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Abstract

We propose a scheme to realize radiation to atom continuous variable quantum mapping, i.e., to teleport the

quantum state of a single mode radiation field onto the collective state of atoms with a given momentum out of a Bose–

Einstein condensate. The atoms-radiation entanglement needed for the teleportation protocol is established through the

interaction of a single mode with the condensate in the presence of a strong far off-resonant pump laser, whereas the

coherent atomic displacement is obtained by the same interaction with the radiation in a classical coherent field.

� 2003 Elsevier B.V. All rights reserved.
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Entanglement is a crucial resource in the ma-

nipulation of quantum information and quantum

teleportation [1,2] is perhaps the most impressive

example of quantum protocol based on entangle-

ment. Teleportation is the transferral of (quantum)

information between two distant parties that share
entanglement. There is no physical move of the

system from one player to the other and indeed the

two parties need not even know each other�s lo-

cations. Only classical information is actually ex-

changed between the parties. However, due to
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entanglement, the quantum state of the system at

the transmitter location (say Alice) is mapped onto

a different physical system at the receiver location

(say Bob). The information transferral is blind, i.e.,

the protocol should work also when the state to be

teleported is completely unknown to both the
sender and the receiver. Several teleportation

protocols have been suggested either for qubits

and continuous variable systems [3–11]. Moreover,

interspecies teleportation schemes have been sug-

gested either of atomic spin onto polarization

states of light [12] or of motional state of a trapped

ion and a light field [13].

In this letter, we propose a novel scheme to
realize radiation to atom quantum state mapping,
ed.

mail to: paris@unipv.it


350 M.G.A. Paris et al. / Optics Communications 227 (2003) 349–354
i.e., the interspecies teleportation of the quantum

state of a single mode radiation field onto the

collective state of atoms with a given momentum

out of a Bose–Einstein condensate. The four basic

ingredients of a quantum teleportation experiment

are the following: (i) an entangled state shared
between two parties; (ii) a joint Bell measurement

performed on the system whose state is to be

teleported and on one subsystems of the entangled

state; (iii) a device able to perform a given class of

unitary transformation, conditioned to the results

of the joint measurement; (iv) a readout system to

verify teleportation. In the following, we describe

the above points for our teleportation protocol
and discuss the feasibility conditions of our pro-

posal. The setup is schematically illustrated in

Fig. 1.
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Fig. 1. Schematic diagram of the proposed setup to realize

radiation to atom continuous variable quantum mapping, i.e.,

teleportation of the quantum state of a single mode radiation

field onto the collective state of atoms with a given momentum

out of a Bose–Einstein condensate. The protocol proceeds as

follows: the atomic mode a1 and the radiation mode a3 are

entangled through the interaction of the light mode with the

condensate in presence of a strong far off-resonant pump laser

(CARL dynamics). The outgoing radiation mode a3 is then

mixed (in a balanced beam splitter) at the sender� location

(Alice) with another radiation mode a4, excited in the state r,
which we want to teleport, and the joint measurement of a

couple of two-mode quadratures is performed. The result of the

measurement is sent to the receiver�s location (Bob), where the

corresponding coherent atomic displacement is performed.

The latter is obtained through the same CARL interaction, by

injecting a suitably modulated coherent pulse (M denotes a

modulator). The overall dynamics is such that the ensemble of

recoiling atoms in the mode a1 is described by the density ma-

trix s, which approaches r in the limit of high entanglement,

i.e., high gain of the CARL interactions.
The entangled state supporting the teleporta-

tion protocol will be a twin-beam-like state of a

radiation mode and a collective mode of atoms

with a given momentum out of a Bose–Einstein

condensate. This is obtained by the interaction of a

Bose–Einstein condensate (BEC) with a single-
mode quantized radiation field in the presence of a

strong far off-resonant pump laser, in a regime well

described by quantum collective atomic recoil laser

(CARL) model [14]. The starting point of such a

model is the classical Hamiltonian for N two-level

atoms exposed to an off-resonant pump laser,

whose electric field ~EE0 ¼ êeE0 cosð~kk2 �~xx� x2tÞ is

polarized along êe, propagates along the direction
of~kk2 and has a frequency x2 ¼ ck2 with a detuning

from the atomic resonance, D20 ¼ x2 � x0, much

larger than the natural linewidth of the atomic

transition, c. The atoms scatter a single-mode field

circulating in a high-Q ring-cavity, with frequency

x1, wave number~kk1 making an angle / with~kk2 and
electric field ~EE ¼ ðêe=2Þ½EðtÞeið~kk1�~xx�x1tÞ þ c:c:� with

the same polarization of the pump field. By adia-
batically eliminating the internal atomic degree of

freedom, the following CARL Hamiltonian can be

derived [14]

H ¼
XN
j¼1

½xrp2j � igðaeihj � c:c:Þ� � Djaj2;

where xr ¼ �hq2=2M is the recoil frequency, M is

the atomic mass, q ¼ j~qqj and ~qq ¼~kk1 �~kk2 is the
difference between the scattered and the incident

wave vectors, hj ¼ qzj and pj ¼ pzj=�hq are the

dimensionless position and momentum of the jth
atom along the axis z directed along ~qq, g ¼ ðX0=
2D20Þ ðx2d2=2�h�0V Þ1=2, a ¼ �ið�0V =2�hx2Þ1=2 EeiDt,

D ¼ x2 � x1, X0 ¼ dE0=�h is the Rabi frequency

of the pump, V is the interaction volume, d is the

atomic dipole and �0 is the permittivity of the free
space.

In order to quantize both the radiation field and

the center-of-mass motion of the atoms, hj, pj and
a are considered as quantum operators satisfying

the canonical commutation relations ½hj; pj0 � ¼ idj;j0
and ½a; ay� ¼ 1. The model is then second quan-

tized introducing the atomic field operator WðhÞ
with equal-time commutation relations ½WðhÞ;
Wyðh0Þ� ¼ dðh� h0Þ, ½WðhÞ;Wðh0Þ� ¼ 0 and the nor-
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malization condition
R 2p
0

dhWðhÞyWðhÞ ¼ N . Crea-

tion and annihilation operators are introduced for

atoms with a definite momentum p, i.e., WðhÞ ¼P
m cmumðhÞ, where umðhÞ ¼ expðimhÞ=

ffiffiffiffiffiffi
2p

p
and cm

are bosonic operators obeying the commutation

relations ½cm; cyn� ¼ dm;n and ½cm; cn� ¼ 0, and cym
creates an atom with momentum p ¼ m in �hq unit.

This description of the atomic motion in a BEC

assumes that the atoms are delocalized inside the

condensate and that, at zero temperature, the

momentum uncertainty rpz � �h=rz can be ne-

glected with respect to �hq. The approximation is

valid for L � k, if rz � L, where L is the size of the

condensate. The Hamiltonian for the second
quantized model becomes [15]

H ¼
X1
n¼�1

xrn2cyncn
�

þ ig aycyncnþ1

�
� h:c:

��
� Daya:

ð1Þ
Notice that the Hamiltonian (1) commutes with

the number of atoms, N ¼
P

n c
y
ncn, and the total

momentum, P ¼ ayaþ
P

n nc
y
ncn. Let us now con-

sider the equilibrium state with no field and all the

atoms at rest, i.e., in momentum state with n ¼ 0.

In the linear regime, we neglect the atomic deple-

tion of the ground state n ¼ 0, taking c0 �
ffiffiffiffi
N

p
as a

c-number, and we consider only the transitions

induced by the radiation field from the state n ¼ 0

toward the levels n ¼ �1 and n ¼ 1. Introducing

the operators a1 ¼ c�1 expðiDtÞ, a2 ¼ c1 expð�iDtÞ
and a3 ¼ a expð�iDtÞ, the atomic field operator

reduces to

Wðh; tÞ � 1ffiffiffiffiffiffi
2p

p
ffiffiffiffi
N

pn
þ a1ðtÞe�iðhþDtÞ þ a2ðtÞeiðhþDtÞ

o
ð2Þ

and the Hamiltonian (1) reduces to the effective

Hamiltonian [16]

H0 ¼ dþa
y
2a2 � d�a

y
1a1 þ ig

ffiffiffiffi
N

p
½ðay1 þ a2Þay3 � h:c:�;

ð3Þ
where d� ¼ D� xr. Hence, the dynamics of the
system is that of three parametrically coupled

harmonic oscillators a1, a2 and a3, which obey

the commutation rules ½ai; aj� ¼ 0 and ½ai; ayj � ¼ di;j
for i; j ¼ 1; 2; 3. Notice that the Hamiltonian (3)

admits C ¼ ay2a2 � ay1a1 þ ay3a3 as a constant of

motion.
Hence, in the linear regime, the quantum

CARL Hamiltonian reduces to that for three

coupled modes, the first two modes a1 and a2
corresponding to atoms having lost or gained, re-

spectively, a two-photon recoil momentum �hq, and
the third mode a3 corresponding to the photons of
the scattered field. Starting from the vacuum

j0i ¼ j0i1j0i2j0i3 the state at a given time is given

by [16]

jWi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N1

p
X1
m;n¼0

ambn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ nÞ!
m!n!

r
jmþ n;m; ni;

ð4Þ

where jaj2 ¼ ðN2Þ=ð1þ N1Þ, jbj2 ¼ ðN3Þ=ð1þ N1Þ,
and N1, N2 and N3 are the (time-dependent) aver-

age numbers of quanta of the three oscillators [see

Eqs. (6)–(8)]. Since we start from vacuum we have

N1 ¼ N2 þ N3 at any time.

Eq. (4) shows that, in general, the system is

entangled and that the distribution over the dif-

ferent occupation numbers, N1, N2 and N3, is
thermal. In particular, for N3 � N1 � N2, the state

jWi reduces to

jw12i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N1

p
X1
n¼0

anjn; n; 0i;

showing maximal entanglement between atoms

with different momenta. On the other hand, for

N2 � N1 � N3, jWi reduces to

jw13i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N1

p
X1
n¼0

bnjn; 0; ni; ð5Þ

showing maximal entanglement between atoms

and photons. Both the states jw12i and jw13i are

pure bipartite states. They are maximally entan-

gled states for the given number of quanta, ac-

cording to the excess von Neumann entropy

criterion [17], whereas the presence of a third mode

reduces, in general, the entanglement between the
other two modes [18]. The atom-radiation entan-

gled state (5) is what supports our teleportation

scheme. Incidentally, it has the same form of the

twin-beam state of radiation used to realize con-

tinuous variable optical teleportation [9], and this

will allows us to employ the same kind of Bell

measurement scheme.
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In the quantum limit g
ffiffiffiffi
N

p
� xr and for

g
ffiffiffiffi
N

p
t � 1 the population of the three oscillators

are given by

N1ðtÞ �
1

4
1

"
þ g

ffiffiffiffi
N

p

2xr

� �2
#
e2g

ffiffiffi
N

p
t; ð6Þ

N2ðtÞ �
1

4

g
ffiffiffiffi
N

p

2xr

� �2

e2g
ffiffiffi
N

p
t; ð7Þ

N3ðtÞ �
1

4
e2g

ffiffiffi
N

p
t ð8Þ

so that N1 � N3 � N2. Furthermore, maximal en-
tanglement between modes 1 and 3 requires N2 6 1,

so that the interaction time must satisfy the fol-

lowing limits:

1

g
ffiffiffiffi
N

p � tint 6
1

g
ffiffiffiffi
N

p ln
4xr

g
ffiffiffiffi
N

p
� �

: ð9Þ

The state r we want to teleport onto the atomic

mode a1 pertains to an additional radiation mode

a4. The Bell measurement is jointly performed on
a3 and a4, and consists in the measurement of the

real and the imaginary part of the complex oper-

ator Z ¼ a3 þ ay4. The measurement of ZR ¼ Re½Z�
and ZI ¼ Im½Z� corresponds to measuring the sum-

and difference-quadratures x3 þ x4 and y3 � y4 of

the two modes, where the quadrature x of a mode

b is the operator ðbþ byÞ=2, and the quadrature y
is the operator ðb� byÞ=2i. Such a measurement
can be experimentally implemented by multiport

homodyne detection (i.e., by mixing the two modes

in balanced beam splitter and then measuring two

conjugated quadratures on the outgoing modes,

see Fig. 1), if the two modes have the same fre-

quencies [19,20], or by heterodyne detection

otherwise [21]. The measurement is described by

the following probability operator-valued mea-
surement (POVM) [22], acting on the Hilbert space

of mode a3

Pa ¼
1

p
DðaÞrTDyðaÞ; ð10Þ

where a is a complex number, DðaÞ is the dis-

placement operator DðaÞ ¼ expfaay3 � �aaa3g and
ð�ÞT denotes the transposition operation. The result

of the measurement is classically transmitted to the

receiver�s location (Bob), where a displacement
operation DðaÞy is performed on the conditional

state .a (see below on how to implement coherent

atomic displacement). The dynamics of the con-

ditional measurement is described by [22]

pa ¼ Tr13 jw13ihw13jI1½ 	Pa�;

.a ¼
1

pa
Tr3 jw13ihw13jI1½ 	Pa�;

sa ¼ DðaÞ.aDyðaÞ;

ð11Þ

where pa is the probability for the result a in the

Bell measurement, I is the identity operator, .a is

the conditioned state of the atomic beam after the

measurement, and sa is the conditioned state after
the displacement operation. In other words, sa
describes the conditioned state (sub-ensemble)

which would have been selected if only the runs

with outcome a from the heterodyne measurement

were accepted. The teleported state (global en-

semble) corresponds to the average over all the

possible outcomes, i.e.,

s ¼
Z
C

d2apasa

¼
Z
C

d2aDðaÞTr3 jw13ihw13jI1½ 	Pa�DyðaÞ: ð12Þ

After performing the partial trace and with some

algebra [22], one has

s ¼
Z

d2a
pK

exp

(
� jaj2

K

)
DðaÞrDyðaÞ; ð13Þ

where

K ¼ 1þ N1 þ N3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 þ N3ÞðN1 þ N3 þ 2Þ

p
:

Eq. (13) shows that the overall dynamics of our

scheme is equivalent to that of a Gaussian noisy

channel with parameter K [22,23]. The density

matrix s, describing the final state of the atomic

mode a1 coincides with r in the limit N1 þ N3 ! 1,
i.e., for high gain in the CARL dynamics. Notice

that N , and in turn N1 and N3, may vary in

the repeated preparations of the condensate, thus

introducing additional noise in the teleported

state.

The displacement operation DðaÞ that should be

performed on the conditional atomic state .a can

be obtained using the same CARL Hamiltonian in
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the condensate, by injecting a suitably modulated

pulse, i.e., by exciting the mode a3 in a classical

coherent state. In this case, assuming a short pulse,

the effective Hamiltonian may be written as

H2 ¼ ig
ffiffiffiffi
N

p
cða1 þ a2 þ h:c:Þ, where c is the ampli-

tude of the modulated pulse. The terms propor-
tional to ayjaj, j ¼ 1; 2 in (3) can be discarded, and

the evolution operator U ¼ expðiH2sÞ ¼ D1 ðaÞ	
Dy

2ðaÞ coincides with the product of two displace-

ment operators, one for each of the atomic modes,

with amplitude given by a ¼ �g�cc
ffiffiffiffi
N

p
s, where s is

an effective interaction time. The amplitude c of

the pulse can suitably tuned to obtain the desired

value of the amplitude a, matching the results
of the Bell measurements. The above dynamics

displaces both the atomic modes, however with-

out introducing quantum correlations. Therefore,

we just ignore the effect on the atomic mode a2,
which does not participate to the teleportation

protocol.

The time duration of the pulse should be small

when compared to the time scale of the CARL
dynamics and the decoherence time of jw13i un-

der free evolution. This is in order for two rea-

sons: on the one hand we have that the CARL

dynamics should be switched off after produc-

ing the desired entangled state jw13i, and there-

fore the whole protocol should be completed

within the decoherence time. On the other hand,

the displacement should be performed on a time
scale comparable to that of the Bell measure-

ment, i.e., before the reset of the dynamics and

the generation of the subsequent copy of the

atom-radiation entangled state in the new con-

densate by CARL. Overall, our protocol may be

described as a feedforward control scheme, ran-

domized according to the statistics of the Bell

measurement.
In order to discuss the readout part of our

scheme, we should go back to the initial entangled

scheme produced by the CARL dynamics. This

should be more properly written as jw13i ¼
ð1þ N1Þ�1=2 PN

n¼0 b
njn; 0; n;N � ni, where the

fourth entry in the ket describes the number of

atoms in the condensate. Since N is a large number

(of the order of 105–106) writing the state as in Eq.
(5) is perfectly admissible as far as we are con-

cerned with its dynamics. However, this should be
taken into account if we want to reconstruct the

state of the output atomic beam. Let us consider,

for the sake of simplicity, the initial light signal

state as a pure state r ¼ juihuj, jui ¼
P

n unjni.
In the limit of high CARL gain the teleported

state on the atomic beam is given by ju0i ¼P
n unjn;N � ni. This indicates that any proper

verification of the teleportation should involve a

measurement also on the condensate, e.g., a

two mode tomographic method involving both

the measurement of both momentum-mode and

condensate quadratures [24,25]. Such kind of

measurements are at present experimentally chal-

lenging and therefore, in order to obtain an ac-
cessible readout system, we propose to check only

the statistics of the population junj
2
, i.e., the di-

agonal part of the teleported state, which can be

achieved by counting atoms. By choosing the ini-

tial radiation state jui as a squeezed vacuum or a

Fock number state, we obtain an atomic tele-

ported state with an even–odd or sub-Poissonian

atomic number distribution. Although this kind of
measurements would be only a partial verification

of teleportation it would show the transferral of a

nonclassical such as sub-Poissonian statistics. In

turn, this implies that nonlocal correlations

between the input radiation mode and the output

atomic mode has been established and exploited.

In conclusion, we have proposed a novel

scheme to realize the interspecies teleportation of
the quantum state of a single mode radiation field

onto the collective state of atoms with a given

momentum out of a Bose–Einstein condensate.

The entangled resource needed for the teleporta-

tion protocol is established through the CARL

interaction of a single mode with the condensate in

presence of a strong far off-resonant pump laser,

whereas the coherent atomic displacement is ob-
tained through the same interaction by injecting a

suitably modulated short coherent pulse. The

present description assumed an ideal BE conden-

sate where decoherence effects have been ne-

glected. Indeed, the main goal of the present paper

has been to put forward the idea of interspecies

teleportation in coherent atomic systems rather

then discussing the details of possible implemen-
tations. A more realistic, and also unavoidably

more technical treatment, is in progress, also in
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view of an experimental realization, and results

will be reported elsewhere.
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