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Abstract

We address continuous variable quantum teleportation in Gaussian quantum noisy channels, either thermal or squeezed-
thermal. We first study the propagation of twin-beam and evaluate a threshold for its separability. We find that the threshold for
purely thermal channels is always larger than for squeezed-thermal ones. On the other hand, we show that squeezing the channe
improves teleportation of squeezed states and, in particular, we find the class of squeezed states that are better teleported in
given noisy channel. Finally, we find regimes where optimized teleportation of squeezed states improves amplitude-modulated
communication in comparison with direct transmission.
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1. Introduction

In a quantum channel, information is encoded in a set of quantum states, which are in general nonorthogonal
and thus, even in principle, cannot be observed without disturbance. Therefore, their faithful transmission requires
that the entire communication protocol is carried out by a physical apparatus that works without knowing or
learning anything about the travelling signal. In this respect, quantum teleportation provides a remarkable mean for
indirectly sending quantum states.

The key ingredient of quantum teleportation is an entangled bipartite state used to support the quantum
communication channel [1]. This allows the preparation of an arbitrary quantum state at a distant place without
directly transmitting it. In optical implementations of continuous variables quantum teleportation (CVQT), the
entangled source is typically a twin-beam state of radiation (TWB), whose two modes are shared between the
two parties. A faithful transmission of quantum information through the channel requires a large input—output
fidelity, which in turn is an increasing function of the amount of entanglement. However, the propagation of a
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TWB in noisy channels unavoidably leads to degradation of entanglement, due to decoherence induced by losses
and noise. Indeed, the effect of decoherence on TWB entanglement and, in turn, on teleportation fidelity, have been
addressed by many authors [2—7]. Thresholds for separability of TWB have been established and teleportation of
both classical and nonclassical states has been explicitly analyzed [8,9]. In particular, in Ref. [9] it was investigated
how much nonclassicality can be transferred by noisy teleportation in a zero temperature thermal bath. Moreover,
the stability of squeezed states in a squeezed environment has been recently studied, showing that such nonclassic:
states loose their coherence faster than coherent states even if coupled with nonclassical reservoir [10]. The open
question is then if there exist situations where squeezed states are favoured with respect to coherent ones, especiall
for quantum communication purposes.

In this Letter we investigate the behavior of a TWB propagating through a Gaussian noisy channel, either
thermal or squeezed-thermal, and address its performances for applications in quantum communication [11,12].
As we will see, in presence of noise along the channel, teleportation of a suitable class of squeezed states can be
an effective and robust protocol for amplitude-based communication compared to direct transmission.

Squeezed environments were addressed by many authors for preservation of the macroscopic quantum
coherence. In fact, if squeezed quantum fluctuations are added to dissipation, a macroscopic superposition state
preserves its coherence longer than in presence of dissipation alone [13]. Ref. [14] showed that the interference
fringes due to a superposition of two macroscopically distinct coherent states (“Schrdodinger’s cat states”) could be
improved by the inclusion of squeezed vacuum fluctuations. An interesting physical realization of an environment
with squeezed quantum fluctuations based on quantum nondemolition feedback was proposed in Ref. [15].
Effective squeezed-bath interactions were studied in Refs. [16,17], where the technique of quantum-reservoir
engineering [18] was actually used to couple a pair of two-state atomsefestive squeezed reservoir.

The Letter is structured as follows. In Sections 2 and 3 we describe the evolution of a TWB in a squeezed-
thermal bath and study its separability by means of the partial transposition criterion; Section 4 addresses the TWB
coupled with the nonclassical environment as a resource for quantum teleportation of squeezed states; in Section 5
we compare the performances of direct transmission and teleportation. In Section 6 we draw some concluding
remarks.

2. Twin beam coupled with a squeezed thermal bath

The propagation of a TWB interacting with a squeezed-thermal bath can be modelled as the coupling of each
part of the state with a nonzero temperature squeezed reservoir. The dynamics can be described by the two-mode
master equation [19]

% ={r+N)Llal+ ' 1+ N)L[b1+ [ NLla"|+ I NL[b']

+ TMM(a") + T M* Mlal+ T MMIbT + T M* M(b1}pr, )

wherep; = p(t) is the system’s density matrix at the timel” is the damping rately and M are the effective

photons number and the squeezing parameter of the bath respediiyély,is the Lindblad superoperator,

L[Olpr = 0p, 0T — 30%0p, — 30,070, and M[O1p; = 0p,0 — 30 0p, — 1p,0 0. The terms proportional

to L[a] and L[b] describe the losses, whereas the terms proportioﬂaﬂd&] and L[b1] describe a linear phase-

insensitive amplification process. Of course, the dynamics of the two modes are independent on each other.
Thanks to the differential representation of the superoperators in Eq. (1), the corresponding Fokker—Planck

equation for the two-mode Wigner functidvi = W (x1, y1; x2, y2) is
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which, introducingr = I't/y andy = (2N + 1)1, reduces to the standard form
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where, for sake of simplicity, we put= (x1, y1; x2, y2) = (x1, x2; x3, x4). In Eq. (3)a;(x) andd;; are the matrix
elements of the drift and diffusion matricés x ) andD respectively, which are given by

A(x) = —%& @
i+ 5RdM]  yIm[M] 0 0
1_y
D= y Im[M] y ReM] L yo 0 (5)
0 0 i+ 5ReM]  yIm[M]
0 0 yImM] - L ReM]

Notice that in our case the drift term is linearirand the diffusion matrix does not depend.ariVe assume/

as real and a TWB as starting state, i®@.= ptws = |TWB) (TWB|, where|TWB)) = v/1 — xZZP xa'a Ip)p).
The TWB corresponds to the Wigner function

exp{— Gatx? _ 1ty)?  (-xp)? (y1*y2)2]
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Wo(x1, y1; x2, y2) = (6)

with o2 1 e and, x =tanhx, being the squeezing parameter of the TWB. Now the solution of the Fokker—
Planck (3) is given by [19]
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whereE2 EZ(A Iy, ns), j =1,2,3,4, are
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142N +2M _
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with |M| < (2N +1)/2. The latter condition is already enforced by the positivity condition for the Fokker—Planck’s
diffusion coefficient, which requires

M < NN +1). (10)

If we assume the environment as composed by a set of oscillators excited in a squeezed-thermal state of the form
v =S pnST(r), with S(r) = exp{3r[a™? — a?]} andph = (1 + ntn) “nwn/(L+ n)]* ¢, then we can rewrite the
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parametersV andM in terms of the squeezing and thermal number of phoigrs sint? » andn, respectively.
Then we get [10]

M = (1 + 2nin)/ns(1 + ng), (11)

N = nth + ns(1+ 2nwh). (12)

Using this parametrization, the condition (10) is automatically satisfied.

3. Separability

A quantum state of a bipartite systermseparable if its density operator can be written as= )", prox ® ,
where{py} is a probability distribution and’s ando’s are single-system density matrices. If a state is separable
the correlations between the two systems are of purely classical origin. A quantum state which is not separable
contains quantum correlations, i.e., it is entangled. A necessary condition for separability is the positivity of the
density matrixo", obtained by partial transposition of the original density matrix (PPT condition) [20]. In general
PPT has been proved to be only a necessary condition for separability; however, for some specific sets of states,
PPT is also a sufficient condition. These include statg af 2)- and(2 x 3)-dimensional Hilbert spaces [21] and
Gaussian states (states with a Gaussian Wigner function) of a bipartite continuous variable system, e.g., the states
of a two-mode radiation field [22,23]. Our analysis is based on these results. In fact, the Wigner function of a twin-
beam produced by a parametric source is Gaussian and the evolution inside active fibers preserves such characte
Therefore, we are able to characterize the entanglement at any time and find conditions on the fiber’s parameters
to preserve it after a given fiber length. The density matrix’s PPT property can be rephrased as a condition on the
covariance matrix of the two modes Wigner functiiix1, y1; x2, y2). We have that a state is separable iff

I
V + 21sz >0, (13)
where
J 0 0 1
Sl:(o J> and Jz(_l 0). (14)
and
Vok = (A&, A&y) =/d45 AE,AE W (E), (15)

with A&; =§&; — (§;), and§ = {x1, y1, x2, y2}. The explicit expression of the covariance matrix associated to the
Wigner function (7) is

2 2 2 2
X2+ 33 0 22— 32 0
vl 0 T2+ 32 0 X332 (16)
=5 2 2 2 2 ’
2| 22 572 0 X24 32 0
0 252 0 2457
and then condition (13) is satisfied when
1 1
»2x2> — 2xi> —. 17
144 16 2“3 16 ( )

Notice that changing the sign 81 leaves conditions (17) unaltered.
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Fig. 1. Plots of the rati@; = (s — 79) /19 as a function of the number of squeezed photosir different values of the TWB parameterand
of the number of thermal photongy,. The values ofiy, are chosen to be: (ay, = 1076, (b) 1073, (c) 101 and (d) 1, while the solid lines,
from bottom to top, refer ta. varying between 0.1 to 1.0 with steps of 0.15.

By solving these inequalities with respect to timewe find that the two-mode state becomes separable for
t > ts, where the threshold timg = 7s(A, I', nth, ns) is given by

1 1 Vls(1+7’ls)
=—I 24 = > 18
=T og<f+ 1+2nth\/f +nth(1+nth)>’ (18)

and we defined

(14 2n)[1+ 20t — e~ 2 (14 2ng)]
Anin(1+ nin) ’

As one may expects decreases as, andns increase. Moreover, in the limits — 0, the threshold time (18)
reduces to the case of a nonsqueezed bath, in formula [4,7]

f = f()‘" nth, nS) = (19)

1 1—e 2
to=ts(A, [,nn,0)=—log{ 1+ ——— ). (20)
r 2nih

In order to see the effect of a squeezed bath on the entanglement time we define the function

tS_tO

G()"v nth, nS) = (21)

In this way, whenG > 0, the squeezed bath gives a threshold time longer than the one obtained with shorter
otherwise. These results are illustrated in Fig. 1, where we plot Eg. (21) as a functigriasfdifferent values

of niy andi. SinceG is always negative, we conclude that coupling a TWB with a squeezed-thermal bath destroys
the correlations between the two channels faster than the coupling with a nonsqueezed environment.
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4. Optimized quantum teleportation

In this section we study continuous variable quantum teleportation (CVQT) assisted by a TWB propagating
through a squeezed-thermal environment. Let us remind the CVQT protocol: the sender and the receiver, say Alice
and Bob, share a two-mode state described by the density mpagtixvvhere the subscripts refer to modes 1 and
2 respectively: mode 1 is sent to Alice, the other to Bob. The goal of CVQT is teleporting an unknows state
corresponding to the mode 3, from Alice to Bob. In order to implement the teleportation, Alice first performs a
heterodyne detection on modes 3 and 1, i.e., she jointly measures a couple of two-mode quadratures. The POVM
of the measurement is given by

1
Ma(z) = ;Dl(Z)|H>>1331«]1|DI @), (22)

where[I)13= )", |v)1lv)3, and D1(z) = expiza® — z*a} is the displacement operator acting on mode 1. Each
measurement outcome is a complex humyewrhich is sent to Bob via a classical communication channel, and
used by him to apply a displacemdd(z) to mode 2 such to obtain the quantum statg which, in an ideal case,
coincides with the input signal [24,25]. The Wigner function of the heterodyne POVM is given by [26]

1
WIIT13(2)1(x1, y1; X3, ¥3) = ;3(()61 —x3) +x)8((y1+y3) — ¥), (23)

with z = x + iy, and since, using Wigner functions, the trace between two operators can be written as [27]

TH0102] = f dw W[O1](w) W[ O02](w), (24)

the heterodyne probability distribution is given by [28]

p(Z)=JT3// dX1dy1// dxzdy2// dx3zdys W[o1(x3, y3) W[p12](x1, y1; X2, ¥2)
x W[I13(z)1(x1, y1; x3, y3) W21 (x2, ¥2), (25)

while the conditional state of mode 2 is

2
Wlp2(2)1(x2, y2) = %// dmdyl// dxzdyz W[o](x3, y3)

x Wlp12l(x1, y1; x2, y2) WIT13(2)1(x1, y1; X3, y3) W[I2](x2, ¥2), (26)

whereW[I](x2, y2) = 7 L. Thanks to Eq. (23) and after the integration with respeggtandys, we have

1
Wlp2(2)1(x2, y2) = e // dx1dyiWlol(x1 4+ x, —y1+ y) Wlp12](x1, y1; X2, ¥2)

1
7p(z)
Now we perform the displacemem(z) on mode 2. Since

// dx1dy1Wlol(x1, yD) Wlp12l(x1 — x, —y1+ y; x2, y2). (27)

W[D@)pD ()](x}, y)) = WIpl(xj — x,y; — ¥),

we obtain

1
Wlpa(2)](x2, y2) = pyny // dx1dy1 Wlo1(x1, yp) Wlp12l(x1 — x, —y1 + y: X2 — x, y2 — y), (28)
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with p5(z) = D(2)p2(z2) D1 (2). The output state of CVQT is obtained integrating Eq. (28) with respect to all the
possible outcomes of heterodyne detection

Wptelel (x2, y2)=/d2z p@W[p5(2)](x2, y2). (29)
Finally, when the shared state is the one given in Eq. (7), Eq. (29) rewrites as follows
dx’ dy’ (' —x2)? (Y —y2)? .
_ [ dw (Rew]?  (Im[w)? t
= / o exp{— > — > }W[D(w)oD (w)](x2, y2), (31)

which shows that the mag, describing CVQT assisted by a TWB propagating through a squeezed-thermal
environment, is given by

r / dw ox (Rew)?  (Im[w])?
S U S _
Prele 47 X055 452 432

}D(w)oDT(w), (32)

i.e., the teleportation protocol corresponds to a generalized Gaussian noise. NoticadhatQf from Egs. (8),
(11) and (12) one has

1+ 2
2 —Ft + +4nth (1_€—Ft)’ (33)

which is the noise due to a thermalized quantum channel [8]. The map (32) can be extended to the case of a genera
Gaussian noise as follows

22,23—>a

2
Lgero :v/n\?%exp{—ngT}D(w)aDT(w), (34)
wherew is the row vectow = (Relw], Im[w]) andC is the covariance matrix of the noise [2].

Now, in order to use CVQT as a resource for quantum information processing, we look for a class of squeezed
states which achieves an average teleportation fidelity greater than the one obtained teleporting coherent states ir
the same conditions. The Wigner function of the squeezed statew, ¢)(«, ¢|, o, ¢) = D(a)S(¢)|0), is given
by (we assume the squeezing parametas real)

2 23 —a)?  2(y3—b)?
Wio](x3, ya) = = expl - = 2 2870 4 (35)
T e—%¢ e
with ¢ = Rela], b = Im[«]. Thanks to Egs. (31) and (35), we have
2exp| -~ Zuza?,  2oht |
e~ % 4+8% % 1852
Wiptelel(x, y) = = 2 (36)

m /(% +822) (% +822)

where we suppressed all the subscripts. The average teleportation fidelity is thus given by

— -1
Fy tele(A, I', ntn, ns) =7 //dxdy Wio1(x, YW lpout(x,y) = (\/(624 +432)(e % +42§)> . @37

which attains its maximum when

b
¢ = lmax= Iog( z) (38)
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Fig. 2. Plots of the average teleportation fidelity. The solid and the dashed lines represent squeezed and coherent state fidelity, respectively, for
different values of the number of squeezed photesga) ns =0, (b) 01, (c) 03, (d) Q7. In all the plots we put the TWB parameter= 1.5

and number of thermal photong, = 0.5. The dot-dashed vertical line indicates the threshadgifor the separability of the shared state: when

I't > I'ts the state is ho more entangled. Notice that, in the case of squeezed state teleportation, the threshold for the separability corresponds
to F =0.5.

and, after this maximization, reads as follows

1

Frele(r, T, nth, ng) = —————.
tele( Nth, Ns) 1+45,%;

(39)

Forns — 0 we haveX; = X3, and thus thegmnax — 0, i.e., the input state that maximizes the average fidelity
(37) reduces to a coherent state. In other words, in a nonsqueezed environment the teleportation of coherent states i
more effective than that of squeezed states. Moreover, Eq. (39) shows that meanwhile the TWB becomes separable
ie., 2222§ > 1—16 (see Eq. (17)), one haSee < 0.5. We remember that when the average fidelity is less than 0.5,
the same results can be achieved ugitagsical (nonentangled) shared states [24,29]: in our case, it could be
possible to verify the separability of the shared state simply studying the fidelity achieved teleporting squeezed
states. Notice that the classical linfigie = 0.5, which was derived in the case of coherent state teleportation [29],
still holds when we wish to teleport a squeezed state with a fixed squeezing parameter. Finally, the asymptotic
value of Fele for I't — oo is

7 (00) _ 1

Ftele - 2(1+ nth) ’ (40)
which does not depend on the number of squeezed photons and is equabtdy0if ny, = 0. This last result is
equivalent to say that in presence of a zero-temperature environment, no matter if it is squeezed or not, the TWB
is nonseparable at every time.

In Fig. 2 we plotEme as a function of""¢ for different values ok, ny, andns. As ns increases, the nonclassicity

of the thermal bath starts to affect the teleportation fidelity and we observe that the best results are obtained when
the state to be teleported is the squeezed state that maximizes (37). Furthermore, the difference between the twc
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Fig. 3. Direct and teleportation-assisted transmission. (a) In direct transmission, the sender directly sesdbrstagih the Gaussian noisy
channel: the state arriving at the receiverpjg;. (b) In teleportation-assisted transmission, the sender mixes at the balanced beam splitter
BS the states to be transmitted with one of the two mode of the shared state, arriving from the Gaussian noisy channel, and then he
measures the quadratureand y, respectively, of the output modes. This result is classically communicated to the receiver, which applies
a displacemenb(z), z = x + iy, to the output state, obtaininge|e (See Section 4 for details). Notice that the length of the direct transmission

line is twice the effective length of the teleportation-assisted transmission one.

fidelities increases ass increases. Notice that there is an interval of valuesiforsuch that the coherent state
teleportation fidelity is less than the classical lim Qalthough the shared state is still entangled.

5. Teleportation vs. direct transmission

This section is devoted to investigate whether the results obtained in the previous sections can be used to
improve quantum communication using nonclassical states. We suppose to have a communication protocol where
information is encoded onto the field amplitude of a set of squeezed states of thiexfghmvith fixed squeezing
parameter. In Fig. 3 we show a schematic diagram for direct and teleportation-assisted communication. As one can
see from the figure, direct transmission line’s lengtlis twice the effective length of the teleportation-assisted
scheme: this is due to the fact that the two modes of the shared state are chosen to be propagating in opposite
directions.

When we directly send the squeezed state (35) through a squeezed noisy quantum channel, the state arriving a
the receiver is

_2(x—ae*”,/2)2 . 2(y—be_rt//2)2
2 eXp{ e=2-T1'14p2 e2=Tt' 14p2?
Wlpdirl(x, y) =

(41)

7 [(e= %"+ 4D2) (17 4 4D2)

with D?, evaluated at time/, given in Eq. (9) and time’ is twice the timer implicitly appearing in Eq. (36),
because of the previously explained choice. Eq. (41) is the Wigner function of thegtas®lution of the single-
mode master equation

% ={I(A+N)Llal+ 'NL[a"+ "' MM[a"l+ ' M*M(al}p;. (42)
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whereI", N, M and the superoperatofd O] and M[O] have the same meaning as in Eq. (1). As in case of
guantum teleportation, we can define the direct transmission fidelity (see Eq. (37)), obtaining

exp{_az(lfefn’/z)z . bz(lﬂ,fr;’/z)z(l/) ]
252(1) 232(1')

F{,O{,dil’(rv nth, Vls) = ) (43)
2,/ 22t DA(t')
where
1 ,
22t = Ze*2§ (1+e )+ D2(), (44)
1 ,
2t = Zezf (1+e )+ D2(). (45)

Since F; o dir depends on the amplitude = a + ib of the state to be transmitted, in order to evaluate the
average fidelity here we assume that the transmitter sends squeezed states with fixed squeezed parameter an
with amplitudes distributed according to the Gaussian

1 2

The average direct transmission fidelity reads as follows:

Fr dir = / d20 P(@) Fr g.qir (T, nth, ns)

1 ; - 1
= B {\/[(1 —eT1/2)A2 23(,/)][(1 — e T/2) A2 4 E;(l’)] ] , (47)

which, forI't — oo and using Eq. (38), reduces to

= 1 -1
Far” = > (\/ 8+ (nth, ns)g—(ntn, ns)) ) (48)

with

1
g+(nth, ns) = 2 [1 + \/1 + 8ns(1+ ns) £ 41+ 2ns)y/ns(1+ ns)

+ Z(ns + nth + 2ngnin £ (1 + 2nih)v/ns(1 + ng) )j| + A2 (49)

Teleportation is a good resource for quantum communication in noisy channel@m E»dif’ which gives
a thresholdaZ, on the widthA? of the distribution (46)

1
2(1—e11)2
whereEme of Eq. (3_7) is evalugted at timreand, theny’ = 2t.

In Fig. 4 we plot F; tele and F gir With ¢ = ¢max for different values of the other parameters. We see that

teleportation is an effective and robust resource for communication as the channel becomes more nofsy and
larger. Moreover, wheny,, ns — 0, one obtains the following finite value for the threshold

eFt —14+ e—ZA
Ze*”(l— efl“t)Z’

i.e., teleportation-assisted communication can be more effective than direct transmission even for pure dissipation
at zero temperature.

A3,Gus T mtn, s) = [~[z2@) + 5p@] +/[522) - 2@ + (Fwo 2. (50)

A3, T,0,0) = (51)
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Fig. 4. Plots of average teleportation (Eg. (37)) and direct communication (Eq. (47)) fidelity as functionfooflifferent values ofi, andns:
(@) nth = ns = 0; (b) ngp, = 0.3 andns = 0; () nyp, = 0.5 andns = 0; (d) nyy = 0.5 andns = 0.3. In all the plots the solid line refers feje with
» = 1.5, whereas the dashed lines a&g, with (from top to bottom)A2 = 0.1, 0.5, 1, 5. The squeezing parameter is chosen tq Betmax.
which maximizes teleportation fidelity. Notice that direct transmission fidelity is evaluated in a &meal twice the time of teleportation (see
the scheme in Fig. 3). The dot-dashed vertical line indicates the threshgfdr the separability of the shared state used in teleportation.

6. Conclusions

In this work we have studied the propagation of a TWB through a Gaussian quantum noisy channel, either
thermal or squeezed-thermal, and have evaluated the threshold time after which the state becomes separable
Moreover, we have explicitly found the completely positive map for the teleportated state using the Wigner
formalism.

We have found that the threshold for a squeezed environment is always shorter than for a purely thermal one.
On the other hand, we have shown that squeezing the channel is a useful resource when entanglement is usec
for teleportation of squeezed states. In particular, we have found the class of squeezed states which optimize
teleportation fidelity. The squeezing parameter of such states depends on the channel parameters themselves. |
these conditions, the teleportation fidelity is always larger than the one achieved by teleporting coherent states.
Moreover, there are no regions of useless entanglement, i.e., the fidelity approaches the classi€ak 0t
when the TWB becomes separable.

Finally, we have found regimes where the optimized teleportation of squeezed states can be used to improve
the transmission of amplitude-modulated signals through a squeezed-thermal noisy channel. The transmission
performances have been investigated by means of input—output fidelity, comparing the direct transmission with the
teleportation one. Actually, decoherence mechanisms are different between these two channels: in the teleportation
channel the fidelity is reduced due to the interaction of the TWB with the squeezed-thermal bath; in direct
transmission the signal is directly coupled with the nonclassical environment and, then, fidelity is affected by the
degradation of the signal itself. The performance of CVQT as a quantum communication channel in nonclassical
environment obviously depends on the parameters of the channel itself, but our analysis has shown that if the signal
is drawn from the class of squeezed states that optimize teleportation fidelity, and the probability distribution of
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the transmitted state amplitudes is wide enough, then teleportation is more effective and robust as the environment
becomes more noisy.
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