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Abstract

The entanglement between the two beams exiting a Mach-Zehnder interferometer fed by two squeezed states
involves many photons. We evaluate the degree of this multiphoton entanglement in terms of the excess
entropy of the pure state at the output. A novel kind of fourth-order correlation function based on homo-
dyne detection is suggested to reveal entanglement. Apart from the very low signals regime homodyne-
like detection shows a higher fringes visibility than the measurement of the coincidence counting rate.

Entanglement is at the basis of modern applications of quantum mechanics to the transmis-
sion and the manipulation of information. In the last decade, the entanglement between two
photons has been widely investigated, both theoretically and experimentally. Entangled
photon pairs have been used to test nonlocality of quantum mechanics, and to explore poten-
tial applications such as secure quantum key distribution and teleportation [1]. More recently,
the experimental realization of continuous teleportation [2] raised attention to multiphoton
quantum correlations, namely to the mesoscopic entanglement that can be established be-
tween two radiation beams containing many photons. The idler and the signal beams exiting
a parametric down-converter, or the two beams exiting a Mach-Zehnder interferometer fed by
squeezed states, are examples of systems where such an entanglement may appear.

In this paper, we address the problem of the quantification and the measurement of multi-
photon entanglement. In order to present explicit calculations, and to compare different
measurement schemes, we focus our attention on a specific setup: a Mach-Zehnder interfe-
rometer fed by a couple of squeezed states [3]. As we will see, the state of the two beams
exiting the interferometer ranges from a factorized state to a maximally entangled state.
Therefore, the setup is suitable for comparing different measurement schemes designed to
reveal the output entanglement.

The interferometric scheme we have in mind is depicted in Fig. 1. The input modes are
denoted by a and b, whereas BS; and BS, are symmetric beam splitters. Equal and opposite
phase-shifts ¢ are imposed in each arm of the interferometer. The evolution operator of
the whole setup can be written as Viwz(¢p) = Uexp {ip(afa — bfb)} Ut where
U=exp{iZ (a'b+bfa)} is the evolution operator of a symmetric beam splitter. After
stralghtforward calculations one rewrites Vyz(¢) as

Vamz(¢) = exp {i % bTb} exp {—i % (a'b + bTa)} exp {—i % bTb} , (1)

which shows that a Mach Zehnder interferometer is equivalent to a single beam splitter BS,
of transmissivity 7 = cos> 2, plus rotations of 7/2 performed on one of the two modes.

The interferometer is fed by a couple of uncorrelated squeezed-coherent states, which
are described by the pure state |w;) = Du(a) Dyp(a) Sa(E) S g ) |0> S where
D(a) = exp (aa' — @a) is the displacement operator and S(&) = exp [1/2(&%a'? — E%a?)] is
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Fig. 1: Schematic diagram of the setup for creating and measuring multiphoton entangle-
ment. The two input ports are fed by a squeezed-coherent state, and equal and opposite
phase-shifts are imposed in each arm. At the output the two beams are detected and corre-
lated: the squared difference photocurrent provides higher visibility than the coincidence
counting rate.

the squeezing operator, |0) being the vacuum state. In the following, we will consider a
complex field amplitude a € C and a real squeezing parameter { = r € R. Indeed, any shift
between the input signals can be reabsorbed into the internal phase shift ¢.

As a matter of fact, also the output state |y,) = Vmz(¢)|w;,) is a pure state. Therefore,
a good measure of entanglement is provided by the excess information entropy [4, 5]
which, in general, can be written as I, = S[0,] + S[0,] — S[¢] where S[0] = —Tr, [0 log 0]
is the Von-Neumann entropy of the global state of the two modes, and
S[6;] = —Tr; [0, log 0], i = a, b are the Von-Neumann entropies of the two partial traces. In
our case the output state is pure, this implies that S[0] = 0 and that the two partial traces
are equal, i.e. I, = 2S[0,]. Therefore, we introduce the degree of entanglement ¢ of the two-
mode state |y, as the normalized excess entropy

_sle.]
TN

(2)

where T[N] = S[¥n] = (1 +N)log (1+N)—NlogN is the entropy of a thermal state ¥y
with the same number of photons N = Tr, [6,a'a] of the partial trace. The degree of entan-
glement ¢ ranges from zero to unit, with ¢ = 0 for a factorized state and ¢ = 1 for a maxi-
mally entangled state.

In order to evaluate the entanglement, it is convenient to evaluate the output state of the
interferomter by evolving the two-mode Wigner function W (x,, y4; X, y»). In fact, the +/2
rotations of mode b correspond to simple rotations in the sole b-variables, that is
W' (X, Ya; Xp, Yb) = W (Xa, Ya; £yp, FXp) if 0’ = e300 6eFi3b'0  whereas the action of the
beam splitter BSy, i.e. ¢’ = U,0U corresponds to a mixing of variables of the two modes,
in formula W'(x4, ya;xp, y») = W(x, cos 6 — x, sin 0, y, cos 6 — yj, sin &; x, sin 6 + x;, cos 9,
Ya Sin & 4y, cos 0) where we use the notation 6 = ¢/2. The Wigner function at the output
results

Wout (X4 Yai Xps ¥b) = Win(x, cos 0 — yp, sin 8, y, cos 0 + x;, sin 0;
Xp €08 O — Yy 8in 9, x, 8in O + y, cos 0) , (3)

where Wiy (X4, ya; X, yp) is the initial Wigner function, i.e. the product of two identical sin-
gle-mode Gaussian Wigner functions Wiy (X4, Va; Xp, yp) = 4/ exp {—2e~> (x, — Re[a])
— 26 (y, —Im [a])* —2¢ ¥ (x, — Re [a])* — 2¢¥(y, — Im [a])*}. By integration over the b-
variables we obtain

—Re 2 —Im 2
Wout(xmya) = nZ'iZy exp {_ (xa 12:2 [aqﬁ]) _ (ya IZQ [a(p]) } ’ (4)
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which represents the Wigner function of the sole mode a after partial trace over the mode b.
The quantities X, and X, in Eq. (4) are given by

3% = ¢¥ cos? 0+ e sin? 0, Z‘i = e cos’ 0 4 € sin’ J, ®)

and ay = ay/1 —1—% sin? ¢. In order to evaluate entanglement, we note that any unitary

transformation AT acting on the single mode a does not change the value of the entropy, i.e.
S[6,] = S[T6,T"). Using this property, we displace with amplitude @, and then squeeze
with parameter r* = log \/2y/2, the Wigner function in Eq. (4), thus arriving at the fol-
lowing entropy-equivalent state

X+
Woulta:Ya) = 55 eXp{_ %) } ©)
X<y y<~x

Remarkably, the Wigner function in Eq. (6) coincides with the Wigner function of a ther-
mal states with thermal photons given by

1 1 : :
Ny =+ (22 — 1] =5 [\/1 + sin” ¢ sinh? 2r — 1] : (7)

The corresponding entropy can be easily computed, and thus the entanglement at the output
is given by

1
log (1 + Ng) + Ny log (1 +—>
Ny

1
log (1 +N) + N log (1+—>

€ =

(8)
N

One has Ny, =0 for ¢ =0, and N, = yN for ¢ = /2, where y is the squeezing fraction
of the input signals (the fraction of the total energy engaged in squeezing). At fixed inten-
sity N, the degree of entanglement is an increasing function of the squeezing fraction 7y,
with the condition ¢ =7 corresponding to the maximum value. Different values of the
intensity N does not substantially modify the behavior of ¢ versus y and ¢. At fixed
¢ =m/2, for y =1 one has ¢ = 1 independently on N, whereas for y < 1 the degree of
entanglement becomes a slightly increasing function of N. For highly excited states the
entanglement is given by the asymptotic formula

Vel Joey 9)
log N

The above discussion holds for the two input states having the same degree of squeezing.
However, a pair of input states with different squeezing fractions does not substantially
modify the picture. In this case, the entanglement stil oscillates from ¢ = 0 to a maximum
value as a function of the internal phase-shift of the interferometer, however maximally
entangled states cannot be achieved.

We now study the visibility of the interference fringes that are observed, by varying the
internal phase-shift ¢, in intensity measurements at the output of the interferometer. Besides
being originated by interference effects, the variations in the quantities measured at the out-
put also reflect the variations in the quantum correlations between the two output signals.
In analogy with experiments involving correlated photon pairs, we may consider the detec-
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tion of the coincidence counting rate at the output, namely of the fourth-order correlation
function K(¢) = (w,y| a'ab'b |w,,). However, as we will show in the following, this cor-
responds to low fringes visibility, and thus we sought for a more sensitive kind of measure-
ment. The homodyne-like detection of the output difference photocurrent
(Woul ala — bTb |y, is widely used in interferometry and generally results in a very sensi-
tive measurement scheme [6]. Starting from this consideration, we suggest the squared
difference photocurrent H(¢) = (y,,| (ala — b'b)* |w,,) as a suitable fourth-order quantity
to be measured at the output of the interferometer. The fringes visibilities of both detection
schemes are given by

Kmax - Kmin Hmax - Hmin

Vk = 07— ’ H~= 7 5
Kmax + Kmin Hmax + Hmin

(10)

In Fig. 2 we report Vx and Vg as a function of the intensity N for different values of the
input squeezing fraction y. The H-measurement visibility Vy is larger than Vi in almost all
situations, with the exception of the very low signals regime, where very few photons are
present. The behavior of fringes visibility versus intensity N also confirms that Vy repre-
sents a good measure of the entanglement at the output. As it happens for the degree of
entanglement, in fact, a couple of squeezed vacuum at the input corresponds to maximum
visibility Vi = 1 independently on the intensity. On the other hand, the coincidence count-
ing rate shows a visibility Vi that rapidly decreases versus N, and saturates to a value well
below 1/2. For non unit squeezing fraction, and moderate input intensities (N < 10), the
behavior of Vg looks qualitatively similar to that of the degree of entanglement, whereas
again Vi rapidly decreases. Remarkably, for highly excited states N > 10, the visibility Vg
has the same asymptotic dependence of the degree of entanglement ¢, in formula

N1 Aly)
~ 1 11
€= At oen (11)

where the proportionality constant A(y) ~ 1/51ogy is roughly proportional to that appear-
ing in Eq. (9).

In conclusion, we have analytically evaluated the degree of entanglement at the output of
an interferometer as a function of the input intensity and squeezing fraction, and of the
internal phase-shift of the interferometer. By varying the input energy, we can produce

N N

Fig. 2: Fringes visibility as a function of the intensity N for different values of the input
squeezing fraction y. In (a) the visibility of K-measurement Vg, and in (b) the visibility
of H-measurement V. In both plots we report the visibility versus N for five values of
the input squeezing fraction. From bottom to top we have the curves for
y =0.2,0.4,0.6,0.8,and 1.0. As it is apparent, Vj is larger than Vi in almost all situations,
with the exception of the very low signals regime.
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entangled states of arbitrary large intensity, whereas the degree of entanglement can be
tuned by varying the input squeezing fraction and the internal phase-shift. We have sug-
gested an effective experimental characterization of the output entanglement through the
measurement of the squared difference photocurrent between the output modes. The inter-
ference fringes that are observed by varying the internal phase-shift ¢ show, in fact, high
visibility for the whole range of input squeezing parameter.
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