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Abstract 

We present a new tomographic method that is suited to imaging from very weak signals with a high resolution apparatus. 

The method arises from a procedure for measuring the density matrix of the radiation field, and relies on a correspondence 
between images and trace-class matrices. Accurate image reconstructions are achieved with relatively small numbers of 
data. 

1. Introduction 

The essential problem of tomographic imaging is 

to recover a mass distribution ~(x, y) in a 2-d slab 
from a finite collection of one-dimensional projec- 
tions. The situation is schematically sketched in Fig. 
la where ~(x, y) describes two circular holes in a 
uniform background. The tomographic machine, say 
an X-ray equipment, collects many stripe photos of 
the sample from various directions 4, and then nu- 
merically performs a mathematical transformation - 

the so-called inverse Radon transform [ l] - in order 
to reconstruct ~(x, y) from its radial profiles at dif- 

ferent 4. The problem which is of interest for us is 
when the radial profiles are not well resolved digital- 
ized functions, but actually represent the density dis- 
tribution of random points - as if in our X-ray ma- 
chine the beam is so weak that radial photos are just 

’ Permanent address: Dipartimento di Fisica “Alessandro Volta”, 

via A. Bassi 6, i-27100 Pavia, Italy. 

the collection of many small spots, each from a sin- 

gle X-ray photon (this situation is sketched in Fig. 
lb). It is obvious that this case can be reduced to the 
previous one by counting all points falling in a prede- 

termined l-d mesh, and giving radial profiles in form 
of histograms (this is what actually happens in a real 
machine, using arrays of photodetectors). However, 

we want to use the whole available information from 
each “event” - i.e. the exact l-d location of each spot 
- in a way which is independent of any predetermined 

mesh. In practice, this situation occurs when the signal 
is so weak and the machine resolution is so high (i.e. 
the mesh-step is so tiny) that only zero or one photon 

at most can be collected in each channel. As we will 
see in this paper, this low-signal/high-resolution case 
naturally brings the imaging problem into the quan- 
tum domain. Here, we have at disposal a technique 
[3] for measuring the density matrix of the field in 
terms of homodyne outcomes (the equivalent of our 
radial spots) for different phases of the local oscillator 
(the equivalent of our C$ angle). This technique - ac- 
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Fig. I (a) Tomography of a simple object: analytical transmission profiles are reported for do = 0, ?r/2. (b) The same case of (a), but 

here for very weak signals: in this case the transmission profiles are given in terms of random points on a photographic plate (here 

obtained from a Monte Carlo simulation). 

tually called quantum homodyne tomography - needs 
no a priori mesh or cutoff [ 31: the image to be re- 
covered is just the Wigner function of the field [ 41, 
which is in one-to-one correspondence with the den- 

sity matrix. Extending this correspondence to the case 
of customary imaging, we obtain a description of im- 
ages in terms of density matrices. These are still trace- 
class matrices (corresponding to “normalizable” im- 

ages), but are no longer positive definite, because an 
“image” generally is not a genuine Wigner function 
and violates the Heisenberg relations on the complex 
plane (the phase space of a single mode of radiation). 
Hence, such density matrices are unphysical: they are 
just a mathematical tool for imaging. This is the rea- 
son why we name this method Fictitious Photons To- 
mography. As we will see in the following, the image 
resolution improves increasing the rank of the density 
matrix, and in this way the present method also pro- 

vides a new algorithm for image compression, which 
is particularly suited to angular image scanning. 

After briefly recalling the customary tomographic 
imaging technique in Section 2, in Section 3 we briefly 
present the method of quantum tomography and the 
correspondence between density matrices and images. 
Section 4 analyzes the new imaging algorithm on the 
basis of numerical checks and Monte Carlo experi- 

ments. Section 5 closes the paper with some conclud- 
ing remarks. 

2. Classical imaging 

In this section we shortly review the customary 
imaging technique based on the filtered inverse Radon 

transform. In order to allow an easy comparison with 
the quantum case we adopt the complex notation, with 
LY = x + iy representing a point in the image plane. In 

this way cy and d are considered as independent vari- 

ables, and the 2-d image - here denoted by the same 
symbol W(a, &) used for the Wigner function - is 
just a generic real function of the point in the plane 2. 
In the most general situation W( cy, 6) is defined on 
the whole complex plane, where it is normalized to 
some finite constant, and it is bounded from both be- 
low and above, with a range representing the dark- 
ness nuance. For X-ray tomography W( a, c?) roughly 
represents the absorption coefficient as a function of 
the point cy. (We consider a linear absorption regime, 
i.e. the image extension is negligible with respect to 

* Usually in the complex notation z = f(a) denotes a holomor- 
phic function, whereas z = f( cy, Ly) represents a generic function 

- i.e. both holomorphic and antiholomorphic - of (Y. 
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the radiation absorption length in the medium. At the which is commonly used in conventional tomographic 

same time we neglect any diffraction effect.) imaging (see, for example, Ref. [ 21). 

A tomography of a two-dimensional image 

W( cr, (u) is a collection of one-dimensional projec- 

tions p( x, 4) at different values of the observation 
angle 4. The mathematical definition is given by the 
Radon transform of W( CY, li), namely 

Let us now critically consider the above procedure 
in the case of very weak signals, namely when p (x, ~$1 
just represents the probability distribution of random 
X-ray spots on a fine-mesh multichannel: this situation 
is sketched in Fig. lb. From Eq. (5) one can recover 
W( (Y, C) only when the analytical form of p( x, 4) is 
known. But the experimental outcomes of each pro- 

jection actually are random data distributed according 
top(x,4), whereasinordertorecover W(a,&) from 

Eq. (5) one needs to evaluate first order derivatives of 
p(x, 4). The need of an analytical form for projec- 

tions p(x, 4) requires a filtering procedure on data, 
and this can be accomplished either by putting a high- 

k cutoff on the Fourier transform (2)) or by “splining” 
data in order to use Eq. (5). Eq. (3) formally gives 
W((Y, &) in form of average on data, but from Eq. 
(4) it is apparent that the kernel K(z) is unbounded, 
and thus it is not suited to statistical sampling, unless 
boundness is artificially introduced by fixing a finite 
value of E. 

P(X94) = 
+ady J ; W((X+ iy)ei4, (x - iy)e-+). 

-cm 

(1) 

In Eq. ( 1) x is the current coordinate along the di- 

rection orthogonal to the projection and y is the coor- 
dinate along the projection direction. The situation is 

illustrated in Fig. 1 where W(cu, G) is plotted along 
with its p( x, 4) profiles for 4 = 0, z-/2 for a couple 

of identical circular holes that are symmetrically dis- 
posed with respect to the origin. 

The reconstruction of the image W( a, E) from its 
projections p (x, 4) - also called “back projection” - 

is given by the inverse Radon transform 

[ 

-co ( 

+CO 

X I dxp(x,4) exp 
-cc 

where cu,#, = Re( cre-'" ) 

ik(x-a+)], (2) 

Upon exchanging integrals 

over k and 4, the image W(a, E) can be written as a 
double integral 

W(cu,C) = - 
J’ s 

dxp(x, 4) K(x - (~4) . (3) 
71 

0 -m 

The kernel K( z ) in Eq. (3) is given by 

K(z) = -fP$ = -81iy+$Re 
1 

(z + is)2 ’ 
(4) 

where P denotes the Cauchy principal value. Integrat- 
ing Eq. (3) by parts, one obtains the familiar filtering 
procedure 

W(a,cu) = 
rd$ J J GP 

+mdw ~P(x, $)/ax 

x-cY4 ’ 
(5) 

0 -cc 

All the above procedures lead to approximate image 
reconstructions, and the choice of any kind of smooth- 

ing parameter unavoidably affects in a systematic way 

the statistics of errors of imaging. To the knowledge 
of the authors there is no systematic analysis of these 

effects in the current literature. Moreover, such pro- 
cedures are not suited to the case of sparse data, cor- 
responding to very weak signals. In the next section 
we will briefly recall a quantum tomographic method 
that has been originally introduced in order to mea- 

sure the density matrix of the radiation field without 
approximations. Then, in Section 4 we will show how 
such method can be used for conventional imaging in 
presence of weak signals, providing both ideally con- 

trolled resolution and reliable error statistics, 

3. Quantum tomography 

In recent papers [ 3,5,6] a new method to recover the 
density matrix 0 of a single mode of radiation field has 
been developed. The method relies on measurements 
of the field quadratures 

84 = ;( atei + ae-i4 ) (6) 
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at different phases 4, and therefore it is referred to as 

a Quantum Tomography. The novelty of this method 
lies on the exact computability of the density matrix, 
which is obtained only from averages on experimen- 

tal data without any cut-off. In the quantum domain 

this is of great relevance, because any smoothing pro- 
cedure in the phase space ((Y, 5) produces systematic 
errors that make the state “more classical”, and pre- 
vents from detecting quantum features, such as oscil- 
lations of the photon number probability. In the fol- 
lowing section we will come back to the problem of 

conventional imaging, and we will apply this method 
as a new technique for image reconstruction. 

The starting point of quantum tomography is the 

operator identity 

(7) 

which in polar coordinates (Y = (i/2) rei4 becomes 

(8) 

with 

(nlK(x - 2,) jn + d) 

(10) 

= 2e-1”dJ d TZ! n (-1)” n+d 

(n + d)! 
e-+2 CJi- 

V=o ( > II - Y 

x (2vfdf 1)!Re{(-i)dD-(2V+d+2)(-2iX)}. 

(11) 

D,(z) denoting the parabolic cylinder function of in- 
dex (+. Then, according to Eq. ( 10)) the reconstructed 

density matrix P,,~+J is obtained by averaging the ker- 
nel (nl~( x - .Q) In + d) over the experimental data 
{(x. 4)). Typically, the average on the phase 4 is 
evaluated by means of a Cavalieri-Torricelli integra- 
tion formula with F equally spaced phases +f = f7~/F 
(f=O,...,F- 1). 

From the density matrix Q~,~, one can obtain the 
Wigner function on the complex plane, 

Notice that the identity (7) is just the operator form of 
the Fourier-transform relation between Wigner func- 
tion and characteristic functions for a general density 

matrix. 
Using the resolution of the identity in terms of the 

eigenvectors of 44 and exchanging the order of the 
integrals, one obtains 

W(a,&) = J d2A ~Tr~~""+-L),ni-aa; 
(12) 

c 

where LY is the complex amplitude of the field. In the 
number representation the trace in Eq.( 12) is evalu- 
ated in the form of a discrete Fourier transform 

=d4 ia J J 
W(Q,~) =Re~@@~n(n,d; I~l)e,,,,,+d, 

@= T- dxp(x,cb)K(x -2,) 1 (9) d=o n=O 

(13) 
0 -cu 

where p(x, 4) is the probability distribution of the 

field quadrature 24 at the phase 4, and the kernel 
K(z) has the same form given in Eq. (4). As shown 
in Ref. [ 61, although the kernel K(x) is an unbounded 
function (not even a tempered distribution), for some 

vectors I@) and 1~) in the Hilbert space the matrix 
element ($,IK( x - .f$ ) 19) is bounded as a function of 
X. This occurs in the case of the number representation, 
where the matrix elements ~~,~+d z (n]$]n + d) are 
given by 

n(n,d; Jcul) = (-1)“2(2 - &0)(24~ 

d n! 
X 

(n+d)! 
eC21nl’L$(/2a/2), (14) 

where L:(x) denote Laguerre polynomials. In prac- 
tice, the Hilbert space has to be truncated at some fi- 
nite dimension dH, and this sets the resolution for the 
reconstruction of W( a, E). However, as we will see 
in the following, this resolution can be chosen at will, 
independently of the number of experimental data. 
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4. Quantum imaging 

In this section we show how the method presented 
in Section 3 can be used for ordinary imaging from 

weak signals. In general an image does not correspond 
to a Wigner function of a physical state, due to the 
fact that the Heisenberg relations unavoidably produce 
only smooth Wigner functions, whereas a conventional 
image can have very sharp edges. For example, in the 

case of a uniform circle of radius R the product of 
uncertainties corresponding to orthogonal directions 

is given by 

(Ax;) (Ax;+,& = R4/9, (15) 

and the Heisenberg lower bound for the uncertainty 

product is thus violated for sufficiently small radius 
(R < d/2). However, if one allows the density ma- 
trix P,,~, to be no longer positive definite (but still 
trace class), a correspondence between density matri- 

ces and images is obtained, which holds in general. In 
this way every image is stored into a trace-class ma- 
trix Q~,~, via quantum tomography, and a convenient 

truncation of the matrix dimension du can be cho- 

sen. We emphasize again that the density matrix does 

not correspond to any physical state of radiation, and 
this is the reason why we name this method Fictitious 
Photons Tomography. 

The connection between images and matrices is the 
main point of our approach: the information needed 
to reconstruct the image is stored in a dx x dx ma- 

trix. For a suitably chosen dimension dx the present 
method can also provide a procedure for image com- 
pression. Notice that the correspondence between im- 
ages and trace-class matrices retains some symmetries 

of the image, which manifest as algebraic properties 
of the matrix Q~,~*. For example an isotropic image 

(like a uniform circle centered at the origin) is stored 
in a diagonal matrix. Other symmetries are given in 

Table 1. 
The truncated Hilbert space dimension d% sets the 

imaging resolution. The kind of resolution can be 
understood by studying the behavior of the kernels 
(nlK( x - .Q) In + d) in Eq. ( 11) which are averaged 
over the experimental data in order to obtain the matrix 
elements ~,,~+d. Outside a region that is almost inde- 
pendent of rz and d, all functions (nlK( x - 2,) 111 +d) 
decrease exponentially, whereas inside this region they 

Fig. 2. Tomographic reconstruction of the font “a” for increasing 

dimension of the truncated matrix. <ix = 2,4,8. 16,32,48. The 

plot is obtained by integrating numerically Eq. ( IO), from analyt- 

ically assigned transmission profiles p(x. c#I), and then using F.q. 

(13). 

oscillate with a number of oscillations linearly increas- 

ing with 2n + d. This behavior produces the effects 
illustrated in Fig. 2, where we report the tomographic 
reconstruction of the font “a” for increasing dimen- 
sion d7-1. The plot is obtained by numerically inte- 

grating Eq. ( 10) from analytically given transmission 
profilesp(x,4), andafterusingEq. (13).Aswesee 
from Fig. 2 both the radial and the angular resolutions 

improve versus dR, making the details of the image 
sharper and sharper. Due to limitations in numerical 
precision the maximum rank that we can currently 
reach is d7-1 = 48. 

For this maximum resolution in Fig. 3 we report 
the radial and the angular profiles corresponding to 
the imaging of a semicircle with unit radius centered 
at the origin: one can see that the precision of the re- 
construction stays within 5% from the exact profiles. 
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Table I 
Geometrical symmetries of an image, analytical properties of projections and algebraic properties of the corresponding matrix 

II 

Symmetry P(X.4) Q 

Isotropy P(X.4) = PO) 
X-axis mirror P(x.p-49)=P(-x,4) 
Y-axis mirror P(X,T-4) =p(x.4) 

Inversion through the origin P(X,4) =I,(-x.4) 

x 

x 
2 

a 

0 

cl.6 1 1.6 2 

r * 

Fig. 3. Radial and angular profiles (p(r) and p( C#J) respectively) 

of the reconstructed image of a uniform semicircle of unit radius 

centered at the origin. Matrix elements are obtained as in Fig. 2. 

Fig. 4. Convergence of both trace and Hilbert distance D in F.q. 

( 16) versus the dimensional truncation & of the Hilbert space. 

Here the image is a uniform circle of unit radius centered at the 

origin. The reconstructed matrix elements are obtained as in Fig. 

2, whereas the exact matrix elements are provided by E?q. ( 17). 

A quantitative measure of the precision of the tomo- 
graphic reconstruction can be given in terms of the dis- 
tance D between the true and the reconstructed image, 
which, in turn, coincides with the Hilbert distance D 
between the corresponding density matrices. One has 

D = 
s 

d2cu)AW(a,G)12 =Tr(Ah)* 

= HAP:,, +222 /AP:,,+~(~ 3 
n=o n=o A=1 

(16) 

where A [ . . .] = [ . . .] true - [ . . .] reconstructed. The con- 
vergence of D versus dx is given in Fig. 4 for a solid 
circle of unit radius centered at the origin. In this case 

the exact density matrix can be obtained from Eqs. 
( 10) and ( 1 l), and according to Table 1 it has only 

diagonal elements. These are given by 

o..n=22(-2Y(;)@(l -v,2,2R2), (17) 
V=o 

with @( CY, p, z ) denoting the confluent hypergeomet- 
ric function of argument z and parameters cy and p. 

Insofar we have analyzed our method only on the 
basis of analytically given profiles p(x, 4). As al- 
ready said, however, the method is particularly advan- 
tageous in the weak-signal/high-resolution situation, 
where the imaging can be achieved directly from aver- 

ages on data according to Eqs. ( lo), ( 11) and ( 13). 
In this case our procedure allows to exploit the whole 

available experimental resolution, whereas the image 

resolution is set at will. In Fig. 5 we report a Monte 
Carlo simulation of an experimental tomographic re- 

construction of the font “a” for increasing number of 
data. All plots are obtained at the maximum avail- 
able dimension d3-L = 48, and using F = 100 scanning 
phases. The situation occurring for small numbers of 
data is given in the first plot, where the highly resolved 
image still exhibits the natural statistical fluctuations 
due to the limited number of data. For larger samples 
the image starts to appear more and more sharply from 
the random background, and it is clearly recognizable 
for a total number of data equal to 106. Moreover; the 
present method is very eficient also from the compu- 
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Fig. 5. Monte Carlo simulation of an experimental tomographic 

reconstruction of the font “a”. The truncation dimension is fixed at 

ciw = 48, and the number of scanning phases is F = 100. The plots 

correspond to 103, 104, 105, 10s data for each phase respectively. 

tational complexity point of view, as the time needed 
for image reconstruction is quadratic in the number of 
elements of the density matrix and linear in the num- 
ber of experimental data. 

5. Conclusions 

In this paper we have presented a novel method 

for tomographic imaging. The method generalizes a 
recently proposed procedure to measure the density 

matrix of the radiation field, and relies on a corre- 
spondence between images and trace-class matrices. 

Image reconstruction is obtained by means of averages 
on experimental data, without any kind of smoothing 
or filtering procedure. In this way the method becomes 

particularly suited to the low-signals/high-resolution 
regime, when only few experimental data are at dis- 

posal and one wants to exploit the full available ma- 
chine resolution. Monte Carlo tests indicate accurate 
image reconstructions with relatively small numbers 

of data. 
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