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We address a particular instance where open quantum systems may be used as quantum probes for an emergent
property of a complex system, as the temperature of a thermal bath. The inherent fragility of the quantum probes
against decoherence is the key feature making the overall scheme very sensitive. The specific setting examined
here is that of quantum thermometry, which aims to exploit decoherence as a resource to estimate the temperature
of a sample. We focus on temperature estimation for a bosonic bath at equilibrium in the Ohmic regime
(ranging from sub-Ohmic to super-Ohmic), by using pairs of qubits in different initial states and interacting
with different environments, consisting either of a single thermal bath or of two independent ones at the same
temperature. Our scheme involves pure dephasing of the probes, thus avoiding energy exchange with the sample
and the consequent perturbation of temperature itself. We discuss the role of correlations among the probes and
the presence of a local versus a global bath. We show that entanglement improves thermometry at short times if
the two qubits are embedded in a common bath, whereas if the interaction time is not constrained, then coherence
rather than entanglement is the key resource in quantum thermometry.
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I. INTRODUCTION

Quantum sensing techniques are among the most advanced
quantum technologies and have led to major changes in
the field of metrology in the past two decades. Upon ex-
ploiting the peculiar features of quantum systems, several
novel enhanced sensors and measuring devices have been
indeed suggested and demonstrated. In particular, quantum
sensing based on quantum coherence and entanglement have
been exploited to overcome precision bounds of classical
sensors [1–4]. Among quantum sensing techniques, the use
of quantum probes has recently gained attention as a nonin-
vasive technique to estimate parameters of interest without
perturbing too much the system under investigation. The basic
scheme is the following: A simple quantum system, say a
qubit or a pair of qubits, is prepared in a given initial state
and then interacts with an external system under investigation.
After the interaction, which imprints information of some
parameter onto the state of the quantum probe, the latter is
measured to extract such information [5–9].

In this paper, we address the use of quantum probes to
estimate an emergent property of a complex system, i.e.,
its temperature [10–19]. In particular, in view of its impor-
tance for several fields of quantum information science, we
consider here quantum thermometry of a bosonic bath in
the Ohmic regime, ranging from sub-Ohmic to super-Ohmic,
which induces a dephasing dynamics on the probe system
[20–23]. The importance of studying purely dephasing maps
resides in the fact that this model allows us to focus on the
effects of quantum decoherence on thermometry, neglecting
the energy exchanges between the probe and the bath [24–27].
Dephasing induces a purely quantum dynamics of the probe
with no classical analog. At first sight, quantum features

may not be expected to play a role in building an effective
thermometer. After all, temperature is an inherently classical
parameter and any change in the temperature of a sample is
just changing its (classical) equilibrium distribution. However,
quantum probing involves out-of-equilibrium states and since
temperature is governing the amount of thermal fluctuations,
the inherent fragility of quantum systems against decoherence
is the key feature making the overall thermometric scheme
very sensitive.

The use of single qubit as a thermometer has been ana-
lyzed recently, illustrating the interplay between the dephas-
ing dynamics and the Ohmic structure of the environment
in determining the overall precision [28,29]. Our aim is to
generalize this model to study the effect of quantum correla-
tions on thermometry. Here, we devote attention to the role of
correlations in the estimation procedure and consider both the
use of correlated probes as well as thermometry of correlated
environments. In particular, we investigate the use of two-
qubit quantum probes to estimate the temperature of different
classes of bosonic systems at equilibrium, either made of a
single thermal bath interacting with the two qubits or of two
independent environments having the same temperature, each
one interacting locally with one of the qubits. We compare
performances with those obtained with a single-qubit probe
and analyze in some details the interplay among the structure
of the baths, the interaction time, and the quantum correlations
between the qubits in determining the overall thermometric
precision.

The paper is structured as follows. In Sec. II we briefly re-
view the main concepts of quantum estimation theory that will
be used throughout the work. In Sec. III we present the phys-
ical model of a two-qubit system interacting with a bosonic
thermal bath, and we analyze how its dynamics is affected by a
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common environment or two independent and identical baths.
In Sec. IV we assess the role of entanglement in the precision
of the probing strategy, and then in Sec. V we investigate the
form of the POVM that guarantees optimal performances in
possible experimental implementations. Moreover, we test the
robustness of the probes against initial perturbations, and we
compare the performances of Bell/product states with more
general probes. Section VI closes the paper with some final
remarks.

II. TOOLS OF QUANTUM ESTIMATION THEORY

In several sensing schemes, there is no direct access to the
physical quantities of interest, which need to be evaluated by
means of indirect measurements. In turn, inferring the value
of the quantity of interest by inspecting a set of data coming
from the measurement of a different observable is precisely
the goal of estimation theory.

Here we discuss how to optimally estimate the temperature
T of a (bosonic) thermal bath by performing a measurement
on a quantum probe which is let interact with the bath,
considered as its environment. The probe state is described
by a density operator ρ which, thanks to the interaction with
the environment, becomes a function of the temperature of
the bath ρ → ρT . In other words, T , the thermodynamical
temperature of the bath, becomes just a parameter of the probe
state having nothing to do with a possible probe temperature.
This situation is at variance with classical thermometry, where
the probe is let interact with the sample until it reaches equi-
librium. Then the temperature read from the probe represents
the thermodynamical temperature of both the sample and
the probe. The larger set of available states and the inherent
fragility of quantum states against decoherence make quan-
tum thermometry potentially more precise than any classical
protocol.

To determine the parameter T , M repeated measurements
of a probe observable X are performed on identical prepa-
rations of the probe and the outcomes x = {x1, x2, . . . , xM}
are then used to construct an estimator T̂ (x) of the temper-
ature T . Hence, data will be distributed around the mean
value of the estimator according to the probability distribution
p(x|T ) =

∏M
k=0 p(xk|T ) (which is the conditional probability

of obtaining the outcome xk when the parameter has value T )
[2]:

⟨T ⟩ =
∫

d x p(x|T ) T̂ (x), (1)

with a certain variance σ 2
T , which characterizes the precision

of the parameter estimation. At a classical level, for unbiased
estimators, the variance of such distribution is bounded from
below according by the Cramèr-Rao inequality [30]:

σ 2
T ! 1

MF (T )
, (2)

where F (T ) is the Fisher information for a single outcome,

F (T ) =
∫

d x
1

p(x|T )

(
∂ p(x|T )

∂T

)2

. (3)

In turn, F (T ) quantifies the amount of information carried by
the random variable x about the unknown parameter T . Upon

optimizing over all the possible quantum measurements one
obtains the quantum Cramèr-Rao bound

σ 2
T ! 1

MF (T )
! 1

MH (T )
, (4)

where H (T ) is the quantum Fisher information (QFI from
now on). One of its explicit forms is

H (T ) = 2
∑

m,n

| ⟨ψm| ∂T ρT |ψn⟩ |2

λm + λn
, (5)

with ψn and λn being, respectively, the T -dependent eigenvec-
tors and eigenvalues of ρT . Clearly, the optimal measurement
is the one maximizing the QFI, while the the optimal estimator
is that saturating the inequality.

The QFI can be written in the following form as well:

H (T ) = tr
(
ρT L2

T

)
, (6)

where the symmetric logarithmic derivative (SLD) is given by

LT = 2
∑

m,n

⟨ψm| ∂T ρT |ψn⟩
λm + λn

|ψm⟩⟨ψn|. (7)

This object is particularly useful since it can be proven that the
optimal POVM is the spectral measure of the SLD. Related
to the QFI, there is another figure of merit that gives a
quantification of the precision of the estimation. This is the
quantum signal-to-noise ratio (QSNR), expressed as

R(T ) = T 2H (T ). (8)

The expression of the QSNR in Eq. (8) is derived from
the ratio between the parameter T 2 and the (single-measure)
variance of the estimator. In this way, a large value for R
means that the estimator has a small relative error, i.e., the
error is small compared to the value of the parameter to be
estimated. The QFI, QSNR, and SLD are indeed the main
tools that will be used in the following.

III. PHYSICAL MODEL

The single-qubit case has already been described in pre-
vious works, dealing with the purely dephasing bath, related
both to the estimation of temperature or other bath parameters
[28,29,31,32]. Here we focus, under the same conditions, on
the two-qubit probe scenario, which allows us to explore the
role of quantum correlations and the number of qubits in
inferring the temperature. We assume that initially the global
state is separable ρ(0) = ρS (0) ⊗ ρB(0), where ρB(0) is a
thermal state of the environment at inverse temperature β and
characterized by the spectral density:

Js(ω,() = ωs

(s−1
e−ω/(, (9)

where ( is the cutoff frequency and s is a Ohmicity param-
eter which distinguishes between sub-Ohmic (s < 1), Ohmic
(s = 1), and super-Ohmic (s > 1) regime. Spectral densities
describe which bath’s frequencies are coupled to the system.
For s = 1, the coupling to low frequencies increases linearly
(for ω < (). Sub- and super-Ohmic spectral densities can
thus be seen as a low- and band-pass filters, respectively.
Depending on the physical system under investigation, the
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Ohmicity parameter s may assumes different values. For in-
stance, free background gas in one, two, or three dimensions is
described by sub-Ohmics, Ohmic, and super-Ohmic, respec-
tively [33,34]. Other examples that describe the interaction
with phonon baths (Ohmic) or electromagnetic fields (sub-
Ohmic) can be found in Refs. [35–37]. Since we want to
make our analysis as general as possible, we consider s as a
free parameter and we analyze its role in the determining the
maximal extractable information from the environment.

The probe interacting with the environment is composed
of two qubits, which can be in a product or entangled initial
state. Moreover, the two qubits can be embedded in a common
environment or in independent local baths.

A. Common bath

The Hamiltonian of two qubits interacting with a same
bosonic environment can be written as

H =
2∑

j=1

ω
( j)
0

2
σ

( j)
3 +

∞∑

k=0

ωkb†
kbk +

2∑

j=1

∞∑

k=0

σ
( j)
3 (gkb†

k + g∗
kbk ),

(10)
where the index j labels the qubits and the index k labels the
modes of the bath. σ

( j)
3 is the third Pauli matrix and b(b†) are

the annihilation (creation) bosonic operators. The ω
( j)
0 are the

two qubits proper frequencies, here assumed to be the same,
and {ωk} are the bath frequencies. The dephasing dynamics
generated from the spin-boson model in Eq. (10) is analyti-
cally solvable [20,21] and no further approximations on the
dynamics are required. Moving to the continuum

∑
k gk →∫

dω Js(ω,()(2 |g(ω)|)−2 and letting the compound system
probe plus bath evolve up to rescaled dimensionless time
τ = (t according to the above Hamiltonian, after tracing over
the bath’s degrees of freedom, one finds that the dynamics of
the two-qubit reduced density matrix can be expressed as [38]

ρCB(τ, T ) = V (τ, T ) ◦ R(τ ) ◦ ρ, (11)

where CB stands for “common bath” and V (τ, T ) is given by

V (τ, T ) =

⎛

⎜⎜⎜⎝

1 e−*s (τ,T ) e−*s (τ,T ) e−4*s (τ,T )

e−*s (τ,T ) 1 1 e−*s (τ,T )

e−*s (τ,T ) 1 1 e−*s (τ,T )

e−4*s (τ,T ) e−*s (τ,T ) e−*s (τ,T ) 1

⎞

⎟⎟⎟⎠

(12)
and

R(τ ) =

⎛

⎜⎜⎜⎝

1 e2i f (τ ) e2i f (τ ) 1
e−2i f (τ ) 1 1 e−2i f (τ )

e−2i f (τ ) 1 1 e−2i f (τ )

1 e2i f (τ ) e2i f (τ ) 1

⎞

⎟⎟⎟⎠
, (13)

and ◦ is the Hadamard (entrywise product), while ρ is the
initial state of the qubits.

The decoherence function depends on time and the dimen-
sionless temperature T = ((β )−1. By expressing also ω in
unit of (, i.e. ω → ω/(, we may write

*s(τ, T ) =
∫ ∞

0
dω e−ω 1 − cos ωτ

ω2−s
coth

(
ω

2T

)
, (14)

whose analytic expression can be found in [29]. The function
f (τ ) is instead a temperature-independent quantity

f (τ ) = 1
2

∫ ∞

0
dω Js(ω)

ωτ − sin ωτ

ω2
. (15)

The matrix V (τ, T ) is dominant at short times and the matrix
R(τ ) is able to create entanglement between the qubits.

B. Local baths

In the case the two qubits interact with identical but inde-
pendent local environments, the Hamiltonian takes the form

H=
2∑

j=1

[
ω

( j)
0

2
σ

( j)
3 +

∞∑

k=0

ωkb( j)†
k b( j)

k + σ
( j)
3

∞∑

k=0

(
gkb( j)†

k + g∗
kb( j)

k

)
]

.

Let the initial density matrix of the bath be factorized ρb(0) =
ρ (1)

B ⊗ ρ (2)
B , where ρ (1,2)

B are thermal Gibbs states at dimen-
sionless temperature T . In this case, the evolution of the probe
is given by

ρLB(τ, T ) = W (τ, T ) ◦ ρ, (16)

where LB stands for “local baths” and W (τ, T ) is given by

W (τ, T )=

⎛

⎜⎜⎜⎝

1 e−*s (τ,T ) e−*s (τ,T ) e−2*s (τ,T )

e−*s (τ,T ) 1 e−2*s (τ,T ) e−*s (τ,T )

e−*s (τ,T ) e−2*s (τ,T ) 1 e−*s (τ,T )

e−2*s (τ,T ) e−*s (τ,T ) e−*s (τ,T ) 1

⎞

⎟⎟⎟⎠
.

(17)

Since the evolution of the qubits in local and identical baths is
the same as sending twice a single qubit through the channel,
W (τ, T ) is the tensor product of two single qubit dephasing
maps W (τ, T ) = V (τ, T ) ⊗ V (τ, T ), where V (τ, T ) takes
the form [28]

V (τ, T ) =
(

1 e−*s (τ,T )

e−*s (τ,T ) 1

)
. (18)

IV. TWO-QUBIT THERMOMETRY

We now compare the performances of two-qubit quantum
probes for the temperature by analyzing the behavior of the
QFI. We consider two different initial states for the qubits, i.e.,
initially entangled and initially separable probes, and we study
the effect of the probe interaction with a common bath against
local baths. Due to the convexity properties of the QFI [39],
we focus on initial pure states for the probe. More specifically,
to assess the effect of entanglement, we compare the precision
obtained using Bell states probe to that achievable by product
states.

A. Entangled qubits

We start by analyzing the performances of quantum probes
initially prepared in one of the Bell state: |ϕ±⟩ = 1√

2
(|00⟩ ±

|11⟩) and |ψ±⟩ = 1√
2
(|01⟩ ± |10⟩). We first consider the sce-

nario with a common environment: The Bell states |ψ±⟩ are
not changed by the map [Eq. (11)], while |ϕ±⟩ are affected by

032112-3



FRANCESCA GEBBIA et al. PHYSICAL REVIEW A 101, 032112 (2020)

the environment. Indeed, for both states |ϕ±⟩, the QFI is

H ent
CB (τ, T, s) = [4 ∂T *s(τ, T )]2

e8 *s (τ,T ) − 1
. (19)

Notice that this quantity does not depend on f (τ ). However,
when the interaction of the probe with two identical and
independent local baths is considered, all four Bell states lead
to the same QFI:

H ent
LB (τ, T, s) = [2 ∂T *s(τ, T )]2

e4*s (τ,T ) − 1
. (20)

A numerical evaluation of the QFI shows that the Bell states
|ϕ±⟩ in a global-bath scenario and any of the Bell states in
local baths are indeed optimal within the subset of states

|,α⟩ = cos α |00⟩ + sin α|11⟩, (21)

|.α⟩ = cos α |01⟩ + sin α|10⟩, (22)

with α ∈ [0, 2π ] a real parameter.

B. Separable qubits

Let us consider two qubits initially prepared in the product
state |++⟩, where |+⟩ = 1√

2
(|0⟩ + |1⟩), which is a particular

instance of the one-parameter family of states

|ψαψβ⟩ := |ψα⟩ ⊗ |ψβ⟩, |ψα⟩ = cos α |0⟩ + sin α|1⟩.
(23)

In the common-bath case, the QFI has the expression

H sep
CB (τ, T, s)

= 4(2 − e2*s (τ,T ) + 2e4*s (τ,T ) + e6*s (τ,T ) )[∂T*s(τ, T )]2

3 e8 *s (τ,T ) − 2 e4 *s (τ,T ) − 1
.

(24)

Again, the quantity f (τ ) does not play a role in the estimation
of the temperature. In the case of local independent baths,
instead, the QFI reads

H sep
LB (τ, T, s) = 2[∂T*s(τ, T )]2

e2 *s (τ,T ) − 1
. (25)

As expected it is twice the QFI of a single-qubit probe [29].
Both results Eqs. (24) and (25) can be obtained by initializing
the probe also in one of the states |−−⟩, |+−⟩, and |−+⟩.

C. Comparison

Let us now compare the behavior of the quantum signal-to-
noise ratio (QSNR) given in Eq. (8), that for sake of simplicity
we shall denote by R in the following, for different initial
states and bath parameters. In Fig. 1, we show the behavior of
R for different values of the Ohmicity parameter as a function
of the dimensionless time and temperature and for the four
possible scenarios described in Secs. IV A and IV B. The
evaluation of the QSNR can only be performed numerically,
through the integration of the decoherence function Eq. (14).
From Fig. 1, a universal behavior emerges which is inde-
pendent on the Ohmicity parameter. Indeed, we found two
optimal scenarios that give the maximum of the QSNR R. For
short time intervals (namely, τ ≪ 1), the optimal strategy to
estimate the temperature is to employ an entangled probe in a

FIG. 1. Left column: Behavior of the QSNR for three different
values of s = 0.5, 1, 3, as a function of dimensionless time τ and
temperature T . The four different colors correspond to the possi-
ble scenarios analyzed in this work, i.e., common/local bath and
entangled/separable initial state. Right column: Ratio Rent

CB/Rsep
LB for

the same three values of s.

common bath. For longer times, the estimation is more precise
if a separable initial state is left to evolve in an environment
consisting of local independent baths. It follows that, if time
is a resource that we need to use parsimoniously, then the best
option is to use an entangled probe interacting with a common
environment. On the contrary, if we can wait for longer times,
then the (absolute) best strategy is sending sequentially two
qubits prepared in a |+⟩ state through the bath, i.e., repeating
twice the single-qubit scheme [29]. In Fig. 1, we also analyze
the ratio Rent

CB/Rsep
LB to emphasize the optimal procedures in the

(τ, T )-space. As we see from the graphs, the Ohmicity param-
eter s only affects the qualitative behaviors of the ratio, and the
two different estimation strategies are clearly displayed. To
better understand why the change from one optimal strategy
to the other occurs, we examine the behavior of the quantum
Fisher information H for small values of τ :

H (T, τ, s) ≃ τ 2

⎧
⎨

⎩

1
γ (T,s) [∂T γ (T, s)]2 for H ent

CB,

1
2 γ (T,s) [∂T γ (T, s)]2 other cases,

(26)

where

*s(T, τ ) ≃ τ 2

2

∫ ∞

0
dx xse−x coth

x
2T

≡ τ 2

2
γ (T, s) (27)

at short times. So, H ent
CB outperforms by a factor 2 the other

strategies in the τ ≪ 1 regime.
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FIG. 2. Top panel: Maximum value of the QSNR in time as a
function of the temperature for different values of s. This maximum
is obtained by using separable probes in local baths, as shown in
Fig. 1. In the inset, optimal time, i.e., time at which R reaches the
maximum value, as a function of T . Lower panel: time evolution of
the QSNR for different values of s, for low (left plot) and high (right
plot) temperatures. The inset in the left plot shows a zoom of the
dynamics of the QSNR for the super-Ohmic s = 3 case.

In Fig. 2, we show the maximum value of the QSNR, called
Ropt, as a function of the temperature and for different values
of the Ohmicitiy parameter s. Notice that this maximum is
obtained in the case where two separable qubits are embedded
in local baths. We notice that, as the Ohmicity parameter s
grows, the maximal values of the QSRN decrease for a fixed
value of the temperature, except for T becoming large and the
dependency on s disappears. A decreasing QFI with increas-
ing Ohmicity parameter s was also found in Ref. [40], where
a quantum Brownian probe was strongly coupled with a reser-
voir. Large values of s imply that the higher frequencies of
the bath (with respect to ωc) strongly interact with the probe,
while small values of the Ohmicity parameter correspond to
lower frequencies coupled to the qubits. Our results thus show
that if the probe interacts mainly with low frequencies of the
bath, then the estimation of the temperature is very precise.
On the contrary, interactions with high frequencies do not
allow to extract much information about the environment. For
further readings, the role of the spectral density and Ohmicity
in quantum thermometry has been examined in Refs. [41,42].

The time corresponding to the maximum of R, Ropt, is
called optimal time τopt; notice that, especially for low tem-
peratures, it strongly depends on the Ohmicity parameter. Fur-
thermore, Fig. 2 shows agreement with the behaviour found
in the case of single qubit thermometry [29], as expected
since the maximum of the QSNR is obtained employing two
qubits in a product states that evolve in local baths. This
procedure is the same as sending twice a single qubit into
the quantum environment. For the sake of completeness, in

FIG. 3. General scheme for state |ϕ+⟩ in the same bath. The
optimal measurement consists in a Bell measurement along two Bell
states.

the lower plots of Fig. 2, we also show typical behaviors of
the QSNR as a function of time for different values of the
Ohmicity parameter and different temperature regimes. At
low temperatures R(τ ) has a maximum in time, except for the
super-Ohmic case, where a monotonic behavior is found, with
the QSNR that reaches a constant value after a certain time.
At higher temperatures, instad, the QSNR always has a single
maximum in time, in all Ohmicity regimes.

V. IMPLEMENTATIONS

In this section we analyze possible ways to experimentally
implement the optimal strategies. We focus on entangled
qubits in a common bath at short times, and separable qubits in
independent baths for longer interaction times. By calculating
the symmetric logarithmic derivative, we derive the optimal
POVM to be performed on the qubits to infer the value of
temperature in a bosonic environment.

A. SLD for Bell states in a common bath

We begin by considering the scenario of the optimal Bell
states |ϕ±⟩ in a common bath. The SLD is derived using
Eq. (7):

Lent
CB = a−|ϕ−⟩⟨ϕ−| − a+|ϕ+⟩⟨ϕ+|, (28)

where

a± = 4 ∂T*s(τ, T )
e4*s (τ,T ) ± 1

. (29)

The coefficients of the decomposition depend on the tem-
perature, time and the Ohmicity, but the projectors are
temperature- and Ohmicity-independent. The optimal proto-
col thus requires to experimentally discriminate the Bell states
|ϕ±⟩. This general scheme is sketched in Fig. 3.

B. SLD for |++⟩ states in local baths

Regarding the separable state |++⟩ coupled with two
independent local baths, the SLD has the expression

Lsep
LB = b−1− − b+1+ + c(|ϕ−⟩⟨ϕ−| + |ψ−⟩⟨ψ − |), (30)

where

b± = 2 ∂T*s(T, τ )
e*s (T,τ ) ± 1

, c = 2 ∂T*s(T, τ )
e2*s (T,τ ) − 1

, (31)
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FIG. 4. General scheme of two qubits in the |++⟩ state interact-
ing with independent baths and being measured separately along σ1.

and 1± = | ± ±⟩⟨± ± |. Although the presence of Bell states
in Eq. (30) may led to think that global measurements on both
qubits are needed to discriminate the various projections, actu-
ally this is not the case: the eigenstates of Lsep

LB are eigenvectors
of σ1 ⊗ σ1, an observable that can be accessed locally, namely,
by separate measurements on the two qubits. This scenario is
sketched in Fig. 4.

C. Robustness

We want to check the robustness of the optimal states,
namely, we want to quantify how the maximal QFI is affected
by small deviations δ from the optimal states. In particular, we
consider purity-preserving deviations, since we are primarily
interested in investigating the role of inaccuracy on the state
preparation. Indeed, we want to analyze how a small differ-
ence in the optimal parameters affects the precision of the
estimation.

We start by focusing on the two optimal scenarios. As
already mentioned, sending two qubits in a product state in
independent local environments corresponds to repeating the
same experiment twice; therefore, we can write the QFI for a
generic initial state |ψαψβ⟩ defined in Eq. (23) as the sum of
the QFI of the two single qubits:

Hαβ
LB (τ, T ) = [sin2(2α) + sin2(2β )]

[∂T *s(τ, T )]2

e2*s (τ,T ) − 1
. (32)

We now consider the perturbed initial state |ψα+δα
ψβ+δβ

⟩
around the optimal choice (α = β = π/4), we find the per-
turbed QFI:

H δαδβ

LB (τ, T ) = Hαβ
LB (τ, T )

[
1 − 2

(
δ2
α + δ2

β

)]
. (33)

On the other side, the general entangled state |,α⟩ defined in
Eq. (21) in a common bath yields

Hα
CB(τ, T ) = 16 sin2(2α) [∂TρT]2

e8*s (τ,T ) − 1
. (34)

FIG. 5. QSNR R as a function of time for s = 1, T = 1 and
different values of the parameter α in Eq. (36). Both local- and
common-bath scenarios are represented.

If we perturb the state |,α⟩ around α = π/4, then we find the
following QFI:

H δ
CB(τ, T ) ≃ H ent

CB (τ, T )(1 − 4δ2). (35)

In both cases the deviation from the optimal QFI are at second
order on the magnitude of the perturbation, i.e., the QFI
obtained from both |ϕ+⟩ and |++⟩ is robust with respect to
the probe preparation.

D. Performances of other probes

So far we maximized the QFI within specific subsets of
state, |,α⟩ and |ψαψβ⟩ for entangled and separable probes
and we found that, within these families, the states |ϕ+⟩ and
|++⟩ are optimal regardless of τ and T . We now consider the
normalized superposition:

|Sα⟩ = C(cos α |ϕ+⟩ + sin α |++⟩), (36)

where C is a normalization constant. In Fig. 5 we compare
the behavior of the QSNR for s = 1 and T = 1 for different
values of the parameter α in Eq. (36). Both the local and
global scenarios are analyzed. The largest value of the QSNR
is obtained for α = π/2, corresponding to initially separable
qubits. At shorter times, the α = 0 case, i.e., entangled qubits,
is the best probe, but only in the common-bath case. In
the common-environment scenario, moreover, there is also a
small time-interval where other probes perform better, while
this behavior is never seen in the local-bath case.

To investigate the role of other probes, we compare the
QSNR for randomly-generated pure states. In Fig. 6, we

Local baths Common bath

0.2 0.4 0.6 0.8

0.15

0.10

0.05

R R

0.20

0.15

0.10

0.05

N
0.2 0.4 0.6 0.8

N

FIG. 6. Maximum value of the QSNR R as a function of the
entanglement N of the initial state of the probes in a time interval
τ ∈ [0.2]. 2000 pure states are generated randomly, both for the
local- and common-bath scenario. We set s = 1 and T = 1. The
orange line is a guide for the eye for the maximum value of the QSNR
reached by the probe |++⟩.
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display the behavior of the maximum of the QSNR in a time
interval τ ∈ [0, 2] as a function of the entanglement of initial
state of the probe. We generated 2000 points, representing
different initial pure states with a different level of entan-
glement. Entanglement is evaluated through the negativity N
[43]. We see that, in the local-bath scenario, the separable state
|++⟩ achieves indeed the maximum of the QSNR, marked by
the orange line. All other generated states have a QSNR that
stays below this value. However, this is not the case in the
common-bath scenario, where there exist entangled probes
that perform better than the |++⟩ state and that cannot be
described through Eq. (36). These states, in fact, outperform
the product state in estimating the temperature of the bath, as
shown on the right plot of Fig. 6.

VI. CONCLUSIONS

The aim of thermometry is to estimate the temperature
of a certain object without altering its properties, temper-
ature included. When the object is a quantum system, the
idea of finding a noninvasive probe becomes a necessity, to
avoid decoherence. In this paper, we have addressed optimal
quantum thermometry for bosonic thermal baths by means of
two-qubit quantum probes. We have analyzed the case of two
independent baths, each interacting locally with a qubit, and
the case of a common reservoir acting upon the two qubits.
Moreover, we have considered two families of initial states
for the probes: Bell states and product states of the form |σ, η⟩
where σ = ± and η = ±. In particular, we have analyzed the
behavior of the QFI and the QSNR as a function of time,
temperature and ohimicity parameter. Our results show that
at short times the best way to probe the temperature of the
bath is to employ maximally entangled qubit interacting with
the same global bath, independently from the Ohmicity of the
environment. However, if time is not considered a resource,
then we found that the best estimate is obtained upon using
two qubits in a product states, each one subject to a local
environment, i.e., the best strategy is to repeat twice a single-
qubit probe measurement [28,29]. Further investigations of
the performances of multiqubit probes are necessary to go
beyond the two-qubit model and study the scaling of the QFI
with the number of probes.

Notice that the notions of same bath or two independent
replicas of the same bath do not require multiple physical
systems to be implemented in practice. In a realistic environ-
ment, the two situations correspond, respectively, to the two
qubits propagating one close to each other, to sense the same
portion of the environment, or far away, such that possible
spatial correlations of the bath may be neglected. We have

analysed possible implementations of the optimal estimation
schemes discussed above and we found that the entangled case
boils down to a Bell measurement over the entangled quits,
while the case of factorized probe may be implemented by a
local measurement performed separately on the two qubits.
We have analyzed the behavior of the estimation precision
against perturbations in the preparation of the initial state
and have shown the they contribute to decrease the QFI with
second order corrections in the perturbations, i.e., our scheme
is robust.

We have also compared the performances of the Bell and
product states with other probes. Our intent was to analyze
whether a combination of the Bell and separable states could
improve the precision of the estimation. We showed that
the absolute maximum of the QFI is indeed obtained for
independent qubits in a product state. However, there exists
temporal regions where a superposition of the two probes
perform better, though only in the common-bath scenario.
To gain more insight into the role of other probes, we have
randomly generated pure states and analyzed the maximum
value of their QFI versus the entanglement of the generated
state. We found numerical evidence that the state |++⟩ is the
optimal one in the case of local environments, while for the
common bath there exist initial entangled states of the probe
that outperform the product state in a certain temporal region
that depends upon the temperature and the Ohmicity parame-
ter. The corresponding optimal measurement, however, do not
correspond to an easy implementable one and thus it may be
challenging to achieve the corresponding enhancement in a
practical scenario.

Summarizing our results, we have that entanglement im-
prove thermometry at short times whereas, if the interaction
time is not constrained, coherence rather than entanglement,
is the key resource to improve precision. We also emphasize
that our scheme for quantum thermometry is based on pure
dephasing and it does not involve energy exchanges between
the probes and the bath. The corresponding measuring proto-
cols are thus inherently non invasive, and they may be of value
whenever a direct inspection threatens to destroy the sample,
or to perturb the temperature itself, as it would happen in the
case of very cold samples.
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