UNITARY LOCAL INVARIANCE

MATTEO G. A. PARIS
Dipartimento di Fisica dell'Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy matteo.paris@fisica.unimi.it
Received 13 January 2005
Revised 18 April 2005

Abstract

We address unitary local (UL) invariance of bipartite pure states. Given a bipartite state $|\Psi\rangle\rangle=\sum_{i j} \psi_{i j}|i\rangle_{1} \otimes|j\rangle_{2}$ the complete characterization of the class of local unitaries $U_{1} \otimes U_{2}$ for which $\left.\left.U_{1} \otimes U_{2}|\Psi\rangle\right\rangle=|\Psi\rangle\right\rangle$ is obtained. The two relevant parameters are the rank of the matrix $\Psi,[\Psi]_{i j}=\psi_{i j}$, and the number of its equal singular values, i.e. the degeneracy of the eigenvalues of the partial traces of $|\Psi\rangle\rangle$.

Keywords: Unitary local invariance; entanglement.

Suppose one is given a bipartite pure state $|\Psi\rangle\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and asked for which (pairs of) unitaries the state is locally invariant, i.e.

$$
\begin{equation*}
\left.\left.U_{1} \otimes U_{2}|\Psi\rangle\right\rangle=|\Psi\rangle\right\rangle . \tag{1}
\end{equation*}
$$

This kind of invariance is closely related to the so-called environment-assisted invariance (envariance), which has recently been introduced ${ }^{1,2}$ to understand the origin of the Born rule. More generally, unitary local (UL) invariance naturally arises whenever one investigates the possibility of undoing a local operation performed on a subsystem of a multipartite state by acting, though locally, on another subsystem. The somewhat related concept of twin observables has also been investigated in order to account for the invariance that can be observed in measurements performed on correlated systems. ${ }^{3,4}$

As we will see, any state $|\Psi\rangle\rangle$ is UL invariant for some pairs of unitaries and, as one may expect, UL invariance and entanglement properties of $|\Psi\rangle$ are somehow related. However, there are separable UL invariant states and, overall, the characterization of the class of unitaries leading to UL invariance is not immediate. In this paper, a complete characterization of the pairs of unitaries for which a given state $|\Psi\rangle\rangle$ is UL invariant is achieved in terms of the Schmidt decomposition of $|\Psi\rangle\rangle$, i.e. of the singular value decomposition of the matrix Ψ. We will show that the relevant parameter is the number of terms in the Schmidt decomposition of $|\Psi\rangle\rangle$ and, in particular, the number of (nonzero) equal Schmidt coefficients.

The main result of the paper is given by the ULI theorem, whereas Lemmas 1 and 2 contain preparatory results. More details on the relationship between UL invariance and entanglement are given at the end of the paper.

Let us start by establishing notation. Given a bases $\left\{|i\rangle_{1} \otimes|j\rangle_{2}\right\}$ for the Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ (with \mathcal{H}_{1} and \mathcal{H}_{2} generally not isomorphic), we can write any vector $|\Psi\rangle\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ as 5

$$
\begin{equation*}
|\Psi\rangle\rangle=\sum_{i=1}^{d_{1}} \sum_{j=1}^{d_{2}} \psi_{i j}|i\rangle_{1} \otimes|j\rangle_{2}, \tag{2}
\end{equation*}
$$

where $\psi_{i j}$ are the elements of the matrix Ψ. The above notation induces a bijection among states $|\Psi\rangle\rangle$ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and Hilbert-Schmidt operators

$$
\begin{equation*}
A=\sum_{i j} a_{i j}|i\rangle_{21}\langle j| \tag{3}
\end{equation*}
$$

from \mathcal{H}_{1} to \mathcal{H}_{2}. The following relations are an immediate consequence of the definitions (2) and (3):

$$
\begin{align*}
A \otimes B|\Psi\rangle & \left.=\left|A \Psi B^{T}\right\rangle\right\rangle, \quad\langle\langle A \mid B\rangle\rangle=\operatorname{Tr}\left[A^{\dagger} B\right], \tag{4}\\
\operatorname{Tr}_{2}[|A\rangle\rangle\langle\langle B|] & =A B^{\dagger}, \quad \operatorname{Tr}_{1}[|A\rangle\rangle\langle\langle B|]=A^{T} B^{*} \tag{5}
\end{align*}
$$

where $A^{T, *, \dagger}$ denote transpose, conjugate and Hermitian conjugate respectively of the matrix A (and of the operator A with respect to the chosen basis). $\operatorname{Tr}_{j}[\cdots]$ denotes the partial trace over the Hilbert space \mathcal{H}_{j} whereas $A B^{\dagger}$ and $A^{T} B^{*}$ in Eq. (5) are operators acting on \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.

Using Eq. (4) the condition (1) for UL invariance can be rewritten as $\left.\left.\left|U_{1} \Psi U_{2}^{T}\right\rangle\right\rangle=|\Psi\rangle\right\rangle$, thus leading to the matrix relation

$$
\begin{equation*}
U_{1} \Psi=\Psi U_{2}^{*} \tag{6}
\end{equation*}
$$

The singular value decomposition of Ψ is given by $\Psi=S_{1}^{T} \Sigma S_{2}$, where S_{1} and S_{2} are unitary matrices of suitable dimension and Σ is the diagonal matrix $\Sigma=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{r}, 0, \ldots\right)$, where σ_{j} are the singular values of Ψ, i.e. the square roots of the eigenvalues of $\Psi^{\dagger} \Psi ; r$ is the rank of the matrix Ψ. The singular value decomposition of Ψ corresponds to the Schmidt decomposition of $|\Psi\rangle\rangle$:

$$
\begin{align*}
|\Psi\rangle\rangle & \left.=\left|S_{1}^{T} \Sigma S_{2}\right\rangle\right\rangle=\sum_{i j}\left(S_{1}^{T} \Sigma S_{2}\right)_{i j}|i\rangle_{1} \otimes|j\rangle_{2} \\
& =\sum_{i j} \sum_{k l} S_{1 k i} \Sigma_{k l} S_{2 l j}|i\rangle_{1} \otimes|j\rangle_{2}=\sum_{k} \sigma_{k}\left|\varphi_{k}\right\rangle_{1} \otimes\left|\theta_{k}\right\rangle_{2} \tag{7}
\end{align*}
$$

where $\left|\varphi_{k}\right\rangle_{1}=\sum_{i} S_{1 k i}|i\rangle_{1}$ and $\left|\theta_{k}\right\rangle_{2}=\sum_{l} S_{2 l j}|j\rangle_{2}$ are the Schmidt basis in \mathcal{H}_{1} and \mathcal{H}_{2}, respectively.

Let us now switch to the Schmidt basis, which will be employed for most of the paper. Bipartite pure states are thus represented by kets $|\Sigma\rangle\rangle$, where Σ is a diagonal matrix. The UL invariance relation (6) is rewritten as

$$
\begin{equation*}
R_{1} \Sigma=\Sigma R_{2}^{*} \tag{8}
\end{equation*}
$$

where we have denoted by $R_{j} j=1,2$ the matrices corresponding to the unitary transformations in the new (Schmidt) basis.

The first step in the characterization of unitaries that leave invariant a given state $|\Psi\rangle\rangle$ is given by the following lemma.

Lemma 1. Let $U_{j}, j=1,2$ be unitaries in \mathcal{H}_{j} and $\left.|\Psi\rangle\right\rangle$ a bipartite state on $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. If $\left.U_{1} \otimes U_{2}|\Psi\rangle\right\rangle=|\Psi\rangle$ then $\left[U_{j}, \varrho_{j}\right]=0$, where ϱ_{j} are the partial traces of $\left.|\Psi\rangle\right\rangle$, i.e. $\varrho_{1}=\operatorname{Tr}_{2}[|\Psi\rangle\rangle\langle\langle\Psi|]=\Psi \Psi^{\dagger}$ and $\varrho_{2}=\operatorname{Tr}_{1}[|\Psi\rangle\rangle\langle\langle\Psi|]=\Psi^{T} \Psi^{*}=\left(\Psi^{\dagger} \Psi\right)^{T}$.

Proof.

$$
\begin{align*}
U_{1}^{\dagger} \varrho_{1} U_{1} & =\operatorname{Tr}_{2}\left[\left(U_{1}^{\dagger} \otimes \mathbb{I}\right)|\Psi\rangle\right\rangle\left\langle\langle\Psi|\left(U_{1} \otimes \mathbb{I}\right)\right] \\
& \left.=\operatorname{Tr}_{2}\left[\left(U_{1}^{\dagger} \otimes \mathbb{I}\right)\left(U_{1} \otimes U_{2}\right)|\Psi\rangle\right\rangle\langle\Psi|\left(U_{1}^{\dagger} \otimes U_{2}^{\dagger}\right)\left(U_{1} \otimes \mathbb{I}\right)\right] \\
& =\operatorname{Tr}_{2}\left[\left(\mathbb{I} \otimes U_{2}\right)|\Psi\rangle\right\rangle\left\langle\langle\Psi|\left(\mathbb{I} \otimes U_{2}^{\dagger}\right)\right] \\
& =\operatorname{Tr}_{2}\left[|\Psi\rangle\langle\langle\Psi|]=\varrho_{1} .\right. \tag{9}
\end{align*}
$$

The proof that $U_{2}^{\dagger} \varrho_{2} U_{2}=\varrho_{2}$ and thus that $\left[U_{2}, \varrho_{2}\right]=0$ goes along the same lines. As a consequence of Lemma $1, U_{j}$ and ϱ_{j} posses a common set of eigenvectors, which coincides with the Schmidt basis of $|\Psi\rangle\rangle$ in each Hilbert space.

From the above lemma and from Eq. (8) we can already draw some conclusions about the UL invariance properties of some particular class of quantum states. Let us first consider separable states. These states correspond to rank-one matrices $\Sigma=\sigma_{1} \oplus \mathbf{0}$ and thus they are UL invariant under transformation $R_{1} \otimes R_{2}$ if

$$
\begin{equation*}
R_{1}=e^{i \phi} \oplus V_{1} \quad R_{2}=e^{-i \phi} \oplus V_{2} \tag{10}
\end{equation*}
$$

where ϕ is an arbitrary phase, and $V_{j}, j=1,2$ are arbitrary unitaries, each acting on the $\left(d_{j}-1\right)$-dimensional null subspace of \mathcal{H}_{j}, corresponding to zero singular values. More generally, Eq. (8) indicates that each matrix R_{j} should be written as $R_{j}=W_{j} \oplus V_{j}$, where W_{j} acts on the r-dimensional subspace of \mathcal{H}_{j} corresponding to the support of Σ, and V_{j} on the complementary $\left(d_{j}-r\right)$-dimensional null subspace. The rest of the paper is devoted to investigating the structure of W_{j}.

Let us first consider $|\Psi\rangle\rangle$ as a maximally entangled state; then Ψ is unitary with $\Psi=S_{1}^{T} \Sigma S_{2}$ and $\Sigma=\frac{1}{\sqrt{d}} \mathbb{I}_{d}, d=\min \left(d_{1}, d_{2}\right)$. Following Lemma 1 and Eq. (8), we have that $R_{1}=R_{2}^{*}$, i.e. $\left.|\Sigma\rangle\right\rangle$ is UL invariant for any transformation of the form $R \otimes R^{*}$ with R arbitrary unitary, i.e. $\left.|\Psi\rangle\right\rangle$ is UL invariant for transformations $S_{1}^{T} R S_{1}^{*} \otimes S_{2}^{T} R^{*} S_{2}^{*}$. This relation, in turn, expresses isotropy of maximally entangled states. ${ }^{6}$ If $\left.|\Sigma\rangle\right\rangle$ has the form of a maximally entangled state immersed in a larger Hilbert space, then the same conclusion holds on the support of Σ. The two above statements, together with Lemma 1, can be summarized as a necessary and sufficient condition by the following lemma.

Lemma 2. Let $|\Sigma\rangle$ be a rank r bipartite pure state in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ with $\Sigma=\frac{1}{\sqrt{r}} \mathbb{I}_{r}$, then $\left.\left.U_{1} \otimes U_{2}|\Sigma\rangle\right\rangle=|\Sigma\rangle\right\rangle$ for U_{1}, U_{2} if and only if $U_{1}=U_{2}^{*}$ on the support of Σ,
i.e. for

$$
\begin{equation*}
U_{1}=W \oplus V_{1} \quad U_{2}=W^{*} \oplus V_{2} \tag{11}
\end{equation*}
$$

where W, V_{1} and V_{2} are arbitrary unitaries on the corresponding r-dimensional, $\left(d_{1}-r\right)$-dimensional and $\left(d_{2}-r\right)$-dimensional subspaces.

Proof. Sufficiency: if $U_{1}=W \oplus V_{1}$ and $U_{2}=W^{*} \oplus V_{2}$ then Eq. (8) is automatically satisfied and $|\Sigma\rangle\rangle, \Sigma=\frac{1}{\sqrt{r}} \mathbb{I}_{r}$ is invariant under the action of $U_{1} \otimes U_{2}$. Necessity: if $\left.\left.U_{1} \otimes U_{2}|\Sigma\rangle\right\rangle=|\Sigma\rangle\right\rangle$ then Lemma 1 assures that U_{j} and ϱ_{j} possess a common set of eigenvectors, which coincides with the Schmidt basis of $|\Psi\rangle\rangle$, i.e. the support of $|\Sigma\rangle\rangle$. This fact, together with Eq. (8), implies that $U_{1}=U_{2}^{*}$ on the support of Σ. The thesis then follows by completing U_{1} and U_{2} in a unitary way on the remaining sectors of the Hilbert space.

We are now ready to state the main result of the paper in the form of the following theorem.

Theorem (ULI). Let $|\Psi\rangle$ be a bipartite pure state in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$, with Ψ of rank r, and let r_{k} be the number of k-tuple of equal singular values, e.g. r_{1} is the number of distinct singular values, r_{2} the number of pairs and so on; $r_{1}+2 r_{2}+\cdots k r_{k}+\cdots=r$. Then $|\Psi\rangle$ is UL invariant, i.e $\left.U_{1} \otimes U_{2}|\Psi\rangle\right\rangle=|\Psi\rangle$ if and only if $U_{j}=S_{j}^{T} R_{j} S_{j}^{*}$, $j=1,2$ with R_{j} given by

$$
\begin{align*}
R_{1}= & e^{i \phi_{1}} \oplus \cdots \oplus e^{i \phi_{r_{1}}} \oplus D_{1} \oplus \cdots \oplus D_{r_{2}} \\
& \oplus T_{1} \oplus \cdots \oplus T_{r_{3}} \oplus \cdots \oplus V_{1}, \tag{12}\\
R_{2}= & e^{-i \phi_{1}} \oplus \cdots \oplus e^{-i \phi_{r_{1}}} \oplus D_{1}^{*} \oplus \cdots \oplus D_{r_{2}}^{*} \\
& \oplus T_{1}^{*} \oplus \cdots \oplus T_{r_{3}}^{*} \oplus \cdots \oplus V_{2}, \tag{13}
\end{align*}
$$

where $S_{j}, j=1,2$ are the unitaries entering the singular value decomposition of $\Psi=S_{1}^{T} \Sigma S_{2}, D_{1}, \ldots, D_{r_{2}}$ are arbitrary 2×2 unitary matrices, $T_{1}, \ldots, T_{r_{3}}$ arbitrary 3×3 unitary matrices, and so on. V_{1} and V_{2} are arbitrary unitaries in the null subspaces of \mathcal{H}_{j} corresponding to zero singular values.

Proof. After moving to the Schmidt basis by $\Psi=S_{1}^{T} \Sigma S_{2}$, and according to the consideration made before Lemma 1, we can always write the ULI requirement as in Eq. (8), with $R_{j}=W_{j} \oplus V_{j}$, where the W_{j} are of rank r. Then, as a consequence of Lemma 1, each W_{j} can be decomposed into blocks acting on the eigenspaces of ϱ_{j}. Inside each eigenspace, whose dimension corresponds to the degeneracy of the eigenvalues of ϱ_{j}, i.e. to the multiplicity of each singular value of Ψ, the matrix Σ is proportional to the identity matrix. We can therefore apply Lemma 2, thus arriving at $W_{1}=W_{2}^{*}=W$ with

$$
\begin{equation*}
W=e^{i \phi_{1}} \oplus \cdots \oplus e^{i \phi_{r_{1}}} \oplus D_{1} \oplus \cdots \oplus D_{r_{2}} \oplus T_{1} \oplus \cdots \tag{14}
\end{equation*}
$$

from which expressions (12) and (13) and, in turn, the thesis immediately follow.

In conclusion, unitary local (UL) invariance of bipartite pure states has been addressed and the complete characterization of the class of local unitaries $U_{1} \otimes U_{2}$ for which $\left.\left.U_{1} \otimes U_{2}|\Psi\rangle\right\rangle=|\Psi\rangle\right\rangle$ has been obtained in terms of the singular values of the matrix Ψ. The explicit expression of the matrices U_{1} and U_{2} has been derived. Maximally entangled states are UL invariant under any transformation of the form $U \otimes U^{*}$ with arbitrary U whereas separable states are UL invariant for unitaries of the form $\left(e^{i \phi} \oplus V_{1}\right) \otimes\left(e^{-i \phi} \oplus V_{2}\right)$ with V_{1} and V_{2} acting on the null subspaces of \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. In the general case, the two relevant parameters are the rank of Ψ and the number of equal singular values of Ψ, which determines the structure of the unitaries on the support.

Let us now go back to the connections between unitary local invariance and entanglement, in order to stress that the two concepts are not straightforwardly related each other. As already mentioned, separable states admit locally invariant transformations which, however, are just overall phase factors not observable either locally or globally. Consider the following, more instructive examples: a state with d slightly different Schmidt coefficients can be taken to be arbitrarily close to a maximally entangled state, so that the von Neumann entropy of the reduced states is approximately equal to $\log d$. The pairs of unitaries that leave it invariant are just opposite phase shifts diagonal in the two Schmidt bases. On the other hand, a state with only one Schmidt coefficient close to 1 and $d-1$ small and equal coefficients has an considerably larger set of locally invariant transformations, while the von Neumann entropy of its reduced states can be put arbitrarily close to zero. Thus, in general, UL invariance is not equivalent to entanglement - though for the pure bidimensional case it may become equivalent when supplemented by a suitable squeezing criterion. ${ }^{7}$ Notice also that the structure of the locally invariant transformations can be used to evaluate the dimension of the sets of separable and maximally entangled states. ${ }^{8}$

Acknowledgment

The author is grateful to the anonymous referees for helpful suggestions.

References

1. W. H. Zurek, Phys. Rev. Lett. 90, 120404 (2003).
2. W. H. Zurek, quant-ph/0405161.
3. F. Herbut and F. N. Damnjanovic, J. Phys. A 33, 6023 (2000).
4. F. Herbut, J. Phys. A 35, 1691 (2002).
5. G. M. D'Ariano, P. Lo Presti and M. F. Sacchi, Phys. Lett. A 272, 32 (2000).
6. M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206 (1999).
7. A. R. Usha Devi, X. Wang and B. C. Sanders, Quant. Inform. Proc. 2, 207 (2003).
8. M. M. Sinołȩcka, K. Życzkowski and M. Kuś, Acta. Phys. Pol. A 33, 2081 (2002).
