and eigenvalue 0. This is also known as1

w xHill’s equation 21 . We require f to be a real function.

Ž .2. By means of Eq. 27 , the function F can be evaluated
as

dt
X

t

K t s , F x sK yx . 28Ž . Ž . Ž . Ž .H X2f tŽ .0

Ž . Ž .3. Upon substitution in Eqs. 21 and 24 we arrive at the
function G,

2 K X2

G t syK t qŽ . Ž . XXK

1
syF yt y . 29Ž . Ž .X

f t f tŽ . Ž .
Ž . Ž .4. Eventually, the solution q x ,t , q x ,t is found by1 2

Ž . Ž . Ž . Ž .substituting F x and G t in Eqs. 11 and 12 ,

f
XX

t f tŽ . Ž .
2q x ,t sŽ .1 22f yxŽ .

=

21
,X w x1qf t f t F t yF yxŽ . Ž . Ž . Ž .
30Ž .

X1 f t f tŽ . Ž .
Xq x ,t sy f yx yŽ . Ž .2 2f yx f yxŽ . Ž .

=
1

.X w x1qf t f t F t yF yxŽ . Ž . Ž . Ž .
31Ž .

We also notice that the choice of a symmetric initial pulse
Ž . Ž . Ž .I t results in an even function f t . In this case F x is1

Ž . Ž .an odd function, and the general solution in Eqs. 30 , 31
can be written in the form

f
XX

t f tŽ . Ž .
2q x ,t sŽ .1 22f xŽ .

=

21
,X w x1qf t f t F t qF xŽ . Ž . Ž . Ž .

32Ž .
X1 f t f tŽ . Ž .

Xq x ,t s f x qŽ . Ž .2 2f x f xŽ . Ž .

=
1

. 33Ž .X w x1qf t f t F t qF xŽ . Ž . Ž . Ž .
2Ž . Ž .It may be worth noticing that q x ,t and q x ,t can1 2
Ž .also be expressed in terms of r t and thus avoiding the

Ž . Ž .wave function f. From 21 and 29 , in fact, we get
X

t t
XX XX XK t s exp 2 D t dt dt ,Ž . Ž .H Hž /0 0

1 t
X XG t syK t q exp 2 r t dt . 34Ž . Ž . Ž . Ž .Hž /r 0
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The wave amplitudes q and q can be obtained by1 2
Ž . Ž . Ž . Ž .substitution of F x 'K yx and G t into Eqs. 11

Ž .and 12 .

3.2. About uniqueness

In our procedure the solution of the restricted Cauchy
Ž .problem is reduced to the solution of a Schrodinger Hill¨

equation. The latter is by no means unique, because we did
not impose any boundary or asymptotic condition. On the
other hand, from physical intuition, we expect that there is
a unique solution of the Cauchy problem in our case. How
can this apparent discrepancy be resolved?

Ž . Ž . Ž .Given any particular real solution f x to Eq. 251

the general solution is found as

d x
X

x

f x sf x c qc , 35Ž . Ž . Ž .H1 1 2 X2ž /f xŽ .0 1

c and c being real numbers. By taking the integral in Eq.1 2
Ž .28 , we obtain

1 aF qb1
Fsc y s . 36Ž .3 c qc F cF qd1 2 1 1

Ž .In Eq. 36 c is an integration constant, and a,b,c,d are3

real numbers determined, up to an arbitrary common fac-
Ž .tor, by c ,c ,c . Eq. 36 tells us that F is determined by1 2 3

f up to an arbitrary linear rational mapping. Indeed, it is
w xknown 20 – and could be checked directly – that the

Schwarzian derivative is invariant under such a transfor-
Ž . Ž .mation, and thus the potential I x in 22 is invariant.1

Ž . Ž .Moreover, starting from Eqs. 28 and 20 , it can easily be
derived that yG and yG are connected by the same1

linear rational transformation connecting F and F . The1

proof of uniqueness is completed by noting that the right-
Ž .hand side of 11 is invariant under an arbitrary linear

rational transformation simultaneously applied to both F
and yG. Therefore, any solution of a given Hill equation
leads to the same physical solution for the pulse ampli-

Ž .tudes q ,q . Note that q is determined by q .1 2 2 1

4. Examples

The formalism discussed in the previous sections can
be applied to several pulse shapes, leading to fully analyti-
cal solutions for the Cauchy problem. Some of these pulses
are presented and analyzed in this section. In subsection
4.4 we also consider a broad class of solutions, having
exponential decay as a distinctive feature, which can be
generated by a single numerical integration. In all the
following examples we impose the condition that the
second harmonic wave is zero at the boundary xs0,

Fig. 1. Space-time regions I to VI of the solution for an initial
Ž .square pulse at the fundamental frequency. In part a the lab

Ž . Ž .coordinates x,t are taken as Cartesian ones while in part b the
Ž .same holds for the characteristic coordinates x ,t . The interac-

tion occurs in the regions I and II. There is no field in II and VI
while in IV and V there is free propagation of the harmonic wave.

corresponding to the natural experimental conditions. In
Ž .the transformed frame this reads q xsyt ,t s0.2

4.1. Square pulse

We first consider the initial square pulse given by

A for 0-t-n tpI t s 37Ž . Ž .1 ½ 0 elsewhere .

The solution of this problem requires the definition of
several spatio-temporal regions, which are shown in Fig. 1,

Ž .both in the lab frame x,t and in the characteristic frame
Ž .x ,t . The ‘‘pieces’’ of the solution in the respective
regions are connected by the conditions that q is continu-1

ous and differentiable in x , whereas q is continuous and2
Ž .differentiable in t . From Eqs. 8 we get

q '0 , q '0 in regions II and VI,1 2
38Ž .

q '0 , E q '0 in regions IV and V.1 t 2
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Fig. 2. Solution for an incident fundamental wave being a square
Ž . Ž .pulse. Part a shows the fundamental amplitude q , part b1

shows the harmonic amplitude q . Note that, for xs0, it holds2

t sn t with n being the group velocity mismatch defined by Eq.
Ž .4 .

The dynamics occurs exclusively in regions I and III and
Ž .the Cauchy problem of Eq. 37 reduces to the following

problems:
Ž .i the Cauchy problem for the triangle I

q yt ,t sA , q yt ,t s0 , 39Ž . Ž . Ž .1 2

Ž .ii and the Goursat problem for the strip III

q xs0,t sq t , 0-t-n t ;Ž . Ž .1 10 p

q x ,ts0 s0 , 0-x , 40Ž . Ž .2

Ž .where q is known upon i has been solved.10

The Hill equation for triangle I is easily solved by

'f t scosh Bt , Bs 2 A . 41Ž . Ž . Ž .

Thus, in region I the solution is given by

2 2 w x 2q x ,t sA sech B xqt sA sech Bx ,Ž . Ž . Ž .1

B B
w xq x ,t s tanh B xqt s tanh Bx . 42Ž . Ž . Ž . Ž .2 2 2

The Goursat problem in the strip III has to be solved with
the initial condition

q2 t sA sech2 Bt , 43Ž . Ž . Ž .10

thus leading to the solution

A
2q x ,t s ,Ž .1 2w xcosh Bt qBx sinh BtŽ . Ž .

B
q x ,t s . 44Ž . Ž .2 w x2 Bxqcoth BtŽ .
The complete solution is depicted in Fig. 2.

4.2. Lorentzian pulse

Let us now consider, as a fundamental wave at the
boundary xs0, a Lorentzian pulse, that is, a pulse whose
intensity is given by

1
I t s . 45Ž . Ž .1 21qt

Fig. 3. The amplitudes q and q where the incident intensity1 2
< < 2q at the fundamental frequency is a Lorentzian shape.1
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As one can easily verify, such a pulse corresponds to the
following ‘‘wave-function’’

f t s 1qt 2 . 46Ž . Ž .
Ž .Starting from Eq. 46 one can derive the solutions for

both waves in an arbitrary cross section of the nonlinear
medium, which are

1 1
2q x ,t sŽ .1 2 2 22 t 1qtŽ .1qxŽ .

1
= ,22arctan xqarctantqxr 1qx q1rtŽ .

x 1
q x ,t s qŽ .2 2 221qx 1qxŽ .

1
= . 47Ž .2arctan xqarctantqxr 1qx q1rtŽ .

This solution is depicted in Fig. 3.

4.3. Squared Lorentzian

Here we consider a pulse for which the fundamental
wave amplitude, at the boundary, has itself a Lorentzian
shape. The intensity is thus a squared Lorentzian given by

b
I t s . 48Ž . Ž .1 222 1qtŽ .
This pulse corresponds to the following wave function

1r22f t s 1qtŽ . Ž .

=

° 2w xcos aarctan t , 1ybsa )0,Ž .~1 , bs1,¢ 2w xcosh barctan t , by1sb )0,Ž .
49Ž .

from which we find

w xy 1ra tan aarctan x ,Ž . Ž .°
~yarctan x ,Ž .F x s 50Ž . Ž .¢ w xy 1rb tanh barctan x .Ž . Ž .

The outgoing second harmonic wave is strongly dependent
on the peak field intensity b. Three regions can be distin-

Ž . Ž . Ž .guished: low b-1 , intermediate bs1 and high b)1
intensities. For the intermediate case the propagated solu-
tions for the two waves in the medium have the particu-
larly simple form

1 1
2q x ,t sŽ .1 2 2 22 1qx t 1qtŽ .Ž .

=
1

,2w xarctan x qarctan t q1rtŽ . Ž .
x 1

q x ,t s qŽ .2 2 22 1qx 2 1qxŽ . Ž .

=
1

. 51Ž .
arctan x qarctan t q1rtŽ . Ž .

Fig. 4. Solutions where the initial pulse intensity is a squared
Ž .Lorentzian shape dashed lines are compared with solutions

2 Žwhere the initial intensity is approximately a sech shape solid
. Ž .lines . Here, only the initial amplitudes q part a and the1

Ž .asymptotic harmonic amplitudes q part b are depicted. For the2

three examples, the initial fundamental pulse shapes differ in their
amplitudes, while the half-width is the same for all these pulses.

The solutions for b)1 and for b-1 can be given as well
Ž . Ž . Ž . Ž .by substitution of 49 , 50 in 32 , 33 . The explicit

formulas are rather messy, however, and therefore will not
be presented here. The problem for b)1 was already

w xsolved by Akhmanov et al. 13 . In Fig. 4 we show three
Ž .examples of initial q y pulses upper part , together with1

Ž .the corresponding asymptotic q y pulses lower part , for2
Ž . Ž .bs2 upper curve , bs1 intermediate curve and bs

Ž .0.5 lower curve .

4.4. Exponentially decaying pulses

ŽIn examples treated in previous subsections as well in
.the next one the solutions can be explicitly obtained in

analytic form. It seems, however, impossible to do the
same for an initial pulse with an exponentially decaying
shape. Here we start from a particular choice of ‘‘wave
functions’’

2f t saq log bqcosh t , 52Ž . Ž . Ž .
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which corresponds to an initial pulse shape given by

I tŽ .1

w x4 1q 1q2b cosh 2tŽ . Ž .
s ,2 2w x1q2qcosh 2t aq log bqcosh tŽ . Ž . .Ž .

53Ž .

the latter exhibiting the exponential decay

4 1q2bŽ .
< <I t , exp y2 t . 54Ž . Ž . Ž .1 < <t< <t ™`

For this kind of pulse, we have no closed analytic solu-
tions. However, the numerical solution is obtained by

Ž .means of the quadrature of Eq. 28 . An interesting appli-
cation relies to the fact that the free parameters a and b
may be adjusted to approximate sech2-shaped pulses of the
form

˜ 2I t sA sech t . 55Ž . Ž . Ž .1

This pulse shape is obviously of experimental interest,
since it represents the output of many laser systems. As an

Ž . Ž . Ž .example, by choosing a,b s 3.45,0.122 , 1.36,0.257
Ž . Ž .and 0.176,0.579 both maxima and half-widths of I t1

˜coincide with those of I with As0.25, 0.5, 1 respec-1

tively. In Fig. 4, the initial pulses and the asymptotic
harmonic pulses are depicted, in comparison with the
corresponding curves of the squared Lorentzian pulse. It
can be seen that the trailing edge of the q -pulse is steeper2

for the sech2-pulse than for the squared Lorentzian. Apart
from that, no striking difference can be seen between these
shapes.

4.5. An asymmetric pulse

Here we will give the complete analytic solution for a
particular asymmetric initial pulse

1 1 et
I t s 1y , es"1 . 56Ž . Ž .1 2 ž /22 1qt '1qt

For esq1 the asymptotic behaviour is given by

I ™ 1r4t 4 , t™q` ; I ™ 1rt 2 , t™y` ,Ž . Ž .1 1

and vice versa for esy1. I.e., the two pulses can be
obtained one from the other by the transformation t™yt .
The corresponding ‘‘wave function’’ is given by

2'f t s 1qt qet , 57Ž . Ž .

and the function F by

2e 3r22 2 2F x sx 1q x q 1qx y1 . 58Ž . . Ž .Ž .Ž .3 3

Ž . Ž .Through Eqs. 11 , 12 we eventually arrive at the com-
plete solution. The asymptotic shape of the harmonic wave
is given by the rather simple formulae

1
q x ,t™` s , esq1, 59Ž . Ž .2 2(2 1qx

3 1 1
q x ,t™` s y ,Ž .2 2 22 ( (1qx yx 2 1qx

esy1 . 60Ž .

It is worth noticing that here two initial pulses, one being
the time-reversed image of the other, yield quite different
results. In particular the asymptotic pulse is symmetric for
esq1, but asymmetric for esy1, see Fig. 5. For a
quantitive comparison of the incident fundamental wave
with the asymptotic harmonic wave in one and the same
diagram, the respective electric field envelopes E , E are1 2

Žmore appropriate than our amplitudes q ,q . We recall1 2
< < 2 .that q A photon current densities. Due to the fact thatk 'E rE sq r 2 q we have introduced the multiplicative1 2 1 2'factor 2 in the figure.

Ž .Fig. 5. For two asymmetric initial pulses dashed lines , one being
the mirror image of the other, the asymptotic harmonic waves
Ž . Ž . Ž .solid lines are given. Parts a and b correspond respectively to

'e sq1 and e sy1. The factor 2 was introduced for normal-
Ž .ization purposes with respect to the energy cf. the text .
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5. Conclusion

We have treated second harmonic generation in one
dimension with amplitude-modulated pulses where the fun-
damental wave was the only incident pulse. We have
shown how to reduce this problem to that of solving a
zero-eigenvalue Schrodinger equation, the initial pulse¨
shape being formally a repulsive potential.

Instead of starting from a specified pulse shape, we
took a properly chosen multi-parametric set of ‘‘wave

Ž .functions’’ f t and easily computed the corresponding
set of potentials. The free parameters of these solutions can
be used to approximate pulse shapes of interest. To give a
complete SHG solution, this method requires at most the

Ž .single numerical integration of Eq. 28 .
Using this approach we were able to obtain solutions

for initial pulses approximately of a sech2-shape with very
little numerical effort. We also provide fully analytical
solutions for several cases of interest, among these the

w xwell-known solutions found by Akhmanov et al. 13 ,
initial square pulses, and asymmetric initial pulses. Using a
particular example, we have demonstrated that two asym-
metric initial pulses, differing only in the time orientation,
give rise to quite different solutions.

We believe that the method introduced here should be
useful for optimizing SHG and achieving suitable pulse-
shaping in a broad range of working conditions.
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