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We address unitary local (UL) invariance of bipartite pure states. Given a bipartite state
|Ψ〉〉 =

P
ij ψij |i〉1 ⊗ |j〉2 the complete characterization of the class of local unitaries

U1 ⊗ U2 for which U1 ⊗ U2|Ψ〉〉 = |Ψ〉〉 is obtained. The two relevant parameters are the
rank of the matrix Ψ, [Ψ]ij = ψij , and the number of its equal singular values, i.e. the
degeneracy of the eigenvalues of the partial traces of |Ψ〉〉.
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Suppose one is given a bipartite pure state |Ψ〉〉 ∈ H1 ⊗ H2 and asked for which
(pairs of) unitaries the state is locally invariant, i.e.

U1 ⊗ U2|Ψ〉〉 = |Ψ〉〉. (1)

This kind of invariance is closely related to the so-called environment-assisted invari-
ance (envariance), which has recently been introduced1,2 to understand the origin
of the Born rule. More generally, unitary local (UL) invariance naturally arises
whenever one investigates the possibility of undoing a local operation performed on
a subsystem of a multipartite state by acting, though locally, on another subsys-
tem. The somewhat related concept of twin observables has also been investigated
in order to account for the invariance that can be observed in measurements per-
formed on correlated systems.3,4

As we will see, any state |Ψ〉〉 is UL invariant for some pairs of unitaries and, as
one may expect, UL invariance and entanglement properties of |Ψ〉〉 are somehow
related. However, there are separable UL invariant states and, overall, the charac-
terization of the class of unitaries leading to UL invariance is not immediate. In this
paper, a complete characterization of the pairs of unitaries for which a given state
|Ψ〉〉 is UL invariant is achieved in terms of the Schmidt decomposition of |Ψ〉〉, i.e.
of the singular value decomposition of the matrix Ψ. We will show that the relevant
parameter is the number of terms in the Schmidt decomposition of |Ψ〉〉 and, in
particular, the number of (nonzero) equal Schmidt coefficients.
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The main result of the paper is given by the ULI theorem, whereas Lemmas 1
and 2 contain preparatory results. More details on the relationship between UL
invariance and entanglement are given at the end of the paper.

Let us start by establishing notation. Given a bases {|i〉1 ⊗ |j〉2} for the Hilbert
space H1⊗H2 (with H1 and H2 generally not isomorphic), we can write any vector
|Ψ〉〉 ∈ H1 ⊗H2 as5

|Ψ〉〉 =
d1∑

i=1

d2∑

j=1

ψij |i〉1 ⊗ |j〉2, (2)

where ψij are the elements of the matrix Ψ. The above notation induces a bijection
among states |Ψ〉〉 in H1 ⊗H2 and Hilbert–Schmidt operators

A =
∑

ij

aij |i〉21〈j| (3)

from H1 to H2. The following relations are an immediate consequence of the defi-
nitions (2) and (3):

A ⊗ B|Ψ〉〉 = |AΨBT 〉〉, 〈〈A|B〉〉 = Tr[A†B] , (4)

Tr2[|A〉〉〈〈B|] = AB†, Tr1[|A〉〉〈〈B|] = AT B∗ (5)

where AT ,∗,† denote transpose, conjugate and Hermitian conjugate respectively of
the matrix A (and of the operator A with respect to the chosen basis). Trj [· · ·]
denotes the partial trace over the Hilbert space Hj whereas AB† and AT B∗ in
Eq. (5) are operators acting on H1 and H2, respectively.

Using Eq. (4) the condition (1) for UL invariance can be rewritten as∣∣U1ΨUT
2

〉〉
= |Ψ〉〉, thus leading to the matrix relation

U1Ψ = ΨU∗
2 . (6)

The singular value decomposition of Ψ is given by Ψ = ST
1 ΣS2, where S1

and S2 are unitary matrices of suitable dimension and Σ is the diagonal matrix
Σ = Diag(σ1, . . . , σr , 0, . . .), where σj are the singular values of Ψ, i.e. the square
roots of the eigenvalues of Ψ†Ψ; r is the rank of the matrix Ψ. The singular value
decomposition of Ψ corresponds to the Schmidt decomposition of |Ψ〉〉:

|Ψ〉〉 =
∣∣ST

1 ΣS2

〉〉
=

∑

ij

(
ST

1 ΣS2

)
ij
|i〉1 ⊗ |j〉2

=
∑

ij

∑

kl

S1kiΣklS2lj |i〉1 ⊗ |j〉2 =
∑

k

σk |ϕk〉1 ⊗ |θk〉2, (7)

where |ϕk〉1 =
∑

i S1ki|i〉1 and |θk〉2 =
∑

l S2lj |j〉2 are the Schmidt basis in H1 and
H2, respectively.

Let us now switch to the Schmidt basis, which will be employed for most of the
paper. Bipartite pure states are thus represented by kets |Σ〉〉, where Σ is a diagonal
matrix. The UL invariance relation (6) is rewritten as

R1Σ = ΣR∗
2 , (8)



December 19, 2005 11:36 WSPC/187-IJQI 00152

Unitary Local Invariance 657

where we have denoted by Rj j = 1, 2 the matrices corresponding to the unitary
transformations in the new (Schmidt) basis.

The first step in the characterization of unitaries that leave invariant a given
state |Ψ〉〉 is given by the following lemma.

Lemma 1. Let Uj, j = 1, 2 be unitaries in Hj and |Ψ〉〉 a bipartite state on H1 ⊗H2.
If U1 ⊗ U2|Ψ〉〉 = |Ψ〉〉 then [Uj , �j] = 0, where �j are the partial traces of |Ψ〉〉, i.e.
�1 = Tr2[|Ψ〉〉〈〈Ψ|] = ΨΨ† and �2 = Tr1[|Ψ〉〉〈〈Ψ|] = ΨT Ψ∗ = (Ψ†Ψ)T .

Proof.

U †
1�1U1 = Tr2[(U

†
1 ⊗ �)|Ψ〉〉〈〈Ψ|(U1 ⊗ �)]

= Tr2[(U
†
1 ⊗ �)(U1 ⊗ U2)|Ψ〉〉〈〈Ψ|(U †

1 ⊗ U †
2 )(U1 ⊗ �)]

= Tr2[(�⊗ U2)|Ψ〉〉〈〈Ψ|(�⊗ U †
2 )]

= Tr2[|Ψ〉〉〈〈Ψ|] = �1. (9)

The proof that U †
2�2U2 = �2 and thus that [U2, �2] = 0 goes along the same lines.

As a consequence of Lemma 1, Uj and �j posses a common set of eigenvectors,
which coincides with the Schmidt basis of |Ψ〉〉 in each Hilbert space.

From the above lemma and from Eq. (8) we can already draw some conclusions
about the UL invariance properties of some particular class of quantum states. Let
us first consider separable states. These states correspond to rank-one matrices
Σ = σ1 ⊕ 0 and thus they are UL invariant under transformation R1 ⊗ R2 if

R1 = eiφ ⊕ V1 R2 = e−iφ ⊕ V2, (10)

where φ is an arbitrary phase, and Vj , j = 1, 2 are arbitrary unitaries, each acting
on the (dj − 1)-dimensional null subspace of Hj , corresponding to zero singular
values. More generally, Eq. (8) indicates that each matrix Rj should be written as
Rj = Wj ⊕ Vj , where Wj acts on the r-dimensional subspace of Hj corresponding to
the support of Σ, and Vj on the complementary (dj − r)-dimensional null subspace.
The rest of the paper is devoted to investigating the structure of Wj .

Let us first consider |Ψ〉〉 as a maximally entangled state; then Ψ is unitary with
Ψ = ST

1 ΣS2 and Σ = 1√
d
�d, d = min(d1, d2). Following Lemma 1 and Eq. (8),

we have that R1 = R∗
2, i.e. |Σ〉〉 is UL invariant for any transformation of the

form R⊗R∗ with R arbitrary unitary, i.e. |Ψ〉〉 is UL invariant for transformations
ST

1 RS∗
1 ⊗ ST

2 R∗S∗
2 . This relation, in turn, expresses isotropy of maximally entangled

states.6 If |Σ〉〉 has the form of a maximally entangled state immersed in a larger
Hilbert space, then the same conclusion holds on the support of Σ. The two above
statements, together with Lemma 1, can be summarized as a necessary and sufficient
condition by the following lemma.

Lemma 2. Let |Σ〉〉 be a rank r bipartite pure state in H1 ⊗ H2 with Σ = 1√
r
�r,

then U1 ⊗ U2|Σ〉〉 = |Σ〉〉 for U1, U2 if and only if U1 = U∗
2 on the support of Σ,
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i.e. for

U1 = W ⊕ V1 U2 = W ∗ ⊕ V2, (11)

where W, V1 and V2 are arbitrary unitaries on the corresponding r-dimensional,
(d1 − r)-dimensional and (d2 − r)-dimensional subspaces.

Proof. Sufficiency: if U1 = W ⊕V1 and U2 = W ∗ ⊕V2 then Eq. (8) is automatically
satisfied and |Σ〉〉, Σ = 1√

r
�r is invariant under the action of U1 ⊗ U2. Necessity:

if U1 ⊗ U2|Σ〉〉 = |Σ〉〉 then Lemma 1 assures that Uj and �j possess a common set
of eigenvectors, which coincides with the Schmidt basis of |Ψ〉〉, i.e. the support of
|Σ〉〉. This fact, together with Eq. (8), implies that U1 = U∗

2 on the support of Σ.
The thesis then follows by completing U1 and U2 in a unitary way on the remaining
sectors of the Hilbert space.

We are now ready to state the main result of the paper in the form of the following
theorem.

Theorem (ULI). Let |Ψ〉〉 be a bipartite pure state in H1 ⊗H2, with Ψ of rank r,

and let rk be the number of k-tuple of equal singular values, e.g. r1 is the number of
distinct singular values, r2 the number of pairs and so on; r1 +2r2 + · · · krk + · · ·= r.
Then |Ψ〉〉 is UL invariant, i.e U1 ⊗ U2|Ψ〉〉 = |Ψ〉〉 if and only if Uj = ST

j RjS
∗
j ,

j = 1, 2 with Rj given by

R1 = eiφ1 ⊕ · · · ⊕ eiφr1 ⊕ D1 ⊕ · · · ⊕ Dr2

⊕T1 ⊕ · · · ⊕ Tr3 ⊕ · · · ⊕ V1, (12)

R2 = e−iφ1 ⊕ · · · ⊕ e−iφr1 ⊕ D∗
1 ⊕ · · · ⊕ D∗

r2

⊕T ∗
1 ⊕ · · · ⊕ T ∗

r3
⊕ · · · ⊕ V2, (13)

where Sj , j = 1, 2 are the unitaries entering the singular value decomposition of
Ψ = ST

1 ΣS2, D1, . . . , Dr2 are arbitrary 2× 2 unitary matrices, T1, . . . , Tr3 arbitrary
3 × 3 unitary matrices, and so on. V1 and V2 are arbitrary unitaries in the null
subspaces of Hj corresponding to zero singular values.

Proof. After moving to the Schmidt basis by Ψ = ST
1 ΣS2, and according to the

consideration made before Lemma 1, we can always write the ULI requirement as
in Eq. (8), with Rj = Wj ⊕Vj , where the Wj are of rank r. Then, as a consequence
of Lemma 1, each Wj can be decomposed into blocks acting on the eigenspaces
of �j. Inside each eigenspace, whose dimension corresponds to the degeneracy of
the eigenvalues of �j , i.e. to the multiplicity of each singular value of Ψ, the matrix
Σ is proportional to the identity matrix. We can therefore apply Lemma 2, thus
arriving at W1 = W ∗

2 = W with

W = eiφ1 ⊕ · · · ⊕ eiφr1 ⊕ D1 ⊕ · · · ⊕ Dr2 ⊕ T1 ⊕ · · · , (14)

from which expressions (12) and (13) and, in turn, the thesis immediately follow.
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In conclusion, unitary local (UL) invariance of bipartite pure states has been
addressed and the complete characterization of the class of local unitaries U1 ⊗ U2

for which U1 ⊗ U2|Ψ〉〉 = |Ψ〉〉 has been obtained in terms of the singular values of
the matrix Ψ. The explicit expression of the matrices U1 and U2 has been derived.
Maximally entangled states are UL invariant under any transformation of the form
U ⊗U∗ with arbitrary U whereas separable states are UL invariant for unitaries of
the form (eiφ ⊕V1)⊗ (e−iφ ⊕V2) with V1 and V2 acting on the null subspaces of H1

and H2, respectively. In the general case, the two relevant parameters are the rank
of Ψ and the number of equal singular values of Ψ, which determines the structure
of the unitaries on the support.

Let us now go back to the connections between unitary local invariance and
entanglement, in order to stress that the two concepts are not straightforwardly
related each other. As already mentioned, separable states admit locally invariant
transformations which, however, are just overall phase factors not observable either
locally or globally. Consider the following, more instructive examples: a state with
d slightly different Schmidt coefficients can be taken to be arbitrarily close to a
maximally entangled state, so that the von Neumann entropy of the reduced states
is approximately equal to log d. The pairs of unitaries that leave it invariant are
just opposite phase shifts diagonal in the two Schmidt bases. On the other hand,
a state with only one Schmidt coefficient close to 1 and d − 1 small and equal
coefficients has an considerably larger set of locally invariant transformations, while
the von Neumann entropy of its reduced states can be put arbitrarily close to zero.
Thus, in general, UL invariance is not equivalent to entanglement — though for
the pure bidimensional case it may become equivalent when supplemented by a
suitable squeezing criterion.7 Notice also that the structure of the locally invariant
transformations can be used to evaluate the dimension of the sets of separable and
maximally entangled states.8
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