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Abstract 

A two-step detection strategy is suggested for the precise measurement of the optical phase shift. In the first step an 
unsharp, but unbiased, joint measurement of the phase and photon number is performed by heterodyning the signal field. 
Information coming from this step is then used for appropriate squeezing of the probe mode to obtain a sharp phase 
distribution. Application to squeezed states leads to a phase sensitivity scaling as Ap N N-’ relative to the total number 
of photons impinged onto the apparatus. Numerical simulations of the whole detection strategy are also presented. @ 1998 
Published by Elsevier Science B.V. 

1. Introduction 

As a matter of fact, no Hermitian operator describ- 

ing the optical phase can be defined on the sole Hilbert 

space of a single mode radiation field. Nonetheless, 
measurements of the phase shift have experimentally 

been carried out for a quantized field [ 1,2]. More- 

over, different experimental setups produce different 
phase distributions when investigating the same radi- 
ation state [ 31. The contradiction among these facts 
is clear. What is actually measured in physical exper- 
iments is always a phase difference between the sig- 

nal mode and a reference mode, which represents the 
probe of the measuring device. This probe mode is 
also a quantized field, characterized by its own field 
(phase and amplitude) fluctuations. Therefore, it ap- 
pears rather obvious that the resulting phase distribu- 

tion could show dramatically different features upon 

different probe modes. In this Letter we are going to 
take advantage of this fact in order to obtain an op- 
timized measurement for the phase shift. This means 

a detection scheme leading to a phase distribution as 
sharp as possible, provided that the physical constraint 

of a fixed amount of energy impinged into the appa- 
ratus is satisfied. 

In the next section we briefly review the main fea- 
tures of generalized phase-space functions, whereas 
the two-step measurement scheme is analyzed in de- 
tail in Section 3. In Section 4 a numerical simulation 
of the whole detection strategy is presented, in order 
to confirm the effectiveness of the method also for low 
excited states. Section 5 closes this Letter with some 
concluding remarks. 
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2. Measuring generalized phase-space 
distributions 

We are considering here a generic two-photocurrent 

device, namely an apparatus jointly measuring the real, 
_?k, and the imaginary, 22, parts of the complex pho- 
tocurrent z^ = d + ht. The operators k? and 8 describe 
two single modes of the radiation field. We refer to a 

as the signal mode and to b as the probe mode of the 

device. Devices of such a kind are readily available 

in quantum optics. Examples are provided by the het- 

erodyne detectors 141, the eight-port homodyne de- 
tectors [5] and the recently introduced six-port ho- 

modyne detectors [ 61. 
Each random experimental outcome is represented 

by a pair of real numbers, (~1, z2), which can be 
viewed as a complex number z on the plane of the field 
amplitude (phase space) [ 71. These are distributed ac- 
cording to a generalized phase space distribution [ 8,9] 

&(a,G) = J 6 
7 exp(3cu - yG)a(y,Y), (1) 

C 

which is the Fourier transform of the characteristic 

function 

Z(r,F> = Tr($exp(T? - rz^‘)}, (2) 

3 being the global density matrix describing both 
modes a and b. Here, we consider the probe mode to 
be independent of the signal mode, so that the input 

mode is factorized as 8 = $ @ &. In this case the 
characteristic function E(y, 7) can be written as a 

product, 

Z(Y, 9) = Tr{& @ &&(Y) @ &A-Y)} 

= Xa(Y, 9) Xh( 91 -7) 1 (3) 

where 8,(y) = exp($it - $I) is the displacement 

operator and 

xi(~.y) =Tr{oDi(y)}, i=a,b, (4) 

the single-mode characteristic function. The latter en- 
ters in the definition of the Wagner function of a single- 
mode radiation field, 

Wi(cU,cU) = J d2A 
yXi( A, ii) exp( #L - ACY), 

C 

i = a, b. (5) 

We now insert Eq. (3) into Eq. ( 1). By means of 
Eq. (5) and using the convolution theorem, we arrive 

at the result 

&((Y,6’) = w,((Y,Q.) *wb(-a,-(U) 

= J d2P 
--$'hb'+~~~+~)wh(k%~)~ (6) 

C 

the symbol * denoting convolution. From Eq. (6) it 
follows that two-photocurrent devices allow filtering 

of the signal Wigner function according to the probe 

Wagner function. Therefore, they are powerful appara- 

tuses for manipulating and redirecting quantum fluc- 
tuations. 

3. A two-step measurement scheme for the phase 
shift 

The phase distribution in a two-photocurrent mea- 
surement scheme is defined as the marginal distribu- 

tion of &( LY, Cu) integrated over the radius, 

cc 

p(q) = J pdpKdpe’q,pe-iqP). (71 

0 

When the probe mode is left unexcited, & = IO) (01, the 
probability distribution &( cy, (Y) coincides with the 

customary Husimi Q function Q(a, c?) = l/~-(al@lc~) 
of the signal mode. The resulting marginal phase dis- 

tribution, as defined by Eq. (7), is given by [ 10,l l] 

00 

PQ(V) = pdpQ(peiP,pe-‘+‘) 

0 

1 
c 

U 1 + (m + n)/21 =- 
29T II.“, &JZ 

x exp[i(n - ~)col(4~l~). (8) 

The probability pQ(v) is an unsharp, but unbiased, 
phase distribution. That is, it provides a reliable mean 
value for the phase but it is a broad distribution due 
to the intrinsic quantum noise introduced by the joint 
measurement [ 121. The basic idea in the present 
two-step scheme is to use information coming from 
the measurement of pQ (q) in order to appropriately 
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Squeezing the probe 

Fig. I. Manipulation of quantum fluctuations by squeezing of 

the probe mode. In (a) we show a generic, irregulady shaped, 

Q function obtainable by two-photocurrent devices with vacuum 

probe mode. In (b) we show the distribution as obtained after 

squeezing the probe mode in the direction individuated by the 

mean value + of the signal phase. 

squeeze the probe mode in the subsequent mea- 
surement. In this way the noise is redirected to the 
“useless” direction of &( (Y, C) resulting in a sharper 
phase distribution. This procedure is illustrated in 

Fig. 1 for a generic quantum state. 
The natural choice for the state on which to apply 

this procedure is squeezed states, 

i&r> = &&(5)10)~ (9) 

where s(l) = exp [ i ( kh2 - l&t2) ] is the squeez- 

ing operator with complex parameter 5 = r exp( 2i+), 
Squeezed states, in fact, show phase-dependent field 
fluctuations and can presently be produced with reli- 
able experimental techniques. The mean photon num- 
ber is given by (A) = N = (,12+sinh2 r E Ncoh+Nsq, 
where the coherent and squeezing contributions can 

be clearly distinguished. Squeezed states have been 
largely considered in interferometry, usually leading 

to high-precision measurements, though only for a 
special value of the phase shift (the so-called work- 
ing point of the interferometer) [ 13,141. Without loss 

of generality, we here consider a squeezed state with 

both coherent and squeezing phases equal to zero. 

This is accomplished by choosing LY = x, E IR and 
LJ = rs f R. 

In the first step of the measurement we leave the 
probe unexcited. The experimental outcomes are thus 

distributed according to the Husimi Q function of a 

squeezed state which is a double Gaussian given by 

1 
Q(cu,G) = ~ 

27ru,a2 

W(a) - A2 [IMa) I2 
24 - 24 > ’ 

(10) 

uf = $(l +exp(2r,)), 

az=i[l+exp(-2r,)]. (11) 

The marginal phase distribution pg ((0) reads 

1 
Pa(v) = 

257,~ cash rs 
ev( -2/24) 

1 +J;;+eVzlP[l +Erf(-$)]}, (12) 

where Erf( x) = (2/J;;) sd; dt exp( -t2) denotes the 
error function and 

1 cos2 p 
P”=z 

( 

sin’ 4p 
-+-, 

x, cos q 

ff: a; > y==r 
(13) 

For large signal intensity ( xs > l), it is possible to 
expand pQ(p) up to the second order in (p. The re- 

sulting distribution is a Gaussian, 

PQ(40) =- &Q. exp 
rp2 ( > - - 

2A$o2 ’ 

A(o= T. (14) 

In the case of a highly squeezed signal mode ( rs >> 1) , 

the width of the phase distribution ( 14) turns out to be 

1 

AP = 2&?7V’ 
(15) 

where & = x:/N z N&N is the coherent fraction 
of the total number of photons. The r.m.s. variance in 

Eq. (14) is a measure of the precision in the phase 

measurement, namely, the sensitivity in revealing 
phase fluctuations. EQ. (15) indicates that the phase 
distribution with an unexcited probe is broadened 
(unsharp) as the scaling A(p LX N-Ii2 is distinctive of 
coherent (semiclassical) interferometry. Nonetheless, 

reliable information on the mean phase value can still 
be extracted from pQ (p). Indeed, the second step of 
the measurement is performed with the probe mode 

excited to a squeezed vacuum If) whose phase is 
matched to that extracted from the first measurement 
step. Therefore, the outcome probability distribution 
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Fig. 2. Two-step measurement of the phase of a squeezed state. In (a) the phase histogram from a simulated experiment with an unexcited 

probe is shown. In (b) we depict the phase histogram from a simulated experiment with a probe excited to a squeezed vacuum whose 

phase is matched to the mean phase extracted from (a). The total mean photon number impinged onto the apparatus is N = 2 in both 

cases. The simulated experimental sample was composed of IO5 data, whereas 200 bins were chosen for the phase histograms. 

becomes a squeezed Q function. For the squeezed 
state of Eq. (9) this is still a double Gaussian on the 

complex plane. However, the variances are now given 

by 

V! = i[(cosh2rp - sinh2rpcos2&) +exp(2r,)], 

ui = f [ (cash 2r, - sinh 2rp cos 2%) + exp( -2r,) 1, 

(16) 

where rP is the squeezing parameter of the probe mode 

and I,$ stands for its phase. The latter is chosen equal 

to the mean signal phase Q extracted from the first step 
of the measurement. The marginal phase probability 

ps (cp) has the same complicated structure as pQ ( p) 
in E$. ( 12). For the large signal intensity ( xs > 1) 

and high squeezing of the signal and probe (r, > 

rp >> l), it is well approximated by a Gaussian with 
r.m.s. variance given by 

Aq= 
I 

4JKKN? 
(17) 

N being the total mean photon number impinged onto 
the apparatus (signal plus probe). The improvement in 
the precision is clear. In Eq. ( 17) pS and /3,, denote the 
coherent and squeezing energy fraction, respectively, 

of the signal and probe, pS = x:/N, pP = sinh2 rp/N, 

relative to the total number of photons (signal plus 
probe) impinged onto the apparatus. 

4. Low excited states: numerical simulations 

In order to show the effectiveness of the present pro- 
cedure also for low excited states, we have performed 
numerical simulations of the whole detection scheme. 

In Fig. 2 the two-step phase distributions are shown as 

coming from a simulated experiment on low excited 
squeezed states. Each experimental event in the joint 

measurement consists of two photocurrents which in 
turn can be viewed as a point on the complex plane 
of the field amplitude. The phase value inferred from 

each event is the polar angle of the point itself. The ex- 

perimental histogram of the phase distribution is thus 
obtained by dividing the plane into angular bins and 

then counting the number of points which fall into 
each bin. 

In Fig. 2a we report the phase histogram from a 

simulated two-photocurrent measurement with an un- 

excited probe (the first step) of a squeezed state with 
a given mean photon number N = 2 and a squeezing 
fraction sinh2 r,/N = l/4. The mean value for the 
phase obtained from this step appeared to be @ 2 
3.3 x 10e3 rad. In the second step, the probe is ex- 

cited to a squeezed vacuum with squeezing phase @ 
and squeezing fraction sinh* rp/N = l/4 relative to 
the total photon number N = 2. The resulting phase 
histogram is shown in Fig. 2b. It is clearly sharper than 
the first one, even though the signal energy has been 
decreased to maintain the same total energy N = 2 im- 

pinged onto the apparatus. Some tails, due to squeez- 
ing, appear around v, = &t71. in the second-step distri- 
bution. However, this is not dangerous for the preci- 
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sion of the measurement as they can only be placed 

7r-symmetrically relative to the central peak. On the 
contrary, they can even be used for further improve- 
ment of the measurement sensitivity [ 151. 

5. Summary and remarks 

In conclusion, a two-step optimized phase detection 

scheme has been suggested. It uses the possibility to 

manipulate quantum fluctuations of two-photocurrent 
devices in order to improve precision. In the first step 
a number n (not too small) of measurements are per- 

formed in order to accurately determine the mean 

value for the phase. This value is then used to perform 
the subsequent n measurement in the second step. The 
resulting scheme is much more accurate than simply 
making 2 x n measurements using the first step setup. 
One should also notice that the error of a measure- 

ment in the second step comes from the average over 

the possible values of the error resulting from using 
a particular squeezing phase obtained in the first step. 

Therefore, in order to make the present analysis cor- 
rect, the number of measurements in both steps should 

not be too small. The extreme case, in which just one 

measurement is made for each step, has been analyzed 
by Wiseman et al, [ 161 and by D’ Ariano et al. [ 171. In 
Wiseman’s strategies the information obtained during 
a measurement is used to alter the setup continuously, 

whereas in Ref. [ 171 the information from a single 
measurement is immediately used to modify the setup 

for the subsequent measurement. On the other hand, 

in the present scheme, the feedback acts on blocks of 
data. 

Application to highly excited squeezed states leads 
to a high-sensitivity measurement, with phase sen- 
sitivity scaling as A40 0: N-i relative to the total 

number of photons impinged onto the apparatus. 

This result is valid for any value of the phase shift itself 
and represents a crucial improvement with respect to 
conventional interferometers, where fluctuations of the 
phase shift can be detected only around some fixed 
working point. The effectiveness of the present two- 
step procedure has been confirmed also for low excited 
states by means of numerical simulations of the whole 

detection strategy. 
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