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Abstract
We address continuous-time quantum walks on graphs, and discuss 
whether and how quantum-limited measurements on the walker may extract 
information on the tunnelling amplitude between the nodes of the graphs. 
For a few remarkable families of graphs, we evaluate the ultimate quantum 
bound to precision, i.e. we compute the quantum Fisher information (QFI), 
and assess the performances of incomplete measurements, i.e. measurements 
performed on a subset of the graph’s nodes. We also optimize the QFI over the 
initial preparation of the walker and find the optimal measurement achieving 
the ultimate precision in each case. As the topology of the graph is changed, 
a non-trivial interplay between the connectivity and the achievable precision 
is uncovered.

Keywords: quantum walk, quantum estimation, quantum Fisher information, 
graph theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Continuous-time quantum walks (CTQWs) generalize classical random walks to the quantum 
domain, by modeling the propagation of a quantum particle over a discrete space continuously 
in time [1–3]. Recently, quantum walks have found powerful applications in different quant um 
computing tasks, e.g. they provide a model for universal quantum computation [4] and repre-
sent the building blocks of several quantum algorithms [5–9]. Moreover, quantum walks allow 
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to study the transport properties of excitations on networks [10–12] and are employed to simu-
late the dynamics of some biological systems [13, 14]. As far as experimental implementa-
tions are concerned, quantum walks have been realized on a number of physical architectures, 
from trapped ions systems [15] to photonic platforms [16]. The ubiquity of quantum walks in 
quantum information is due to the fact that the dynamics of any physical system whose Hilbert 
space is comprised of (or truncated to) a finite number of discrete states can always be mapped 
into a quantum walk on a graph [17], i.e. a discrete mathematical structure made up of a set 
of nodes, or vertices, connected by edges. Each node of the graph coincides with a system’s 
state and it is put in one-to-one correspondence with one of the walker’s position eigenstates, 
while each edge is assigned a positive real weight, which is equal to the transition amplitude 
between the states corresponding to the two endpoints.

In this paper, we focus on the following theoretical task: to fully reconstruct the 
Hamiltonian of a quantum walker from a series of measurements on it; or, equivalently, 
to statistically infer the numerical values of the weights of the graph corresponding to a 
given quantum walk implementation [18–21]. It is important to notice that our approach is 
quite different from the most lines of research, where the complete knowledge of the graph 
parameters are used to infer the behaviour of the quantum particle. For instance, quantum 
dots can be used to implement quantum walks on cycle graphs [22], and can be addressed to 
study the properties of the quantum particle by having full control of the graph parameters 
[23, 24]. On the contrary, here we want to extract information about the graph parameters by 
observing the dynamics of a quantum walker. We tackle the problem in a rigorous way from 
a quantum parameter estimation perspective [25], under the simplifying assumption that all 
weights are set equal to the same constant, which determines the tunnelling amplitude of the 
walker, and that the underlying graph belongs to one of a few remarkable classes introduced 
below. By performing repeated measurements on identically prepared states of the walker 
and collecting the resulting outcomes, one can estimate the tunnelling amplitude via a suit-
able estimator. In particular, the quantum Fisher information (QFI) quantifies the maximum 
amount of information that can be extracted by any estimation protocol, optimized over all 
possible quantum measurements. In the following, we compute the QFI for different graph 
topologies, which leads to uncover a rich phenomenology, as a function, e.g. of the graph’s 
connectivity, the number of nodes and the interrogation time. The ultimate QFI limit is then 
compared with the performance of a few specific measurements that are assumed to be avail-
able to the experimentalist, focusing in particular on measurements that require access only 
to a subset of the graph’s nodes.

The rest of the paper is organized as follows. In section 2, we define the concept of con-
tinuous-time quantum walk and introduce a number of special graph families. In section 3, 
we review the basic tools of quantum parameter estimation theory. Section 4 is devoted to the 
analysis of the best achievable precision, which is then compared with the performance of a 
few realistic measurements. Finally, in section 5 we draw our conclusions.

2. Continuous-time quantum walks on graphs

A CTQW takes place in the Hilbert space H = Cn spanned by the position basis of the walker, 
which is denoted by {|k⟩}n

k=1, with ⟨k|j⟩ = δkj. Each vector |k⟩ represents a state of the walker 
localized at position k. Formally, a CTQW corresponds to the Hamiltonian

H = −
∑

( j,k)∈E

γjk(|j⟩⟨k|+ |k⟩⟨j|) +
∑

j∈V

ϵj|j⟩⟨j|, (1)
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where the coefficients γjk  represent the tunneling amplitudes between adjacent positions and 
ϵj  the local energies at each site. The particle moves on a weighted graph G(V , E), where 
V = {k} is the set of nodes or vertices, with cardinality n = |V|, while E is the set of edges. 
The edge between nodes j  and k is associated with the weight γjk , whereas the nodes have 
weights ϵj . Notice that a specific conventional labelling for the nodes of the graph has been 
assumed. In the following, we restrict ourselves to the following particular case: we take 
all weights to be equal, i.e. γjk = γ ∈ R+, ∀ j, k = 1, . . . n, and ϵj = ϵdj, with dj  the degree 
of vertex j . If in addition we set ϵ = 1, i.e. we measure all quantities in units of ϵ, then the 
Hamiltonian of equation (1) can be rewritten as:

HG = D − γA, (2)

where A, is the adjacency matrix of the graph G, i.e. a square n × n matrix whose elements are 
Ajk  =  1 if nodes j  and k are connected and zero otherwise, and D is the degree matrix, i.e. a 
diagonal matrix whose entries Djj =

∑
k Ajk  are the vertex degrees. The tunnelling amplitude 

γ  is therefore the only relevant parameter to be estimated: its value determines the amplitude 
of the transition between different states (nodes) and depends on the particular quantum walk 
implementation.

We will consider in detail several remarkable families of simple graphs, i.e. graphs that are 
undirected, with no loops or multiple edges between any two vertices. The state of the walker 
at time t is given by |ψt⟩ = Ut|ψ0⟩, where |ψ0⟩ is the initial state and Ut = exp(−iHGt) is the 
evolution operator. If ξj and |ξj⟩ (with j ∈ {0 . . . , n − 1}) are respectively the eigenvalues and 
the eigenstates of the Hamiltonian HG, and the particle is initially prepared in an arbitrary 
superposition |ψ0⟩ =

∑n−1
j=0 αj|ξj⟩, the state of the walker after an interrogation time t can be 

written as |ψt⟩ =
∑n−1

j=0 αje−iξjt|ξj⟩. Thus, knowledge of the eigenvalues and eigenvectors of 
HG is sufficient to completely characterize any quantum walk on G. For this reason, we are 
now going to review the spectral properties of a few special families of graphs on which we 
will focus our attention later on. More precise definitions and derivations can be found in 
appendix A (see also figure 1).

2.1. Circulant graphs: complete and cycle graphs

A circulant graph On is a simple graph having the following property: there exists a relabel-
ling of its vertices which is (1) an isomorphism (i.e. any two vertices of the resulting graph 
are connected by an edge iff they are so connected before the relabelling) and (2) is a cyclic 
permutation of the vertices (i.e. the relabelling permutes a subset of the vertices in a cyclic 
fashion, while leaving fixed the remaining ones).

Two special cases of circulant graphs are complete graphs and cycle graphs. A com-
plete graph Kn is a graph where each vertex is adjacent to any other vertex. It has n vertices, 
n(n − 1)/2 edges and it is regular with degree n  −  1. In the case of a weighted complete graph 
with all couplings equals, the eigenvalues of the Hamiltonian HKn as in equation (2) are:

ξj =

{
(n − 1)(1 − γ) if j = 0
(n − 1) + γ if j ≠ 0

. (3)

The corresponding eigenvectors are

|ξj⟩ =
1√
n

n∑

k=1

e
2πij(k−1)

n |k⟩, (4)

where |k⟩ is the position vector corresponding to the kth vertex.
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A cycle graph Cn is a chain of n vertices (and as many edges). It is circulant and regular 
with degree 2. By specializing to this case equations (A.2) and (A.3), found in appendix A, the 
eigenvalues of Cn are found to be

ξj = 2 − 2γ cos
(

2πj
n

)
, (5)

while the eigenvectors are the same as in equation (4).

2.2. Hypercube graphs

A hypercube graph Yd is a regular graph formed from the vertices and edges of the d-dimen-
sional hypercube. It has n  =  2d vertices and d · 2d−1 edges; besides, each vertex has the same 
degree d. It can also be thought of as the d-fold Cartesian product of the complete graph K2. 
The eigenvalues of the Hamiltonian HYd for a hypercube graph in dimension d evaluate to

ξj = d − γ(d − 2j), (6)

while the eigenvectors are computed recursively in the position eigenbasis as the columns of 
the Hadamard matrices Bd, d ∈ N, defined as follows:

B1 =
1√
2

(
1 1
1 −1

)
, Bd =

1√
2

(
Bd−1 Bd−1

Bd−1 −Bd−1

)
. (7)

2.3. Complete bipartite graphs

A complete bipartite graph Kp ,q is such that its vertex set V  can be split into two subsets, 
with the following property: all vertex of the first set are adjacent to every other vertex of the 
second, but no two vertices in either sets are adjacent among themselves. It has n  =  p   +  q 
vertices, with {1, . . . , p} and { p + 1, . . . , p + q} denoting the two partitions. A special case 
of a complete bipartite graph is the star graph Sn = K1,n−1, corresponding to setting p   =  1 and 
q  =  n  −  1. The degenerate spectrum of HKp,q  is comprised of the eigenvalues {ξ1, ξ2, ξ+, ξ−}, 
where

ξ1 = q, ξ2 = p, ξ± =
( p + q)±

√
∆p,q

2
, (8)

and we defined ∆p,q := ( p − q)2 + 4qp γ2. The corresponding eigenstates, written in the 
position eigenbasis, are

|ξ(κ)1 ⟩ = (a(κ), 0q)
t, |ξ(κ

′)
2 ⟩ = (0p, b(κ′))t, |ξ±⟩ = η±

(
p − ξ±
γp

1p, 1q

)t

, (9)

Figure 1. Families of graphs considered in the main text, with a conventional choice of 
labelling: (a) circulant graph, (b) complete graph, (c) cycle graph, (d) hypercube graph, 
(e) complete bipartite graph, (f) star graph.
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where η± := 1/
√

q [1 + ( p − ξ±)/(q − ξ±)], 0q is a q-vector made up of all zeros, 1q is a 
q-vector made up of all ones, and κ, κ′ are two degeneracy indexes (see appendix A for more 
details).

3. Quantum estimation theory

The typical setting in quantum parameter estimation theory is given by a parametric family of 
quantum states {ργ}, smoothly depending on a real parameter γ . It is assumed that there exists 
a true value γ∗ such that ργ∗ describes the state of the system available to the experimentalist. 
The main task is to infer the true value from the outcomes of repeated measurements on the 
system. In fact, if there is no Hermitian operator whose eigenvalues correspond to the possible 
values of γ , the parameter cannot be measured directly, and the only possibility is to rely on 
indirect measurements in order to infer it. More precisely, by preparing N identical copies of 
the system and repeating N times a measurement M with sample space X , one obtains a sam-
ple Ω = {x1, x2 . . . , xN} ∈ X×N , which is then processed via a local quantum estimator. An 
estimator is a function γ̂ : Ω → R that maps the sample Ω into an estimate of the parameter. In 
any quantum estimation procedure, the aim is to optimize over the choice of the measurement 
in order to maximize the information about the parameter, i.e. to minimize the mean square 
error of the estimator γ̂ . Because of the inherent stochasticity of quantum measurements, there 
are strict limitations on the achievable precision. Indeed, the variance of any unbiased estima-
tor is bounded by the Cramér–Rao bound (CRB) as follows:

Var(γ̂) ! 1
N · F(M, γ)

, (10)

where F(M, γ) is the Fisher information (FI) associated with the measurement M, i.e.

F(M, γ) =
∑

x∈X
p(x|γ) [∂γ log p(x|γ)]2 , (11)

with p(x|γ) = tr(ργΠx) the conditional probability of obtaining the result x for a measure-
ment M having positive-operator valued (POVM) elements {Πx}x∈X, assuming that the value 
of the parameter is γ . Minimizing the variance of unbiased estimators is equivalent to maxi-
mizing their FI. Therefore, one defines the QFI as

Q(γ) = max
M

F(M, γ), (12)

which leads to the quantum Cramér–Rao bound (QCRB) [26–30],

Var(γ̂) ! 1
N · Q(γ)

. (13)

The QCRB establishes the ultimate limit to precision that is imposed by the quantum mechan-
ical nature of the problem. It can always be saturated, at least in the asymptotic regime 
N → ∞, by employing an asymptotically efficient estimator and implementing the optimal 
Braunstein–Caves measurement Mopt [31–33], defined as:

Mopt := arg max
M

F(M, γ). (14)

Remarkably, for pure states |ψγ⟩, a closed-form expression for the QFI is available [25],

Q(γ) = 4
[
⟨∂γψγ |∂γψγ⟩+

(
⟨∂γψγ |ψγ⟩

)2], (15)
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where |∂γψγ⟩ denotes the derivative of the statistical model |ψγ⟩ with respect to the parameter 
γ .

In our specific case, the statistical model coincides with the state of the walker at time t. As 
a result, the corresponding QFI still depends on the initial preparation, i.e. on the coefficients 
αj. Therefore, the final step is to maximize the QFI over the choice of such coefficients. In this 
regard, a useful inequality, to which we will often resort in the following, is Popoviciu’s ine-
quality [35]. Given a bounded probability distribution describing a classical random variable 
Y , whose minimum and maximum values are denoted by y  and Y respectively, Popoviciu’s 
inequality states that the variance Var(Y) is bounded as follows,

Var(Y) ! 1
4
(Y − y)2. (16)

Equality holds whenever half of the probability distribution is peaked at each of the two values.

4. Maximum extractable information versus performance of selected 
measurements

Given a quantum walk on a graph G with Hamiltonian HG as in equation (2), the problem 
we are going to consider is to quantify how precisely the tunnelling amplitude γ  can be esti-
mated via measurements on the walker. In particular, in this section we compute the maximum 
amount of information on γ  that can be extracted via any quantum measurement, i.e. the QFI 
Q(γ). Because the QCRB is tight, there always exists a quantum measurement whose FI 
equals the QFI. However, the optimal measurement may be quite exotic, or even depend on 
the true value of the parameter, so that it is not necessarily available to the experimentalist. For 
this reason, we also analyze the performances of a few specific measurements and compare 
them with the QFI limit. We focus in particular on position measurements. By definition, a 
position measurement leads to a projection onto the walker’s position basis, i.e. the position 
operator is x̂ =

∑n
i=1 j |j⟩⟨j|. It is also useful to introduce incomplete position measurements. 

They correspond to coarse-grainings of a position measurement. Explicitly, an incomplete 
position measurement of size m is represented by a POVM made up of m rank-1 projectors 
onto m given position eigenstates, plus the projector onto the orthogonal complement of the 
subspace spanned by them. Incomplete measurements model a situation where one has exper-
imental access only to a subset of the graph’s nodes.

In the following, we first focus on the QFI, studying in particular how it scales with the 
number of vertices n and the interrogation time t, and maximizing it over the initial prep-
aration of the probe. Then, we analyze the performance of position measurements for different 
graph families, assuming that the initial preparation coincides with the optimal one maximiz-
ing the QFI.

4.1. Circulant graphs: complete and cycle graphs

4.1.1. Complete graphs. Let us consider the generic complete graph Kn. The initial prep-
aration is taken to be |ψ0⟩ =

∑n−1
j=0 αj|ξj⟩, where |ξ0⟩ is the ground state and the other energy 

eigenstates span a degenerate subspace (the corresponding eigenvalues are given in equa-
tion (3)). The QFI can be easily evaluated via equation (15), leading to:

QKn(γ) = 4n2t2 |α0|2(1 − |α0|2). (17)

L Seveso et alJ. Phys. A: Math. Theor. 52 (2019) 105304
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Maximizing over the initial preparation, one has that

max
|ψ0⟩

QKn(γ) = n2t2, (18)

which is obtained when |ψ0⟩ is equally distributed between the ground state |ξ0⟩ and the excited 
energy subspace. Notice that the maximum QFI scales quadratically with both the number of 
vertices n and the interrogation time t.

We now want to investigate whether a realistic measurement on the walker allows us to 
attain the QFI limit of equation  (18). We thus assume that the state of the walker at time 
t  =  0 is 

∑n
j=0 αj|ξj⟩ with α0 = α1 = 1/

√
2 and all other αj set to zero. After a time t, an 

incomplete position measurement of size m is performed. By definition, its POVM consists of 
the projectors |j⟩⟨j|, for j ∈ {1, . . . , m}, plus the projector onto their orthogonal complement 
In −

∑m
j=0 |j⟩⟨j|. The corresponding FI is denoted by F (m)

Kn
(γ). The efficiency is defined as the 

ratio of the FI to the QFI, i.e.

η(m) :=
F (m)

Kn
(γ)

QKn(γ)
. (19)

From equation (11), the FI F (m)
Kn

(γ) can be written as

F (m)
Kn

(γ) =
m∑

j=1

(∂γpj)2

pj
+

(∂γ p̄)2

p̄
, (20)

where p j  is the probability of detecting the walker at node j , i.e.

pj = |⟨j|ψt⟩|2 =
2
n
cos2

[
γnt
2

− π( j − 1)
n

]
, (21)

and p̄ := 1 −
∑m

j=1 pj is the probability that the walker is located outside the subset of the 
graph’s nodes under control by the experimentalist. It is possible to rewrite p̄ as follows,

p̄ =
n − m

n
− 1

n
cos

[
γnt − (m − 1)π

n

]
sin
(
πm
n

)

sin
(
π
n

) . (22)

The proof requires first to transform cos2(x/2) = (1 + cos x)/2 and then to simplify the sum 
over the cosine terms via the geometric series identity

m−1∑

j=0

ei(x− 2πj
n ) = eix

(
1 − e− 2πim

n

1 − e− 2πi
n

)
. (23)

The final result for F (m)
Kn

(γ) is

F (m)
Kn

(γ) = nt2

⎛

⎝m − cos

[
γnt − (m − 1)π

n

]
sn,m +

sin2
[
γnt − (m−1)π

n

]
s2

n,m

(n−m)−cos
[
γnt − (m−1)π

n

]
sn,m

⎞

⎠ , (24)

where sn,m :=
sin(πm

n )
sin(π

n )
. For instance, if m  =  1:

F (1)
Kn

(γ) =
2 sin2 (γnt

2

)

n − 2 cos2
(γnt

2

)n2t2. (25)

L Seveso et alJ. Phys. A: Math. Theor. 52 (2019) 105304
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The corresponding efficiency, optimized over the interrogation time t, is max t η(1) = 2
n. That 

is, a local measurement can at most extract a fraction 2/n of the maximum available informa-
tion. Vice versa, for a complete position measurement, i.e. m  =  n, one finds from equation (24) 
that F (n)

Kn
(γ) = n2t2, which is also equal to the QFI: a complete position measurement is opti-

mal. For a generic incomplete measurement with 1  <  m  <  n, one finds:

max
t

η(m) =
m
n
+

1
n
sin
(
πm
n

)

sin
(
π
n

) . (26)

Using the inequality sin(mπ/n) ! m sin(π/n), the maximum efficiency is at most 2m/n, i.e. 
twice the fraction of nodes that can be individually addressed. In particular, the upper bound 
2m/n is reached when n ≫ m and n ≫ 1.

4.1.2. Cycle graphs. Let us now consider a generic cycle graph Cn. The QFI evaluates to

QCn(γ) = 16t2 Var
[
cos

(
2πkX

n

)]
, (27)

where X  is a random variable, with sample space j ∈ {0, . . . , n − 1} and corresponding prob-
abilities Pr( j) = |αj|2. Making use of Popoviciu’s inequality, see equation (16), one can maxi-
mize the QFI over the initial preparation, which gives:

max
|ψ0⟩

QCn(γ) =

{
16t2 if n even
4t2
[
1 + cos

(
π
n

)]2 if n odd
. (28)

The optimal preparation is a balanced superposition of the ground state |ξ0⟩ and highest excited 
state |ξn/2⟩, where ξ0 = 2(1 − γ), ξn/2 = 2(1 + γ), and the corresponding eigenvectors are 
defined in equation (A.7). After a time t, it gives rise to the state

|ψt⟩ =
1√
2

e−iξ0t|ξ0⟩+
1√
2

e−iξn/2t|ξn/2⟩ =
1√
2n

e−2i(ϵ−γ)t

⎛

⎜⎜⎜⎜⎜⎜⎝

1 + e−4iγt

1 − e−4iγt

...
1 + e−4iγt

1 − e−4iγt

⎞

⎟⎟⎟⎟⎟⎟⎠
.

 

(29)

We now analyze the performance of incomplete position measurements taken on the state 
of equation (29). The probability p j  of measuring the walker at node j  is

pj =
1
n
[1 + (−1) j+1 cos(4γt)] =

{ 2
n cos

2(2γt) := pO if j is odd
2
n sin

2(2γt) := pE if j is even
. (30)

Let us assume that the experimentalist has access to a subset of the graph’s nodes, of which nO 
have an odd label and nE an even label. In the following, we take the total number of vertices n 
to be even, without loss of generality. Introducing the notation βO := 2nO/n and βE := 2nE/n 
for, respectively, the fractions of odd and even nodes under individual control, the corre-

sponding FI F (β0,βE)
Cn

(γ) can be written as

F (β0,βE)
Cn

(γ) = nO
(∂γpO)2

pO
+ nE

(∂γpE)2

pE
+

(∂γ p̄)2

p̄
, (31)

where p̄ = 1 − nOpO − nEpE. After a standard computation, one finds:

L Seveso et alJ. Phys. A: Math. Theor. 52 (2019) 105304
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F (β0,βE)
Cn

(γ) = 16t2
[
βO + βE − 2βOβE + (βE − βO) cos(4γt)

2 − (βO + βE) + (βE − βO) cos(4γt)

]
. (32)

In spite of appearances, the previous expression is invariant under relabellings of the graph’s 
nodes. A relabelling may change the parity of each vertex label, exchanging βO with βE, and 
pO with pE. It is now enough to make use of the relation cos(4γt) = npO − 1 = 1 − npE 
to check the invariance. From equation (32), the efficiency of an incomplete measurement, 
optim ized over the interrogation time t, has the following simple expression, i.e.

max
t

η(βO, βE) = max(β0, βE). (33)

It follows in particular that a complete position measurement is always optimal. Incomplete 
measurements can also be optimal, e.g. a measurement of only the odd or only the even verti-
ces still has unit efficiency (see also figure 2).

4.2. Hypercube graphs

An hypercube graph Yd has eigenvalues ξj, where j ∈ {0, . . . , d}, see equation  (6). Each 

eigenvalue ξj has multiplicity [d, j] := d!/j!(d − j)!. The corresponding eigenstates |ξ(κj)
j ⟩, with 

κj ∈ {1, . . . , [d, j]}, are constructed recursively for any d by means of equation (7). The most 
general initial preparation is

|ψ0⟩ =
d∑

j=0

[d,j]∑

κj=1

α
(κj)
j |ξ(κj)

j ⟩, with
d∑

j=0

[d,j]∑

κj=1

|α(κj)
j |2 = 1. (34)

For future convenience, let us denote by pξj :=
∑[d,j]
κj=1 |α

(κj)
j |2 the total probability that an 

energy measurement returns the outcome ξj. It can be checked that the QFI at time t and for a 
generic initial state can be written as:

QYd(γ) = 4t2 Var(d − 2X), (35)

where X  is a random variable such that Pr( j) = pξj, for j ∈ {0, . . . , d}. Since the maximum 
value of d − 2X is equal to d (when X = 0) and the minimum value is  −d (when X = d), one 
has that FQ(γ) ! 4t2d2 by Popoviciu’s inequality. The optimal QFI thus evaluates to

max
|ψ0⟩

QYd(γ) = 4t2d2, (36)

which scales quadratically with the dimension d and the interrogation time t. The optimal 
preparation is a balanced superposition of the ground state |ξ0⟩ and the maximally excited state 
|ξd⟩ (see equation (A.10)).

Let us now consider the performance of incomplete position measurements. After a time t, an 

incomplete position measurement is performed on the state |ψt⟩ = (e−iξ0t|ξ0⟩+ e−iξdt|ξd⟩)/
√

2 , 

where ξ0 = d(1 − γ), ξd = d(1 + γ). We adopt the following notation: F (δ)
Yd

(γ) denotes the 
FI for an incomplete measurement having as POVM the 2δ rank-1 projectors over the nodes 
making up a δ-dimensional face of the hypercube, plus the projector onto their orthogonal 
complement. It can be computed as

F(δ)
Yd

(γ) = 2δ−1 (∂γp+)2

p+
+ 2δ−1 (∂γp−)2

p−
, (37)
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where

p+ :=
1

2d−1 cos2(dγt), p− :=
1

2d−1 sin2(dγt). (38)

Notice that the probability of finding the walker in any of the accessible nodes is 
2δ−1p+ + 2δ−1p− = 1/2d−δ, which is, in particular, independent of γ . Thus, no term analo-
gous to the last one on the right-hand-side of equation (20) appears in equation (37). The FI 
evaluates to

F (δ)
Yd

(γ) = 2δ−d+2d2t2. (39)

Its efficiency is η(δ) = 1/2d−δ, i.e. the ratio between the number of nodes under individual 
control and the total number of nodes. It follows that, in particular, a complete measurement 
(when δ = d) is optimal.

4.3. Complete bipartite graphs

The generic complete bipartite graph Kp ,q has n  =  p   +  q eigenvectors, of which only two, 
|ξ±⟩ given in equation (8), depend on the parameter γ . All other eigenvectors, as well as their 
eigenvalues, are independent of γ; thus, no estimation strategy can fruitfully make use of 
them. As a consequence, the initial preparation is taken to be a superposition of |ξ±⟩ only, e.g. 
|ψ0⟩ = α−|ξ−⟩+ α+|ξ+⟩. The corresponding QFI at the generic time t evaluates to

QKp,q(γ) =
4
(

fp,q − 4g2
p,q
)

∆2
p,q

, (40)

where

fp,q = pq[16p2q2γ4t2 + ( p − q)2(1 + 4pqγ2t2)], (41)

gp,q = (|α−|2 − |α+|2) pqγt
√

∆p,q + ℑ
(

eit
√

∆p,q ᾱ+α−

)
( p − q)

√
pq. (42)

The optimal initial preparation is such that gp ,q vanishes, which is obtained when |α−| = |α+|, 
with a relative phase φopt = arg(α+/α−) = t

√
∆p,q . The maximum QFI is therefore equal to

Figure 2. The efficiency η(βO,βE) of an incomplete measurement, as a function of the 
fractions of odd nodes βO and even nodes βE under experimental control, for different 
values of γt. Highlighted by a thick line (red), the optimal region of unit efficiency. For 
γt ̸= mπ/4, m ∈ Z, the optimal region consists of the two segments (βO, 1) and (1,βE). 
For even multiples of π/4, only the first segment is present, while for odd multiples 
only the second.
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max
|ψ0⟩

QKp,q(γ) = 4fp,q/∆
2
p,q. (43)

For fixed number of vertices n, one may further optimize over the cardinality of each biparti-
tion p  and q. The maximum is reached for p = ⌊n/2⌋, which leads to a corresponding scal-
ing  ∼n2t2, quadratic both in the number of vertices and the interrogation time.

We now study in some detail the special case of a star graph Sn. The maximum QFI is 
obtained via the substitutions p   =  1 and q  =  n  −  1,

max
|ψ0⟩

QSn(γ) =
4(n − 1)[16(n − 1)2 γ4t2 + (n − 2)2[1 + 4(n − 1)γ2t2]]

[(n − 2)2 + 4(n − 1)γ2]2
.

 

(44)

It depends on n, but does not grow indefinitely with the size of the graph. When n → ∞, it 
saturates instead to a constant value. Therefore, an optimal number of nodes nopt may exist. 
We solve for nopt in the two opposite regimes of small and long times. For small times γt ≪ 1,

φopt − φφopt − φφopt − φ

φopt − φ φopt − φ φopt − φ

φopt − φφopt − φφopt − φ

γ = 0.1 γ = 0.1γ = 0.1

γ = 1 γ = 1 γ = 1

γ = 10 γ = 10 γ = 10

Figure 3. The efficiency η(φ) of a complete measurement, as a function of the phase 
difference φopt − φ and of the dimensionless time scale γt (for different values of n 
and γ). In general, the efficiency is closer to one for higher values of γ  and for smaller 
values of γt and of n. Only for t  =  0, there always exist a choice of φ which allows to 
reach unit efficiency; otherwise, a complete measurement is suboptimal.
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max
|ψ0⟩

QSn(γ) ∼
4(n − 1)(n − 2)2

[(n − 2)2 + 4(n − 1)γ2]2
, (45)

which is maximized by

nopt ∼ 2[1 + γ2 + γ
√

1 + γ]. (46)

For large times γt ≫ 1,

max
|ψ0⟩

QSn(γ) ∼
16γ2t2(n − 1)[4(n − 1)2γ2 + (n − 2)2(n − 1)]

[(n − 2)2 + 4(n − 1)γ2]2
. (47)

If 1/γ2 ! 2, then there is no optimal value of n (the optimal value is n = ∞). Instead, if 
1/γ2 > 2, the optimal value of n is

nopt ∼
2(1/γ2 − 1)
(1/γ2 − 2)

. (48)

Adding new vertices above nopt will lower the maximum achievable precision.
From our previous discussion, the optimal initial preparation is a balanced superposition 

of the two energy eigenstates |ξ±⟩ that can be read off from equation  (A.16) after setting 
p   =  1 and q  =  n  −  1, with a relative phase φopt = t

√
∆1,n−1. Since the optimal phase φopt 

depends on γ , an adaptive procedure is required in order to extract the maximum QFI. For 
the moment, we assume that the walker is prepared in the state |ψ0⟩ = (|ξ−⟩+ eiφ|ξ+⟩)/

√
2, 

where φ ∈ [0, 2π] is arbitrary. Let us suppose that at time t an incomplete position measure-
ment is performed. First, we consider the case of an incomplete measurement monitoring only 
the central node, with associated POVM made up of the two projectors |1⟩⟨1| and In − |1⟩⟨1|. 

Table 1. For each family of graphs considered in the main text, we report the scaling 
of the QFI with the total number of nodes n, the optimal measurement saturating the 
quantum Cramér–Rao bound, the optimal initial preparation and the efficiency η of an 
incomplete position measurement. Notice that β (resp., βO, βE) denotes the fraction of 
the graphs’s nodes (resp., nodes with even labels, odd labels) under individual control 
by the experimentalist.

Scaling of QFI with n Optimal preparation
Optimal 
measurement

η of incomplete  
position measurement

Kn ∼n2 Any balanced  
superposition of 
ground state and any 
other excited state

Position β + 1/n · sin(πβ)/ sin(π/n)

Cn
{

independent of n if n even
∼
[
1 + cos

(
π
n

)]2 if n odd

Any balanced  
superposition of 
ground state and 
highest excited state

Position max(βO, βE)

Yd ∼(log n)2 Any balanced  
superposition of 
ground state and 
highest excited state

Position β

Sn ∃ nopt Balanced superposi-
tion of |ξ±⟩ with  
relative phase φopt

Exotic Independent of β
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One finds that its FI coincides with the FI for a complete position measurement, denoted by 

F (φ)
Sn

(γ) (the superscript makes manifest the dependence on the arbitrary phase φ of the initial 
state). The implication is that distinguishing outcomes corresponding to the walker being in 
one peripheral node or the other is useless for estimation purposes: one may as well monitor 
only the central node. The efficiency η(φ) of a position measurement (either a complete meas-
urement or an incomplete one, but including the central node) is

η(φ) =
(n − 1)[(n − 2)2 cos(φopt − φ)− 4(n − 1)

√
∆1,n−1 γ2t sin(φopt − φ)]2

f1,n−1
[
4(n − 1)γ2 sin2(φopt − φ) + (n − 2)2

] .

 

(49)

Except for a few special cases (when n  =  2, or t  =  0 and φ = φopt), a position measurement is 
always suboptimal. For short interrogation times, expanding for γt ≪ 1 and φ = φopt, one obtains

η(φopt) = 1 − 4(n − 1)∆1,n−1

(n − 2)4 γ2t2 + o(γ2t2), (γt → 0). (50)

For large number of vertices n → ∞ and φ = φopt , one has instead

η(φopt) =
1

4γ2t2n
+ o(1/n), (n → ∞), (51)

i.e. the efficiency decreases linearly with the number of vertices. The reader is also referred to 
figure 3 for more details about the different possible regimes.

5. Conclusions

In this paper, we have studied the problem of estimating the tunnelling amplitude γ  for a 
quantum walker evolving continuously in time on a graph G, where G is an element of a few 
relevant families of graphs. Our first result is that the topology of the graph may have dramatic 
effects on the maximum extractable information. For instance, the QFI exhibits different scal-
ing laws with the total number of vertices (see table 1). For each family considered, we have 
maximized the QFI over the initial preparation, determining the optimal initial state of the 
walker, as well as the optimal measurement.

We have then discussed in details the performance of position measurements. Complete 
position measurements, which may implemented when one has experimental access to the 
full set of graph’s node, perform quite well: they are often optimal, the only exception being 
(among the cases taken into consideration) that of complete bipartite graphs, e.g. star graphs. 
Incomplete, e.g. nearly-local, position measurements still allow to extract a non-vanishing 
amount of information. Their efficiency (i.e. the ratio of the FI to QFI) is closely related to the 
fraction β of the graph’s nodes that are under control by the experimentalist. The exception is 
again the case of star graphs, since monitoring only the central node yields the same informa-
tion as monitoring each node separately.

Our results uncover fundamental properties of quantum walks related to their topologies, 
and pave the way to optimal design of quantum walks implementation, e.g. with supercon-
ducting circuits.
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Appendix. Spectral properties of selected graphs

A.1. Circulant graphs: complete and cycle graphs

The adjacency matrix of a circulant graph On is a circulant matrix, i.e. each row is obtained by 
shifting the preceding one to the right. Denoting by d the degree of each vertex, we consider 
the following quantum walk Hamiltonian on On:

HOn =

⎛

⎜⎜⎜⎜⎜⎜⎝

d −γ1 −γ2 . . . −γn−1

−γn−1 d −γ1 . . . −γn−2

−γn−2 −γn−1 d . . . −γn−3
...

...
...

. . .
...

−γ1 −γ2 −γ3 . . . d

⎞

⎟⎟⎟⎟⎟⎟⎠
.

 

(A.1)

We impose the symmetry constraint γj = γn−j, so that HOn is itself a circulant matrix. Notice 
that there are a total of ⌊n/2⌋ independent couplings. In particular, if all weights are set equal 
to the same value, equation (A.1) reduces to the case of a complete graph Kn; if instead the 
only non-zero weights are γ1 = γn−1 one has a cycle graph Cn.

From the general theory of circulant matrices [34], the eigenvalues of HOn are found to be

ξj = d −
n−1∑

k=1

γk e
2πijk

n , j ∈ {0, . . . , n − 1}. (A.2)

Using the fact that γj = γn−j, one may rewrite the previous equation as

ξj =

⎧
⎨

⎩
d − 2γ1 cos

(
2πj
n

)
− · · ·− 2γ(n−2)/2 cos

(
(n−2)πj

n

)
− γn/2 cos (πj) (n even)

d − 2γ1 cos
(

2πj
n

)
− · · ·− 2γ(n−1)/2 cos

(
(n−1)πj

n

)
(n odd)

.

Notice that the spectrum is doubly degenerate, i.e. ξj = ξn−j . The eigenvectors are

|ξj⟩ =
1√
n

n∑

k=1

e
2πij(k−1)

n |k⟩. (A.3)

A.1.1. Complete graphs. When all couplings are equal among themselves, the Hamiltonian 
of equation (A.1) reduces to:

HKn =

⎛

⎜⎜⎜⎝

(n − 1) −γ −γ . . . −γ
−γ (n − 1) −γ . . . −γ

...
...

...
. . .

...
−γ −γ −γ . . . (n − 1)

⎞

⎟⎟⎟⎠
. (A.4)

Making use of equation (A.2) and the identity 
∑n−1

k=0 exp(2πjk/n) = 0, the eigenvalues of HKn 
can be written more compactly as

ξj =

{
(n − 1)(1 − γ) if j = 0
(n − 1) + γ if j ≠ 0

. (A.5)

The least eigenvalue is ξ0, whereas the remaining eigenvalues are all degenerate. The corre-
sponding eigenvectors are the same as in equation (A.3).
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A.1.2. Cycle graphs. For cycle graphs, all couplings are zero except for γ1 = γn−1. The 
Hamiltonian HCn is

HCn =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −γ 0 . . . −γ
−γ 2 −γ . . . 0
0 −γ 2 . . . 0
...

...
...

. . .
...

−γ 0 0 . . . 2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (A.6)

In the main text, the case of a cycle graph with an even number of vertices is consid-
ered. Specializing some of the above formulas, the least eigenvalue of HCn is found to be 
ξ0 = 2(1 − γ), while the largest is ξn/2 = 2(1 + γ), with corresponding eigenvectors

|ξ0⟩ =
1√
n
(1, 1 . . . , 1, 1)t and |ξn/2⟩ =

1√
n
(1,−1 . . . , 1,−1)t. (A.7)

A.2. Hypercube graphs

For a generic hypercube graph Yd, its quantum walk Hamiltonian can be written as 
HYd = d I2d − γA(d), where A(d) is the adjacency matrix of Yd, which is defined recursively via 
the following relation:

A(1) =

(
0 1
1 0

)
, A(d) =

(
A(d−1) I2d−1

I2d−1 A(d−1)

)
. (A.8)

The eigenvectors of HYd are denoted by |ξ(κj)
j ⟩, where j ∈ {0, . . . , d} and κj is a degen-

eracy index ranging from 1 to [d, j] := d!/j!(d − j)!. The corresponding eigenvalues are 

ξj = d − γ(d − 2j). The eigenvectors |ξ(κj)
j ⟩ coincide with the columns of a sequence of matri-

ces Bd, indexed by the dimension d and defined recursively as follows:

B1 =
1√
2

(
1 1
1 −1

)
, Bd =

1√
2

(
Bd−1 Bd−1

Bd−1 −Bd−1

)
. (A.9)

By construction, each Bd is a Hadamard matrix. In particular, the ground state |ξ0⟩ and the 
highest excited state |ξd⟩ can be written as:

|ξ0⟩ =
1

2d/2

(
1
1

)⊗ d

, |ξd⟩ =
1

2d/2

(
1
−1

)⊗ d

. (A.10)

Notice that they are non-degenerate, i.e. κ0 = κd = 1, so we omit the degeneracy label.

A.3. Complete bipartite graphs

For a complete bipartite graph Kp ,q, the quantum walk Hamiltonian HKp,q  takes the following 
block form:

HKp,q =

(
q Ip −γJp×q

−γJq×p p Iq

)
, (A.11)
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where Ip is the p × p identity matrix and Jp×q  is the p × q matrix made up of all ones. In 
the position eigenbasis, a natural ansatz for the generic eigenvector |ξ⟩ of HKp,q  is in the form 
|ξ⟩ = (x, y)t, where x is a p -vector and y a q-vector. The eigenvalue equation HKp,q |ξ⟩ = ξ · |ξ⟩ 
implies the linear system of constraints:

{
(q − ξ)x = γJp×q y
( p − ξ)y = γJq×p x . (A.12)

Multiplying by Jq×p the first of the previous equations and by Jp×q  the second equation, and 
using the fact that Jq×p Jp×q = p Jq×q , one obtains:

Jq×q y =
(q − ξ)( p − ξ)

γ2p
y, Jp×p x =

(q − ξ)( p − ξ)

γ2q
x. (A.13)

It follows that y is an eigenvector of Jq×qand x is an eigenvector of Jp×p. Let us recall that 
the spectrum of Jp×p is made up of the eigenvalue 0 (with multiplicity p   −  1 and corre-
sponding eigenspace spanned by all p -vectors whose components sum to zero) and the eigen-
value p  (with multiplicity 1 and corresponding eigenvector 1p, the p -vector made up of ones). 
Equation (A.13) thus imply that the only possible values for ξ are spec(HG) = {ξ1, ξ2, ξ+, ξ−}, 
where ξ1 := q, ξ2 := p and ξ± are the roots of the equation (q − ξ±)( p − ξ±) = qp γ2, i.e.

ξ± =
( p + q)±

√
∆p,q

2
, with ∆p,q := ( p − q)2 + 4qp γ2. (A.14)

Notice that the lowest eigenvalue is ξ−, the highest is ξ+, while ξ1 and ξ2 are always in between.
The corresponding eigenvectors can be found as follows. For the eigenvalue ξ1, one finds 

that y must vanish and that x ∈ ker Jp×p, whereas for ξ2, x must vanish and y ∈ ker Jq×q. 
Introducing two orthonormal basis a(κ) and b(κ′), for ker Jp×p and ker Jq×q respectively, one 
can write:

|ξ(κ)1 ⟩ = (a(κ), 0q)
t, |ξ(κ

′)
2 ⟩ = (0p, b(κ

′))t, (A.15)

where κ ∈ {1, . . . , p − 1} and κ′ ∈ {1, . . . , q − 1}. For the remaining two eigenvalues ξ±, 
after substituting into the eigenvalue equation, one finally finds

|ξ±⟩ = η±

(
p−ξ±
γp 1p

1q

)
, with η± :=

[
q
(

1 +
p − ξ±
q − ξ±

)]−1/2

.

 (A.16)
Since equations (A.15) and (A.16) already define a set of p   +  q orthonormal eigenvectors, 
there are no additional eigenvectors.

ORCID iDs

Luigi Seveso  https://orcid.org/0000-0003-2327-180X
Claudia Benedetti  https://orcid.org/0000-0002-8112-4907
Matteo G A Paris  https://orcid.org/0000-0001-7523-7289

References

 [1] Farhi E and Gutmann S 1998 Quantum computation and decision trees Phys. Rev. A 58 915
 [2] Kempe J 2003 Quantum random walks—an introductory overview Contemp. Phys. 44 307

L Seveso et alJ. Phys. A: Math. Theor. 52 (2019) 105304



17

 [3] Venegas-Andraca S E 2012 Quantum walks: a comprehensive review Quantum Inf. Proc. 11 1015
 [4] Childs A M 2009 Universal computation by quantum walk Phys. Rev. Lett. 102 180501
 [5] Childs A M and Goldstone J 2004 Spatial search by quantum walk Phys. Rev. A 70 022314
 [6] Kendon V 2006 A random walk approach to quantum algorithms Phil. Trans. R. Soc. A 364 3407
 [7] Ambainis A 2007 Quantum walk algorithm for element distinctness SIAM J. Comput. 37 210
 [8] Farhi E, Goldstone J and Gutmann S 2008 A quantum algorithm for the hamiltonian NAND tree 

Theory Comput. 4 169
 [9] Gamble J K, Friesen M, Zhou D, Joynt R and Coppersmith S N 2010 Two-particle quantum walks 

applied to the graph isomorphism problem Phys. Rev. A 81 052313
 [10] Mülken O and Blumen A 2011 Continuous-time quantum walks: models for coherent transport on 

complex networks Phys. Rep. 502 37
 [11] Alvir R, Dever S, Lovitz B, Myer J, Tamon C, Xu Y and Zhan H 2016 Perfect state transfer in 

laplacian quantum walk J. Algebr. Comb. 43 801
 [12] Tamascelli D, Olivares S, Rossotti S, Osellame R and Paris M G A 2016 Quantum state transfer via 

Bloch oscillations Sci. Rep. 6 26054
 [13] Mohseni  M, Rebentrost  P, Lloyd  S and Aspuru-Guzik  A 2008 Environment-assisted quantum 

walks in photosynthetic energy transfer J. Chem. Phys. 129 174106
 [14] Hoyer S, Sarovar M and Whaley K B 2010 Limits of quantum speedup in photosynthetic light 

harvesting New J. Phys. 12 065041
 [15] Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R and Greiner M 2015 

Strongly correlated quantum walks in optical lattices Science 347 6227
 [16] Peruzzo A et al 2010 Quantum walks of correlated photons Science 329 5998
 [17] Hines A and Stamp P C E 2007 Quantum walks, quantum gates, and quantum computers Phys. Rev. 

A 75 062321
 [18] Burgarth D and Maruyama K 2009 Indirect Hamiltonian identification through a small gateway 

New J. Phys. 11 103019
 [19] Hillery M, Zheng H, Feldman E, Reitzner D and Buzek V 2012 Quantum walks as a probe of 

structural anomalies in graphs Phys. Rev. A 85 062325
 [20] Tamascelli D, Benedetti C, Olivares S and Paris M G A 2016 Characterization of qubit chains by 

Feynman probes Phys. Rev. A 94 042129
 [21] Nokkala J, Maniscalco S and Piilo J 2018 Local probe for connectivity and coupling strength in 

quantum complex networks Sci. Rep. 8 13010
 [22] Ito T et al 2016 Detection and control of charge states in a quintuple quantum dot Sci. Rep. 6 39113
 [23] Melnikov A A and Fedichkin L E 2016 Quantum walks of interacting fermions on a cycle graph 

Sci. Rep. 6 34226
 [24] Zwolak J P, Kalantre S S, Wu X, Ragole S and Taylor J M 2018 QFlow lite dataset: a machine-

learning approach to the charge states in quantum dot experiments PLoS One 13 e0205844
 [25] Paris M G A 2009 Quantum estimation for quantum technology Int. J. Quantum Inf. 7 125
 [26] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic)
 [27] Fujiwaraa A and Nagaoka H 1995 Quantum Fisher metric and estimation for pure state models 

Phys. Lett. A 201 119
 [28] Petz D 1996 Monotone metrics on matrix spaces Linear Algebr. Appl. 244 81
 [29] Brody D C and Hughston L P 1998 Statistical geometry in quantum mechanics Proc. R. Soc. A 

454 2445
 [30] Liu J, Xiong H-N, Song F and Wang X 2014 Fidelity susceptibility and quantum Fisher information 

for density operators with arbitrary ranks Physica A 410 167
 [31] Braunstein S L and Caves C M 1994 Statistical distance and the geometry of quantum states Phys. 

Rev. Lett. 72 3439
 [32] Braunstein  S  L, Caves  C  M and Milburn  G  J 1996 Generalized uncertainty relations: theory, 

examples, and lorentz invariance Ann. Phys. 247 135
 [33] Nagaoka H 1988 An asymptotically efficient estimator for a one-dimensional parametric model of 

quantum statistical operators Proc. 1988 IEEE Int. Symp. Inform. Theory 198 577
 [34] Aldrovandi  R 2001 Special Matrices of Mathematical Physics: Stochastic, Circulant, and Bell 

Matrices (Singapore: World Scientific) (https://doi.org/10.1142/4772)
 [35] Popoviciu T 1935 Sur les équations algébriques ayant toutes leurs racines réelles Mathematica 

9 129

L Seveso et alJ. Phys. A: Math. Theor. 52 (2019) 105304


