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Abstract
We address the discontinuities of the quantum Fisher information (QFI) that 
may arise when the parameter of interest takes values that change the rank 
of the quantum statistical model. We revisit the classical and the quantum 
Cramér–Rao theorems, show that they do not hold in these limiting cases, and 
discuss how this impacts on the relationship between the QFI and the Bures 
metric. In order to illustrate the metrological implications of our findings, we 
present two paradigmatic examples, where we discuss in detail the role of the 
discontinuities. We show that the usual equivalence between the variance of 
the maximum likelihood estimator and the inverse of the QFI breaks down.

Keywords: quantum metrology, quantum estimation theory,  
quantum information

(Some figures may appear in colour only in the online journal)

1. Introduction

A quantum metrological protocol is a detection scheme where the inherent fragility of quant um 
systems to external perturbations is exploited to enhance precision, stability or resolution in 
the estimation of one or more quantities of interest. In the last two decades, the development 
of advanced technologies to coherently manipulate quantum systems, and to address them 
with unprecedented accuracy, made it possible to realize several metrological schemes based 
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on quantum systems, leading to quantum enhanced high-precision measurements of physical 
parameters [1].

On the theoretical side, the main tool of quantum metrology is the so-called quantum 
Cramér–Rao theorem, stating that for a regular quantum statistical model the precision is 
bounded by the inverse of the quantum Fisher information (QFI) [2–7]. Evaluating the QFI 
thus provides the ultimate quantum limits to precision, and a general benchmark to assess 
metrological protocols. The quantum Cramér–Rao theorem is indeed a very powerful tool, 
and it has found a widespread use in quantum metrology. At the same time, its success has lead 
to somehow overlooking the mathematical details of its hypotheses, such as a possible intrin-
sic parameter dependence of the measurement apparatus [8, 9] or the pathological situations 
that may occur when the parameter of interest takes values that change the rank of density 
matrix of the system. In such quantum statistical models, analogous to non-regular models 
in classical statistics, the QFI may show discontinuities, which undermine the validity of the 
Cramér–Rao theorem and, in turn, its use in quantum metrology.

In this paper we consider statistical models whose rank is a non-trivial function of the 
parameter to be estimated. We address the discontinuities of classical and quantum Fisher 
information and revisit both the classical and the quantum Cramér–Rao theorems, showing 
that they do not hold in these limiting cases, also discussing how this reflects on the relation-
ship between the QFI and the Bures metric. In order to illustrate the metrological implications 
of our findings, we also discuss two paradigmatic simple examples, where the Cramér–Rao 
bound (CRB) may be easily violated.

Let ρθ denote a quantum statistical model with parameter space Θ. Suppose that θ̄  is the 
true value of the parameter and that, in any open neighbourhood Nθ̄ of θ̄ , there exists θ′ such 
that rank(ρθ′) ̸= rank(ρθ̄). The typical situation is when the rank changes at an isolated point 
θ̄  of Θ, but more general situations may also be envisioned. This apparently harmless circum-
stance causes new theoretical challenges in determining the best performance of any quantum 
estimation strategy. Nonetheless, it is a situation of physical interest that might naturally arise 
when estimating noise parameters, e.g. in the estimation of momentum diffusion induced by 
collapse models under continuous monitoring of the environment [10]. We will show that this 
scenario also applies to an instance of frequency estimation with open quantum systems [11].

The consequences of allowing the rank to vary with θ can be severe, both from a geo-
metrical and a statistical perspective. From the geometrical point of view, it is known that 
the Fisher information metric may develop discontinuities [12] and suitable regularization 
techniques have been proposed for specific classes of states [13, 14]. On the other hand, the 
question of how such discontinuities affect the statistical estimation problem at hand is cur-
rently open [12]. In the following, we are going to argue that the standard theory based on 
the Cramér–Rao bound breaks down at such points of the parameter space where the rank of 
ρθ changes. In fact, such a failure of the standard theory is not specific to quantum statistical 
models, but is actually present already at the classical level [15]; a generalized classical CRB 
for this scenario has been recently derived [16, 17].

1.1. Classical and quantum regular models

In order to establish notation, let us briefly review the regular scenario, which is the theor-
etical foundation to most applications in classical and quantum metrology. We assume that 
the quant um parametrization maps ϕθ : θ → ρθ or the classical one ϕθ : θ → pθ are suf-
ficiently well-behaved, such that the symmetric logarithmic derivative Lθ, implicitly defined 
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via the relation ∂θρθ = {ρθ, Lθ}/2 or the classical score function ℓθ = ∂θ log pθ exist and the 
corresponding quantum and classical Fisher information metrics are well-defined and finite, 
∀θ ∈ Θ.

Setting apart all pathological situations where these conditions do not hold, e.g. the sta-
tistical model is non-differentiable or even discontinuous (see [18, 19] for such a scenario in 
quantum estimation and [20] for classical estimation), we further qualify a quantum statistical 
model as regular if it satisfies the following conditions: 1. fixed-rank: the rank of the statisti-
cal model ρθ (i.e. the rank of the density matrices ρθ) is independent of θ; 2. identifiable: the 
parametrization map ϕθ : θ → ρθ is injective; 3. non-singular metric: the Fisher–Bures met-
ric gθ, defined by 2[1 − F(ρθ, ρθ+ϵ)] = gθ ϵ2 + O(ϵ3), where F(ρ,σ) = tr

[√√
ρσ

√
ρ
]
 is the 

quantum fidelity, is a well-defined positive-definite function ∀θ ∈ Θ.
Let us also give the translation of the previous definition to the classical setting. A reg-

ular classical statistical model pθ satisfies the following conditions: 1. parameter-inde-
pendent support: the support supp( pθ) of the statistical model (i.e. the subset of the real 
axis where pθ ̸= 0) is independent of θ5; 2. identifiable: the coordinate map ϕθ : θ → pθ 
is injective; 3.  non-singular metric: the Fisher–Rao information metric fθ, defined by 
2D( pθ||pθ+ϵ) = fθ ϵ2 + O(ϵ3), where D( p||q) =

∑
x px log px/qx is the Kullback–Leibler 

divergence, is a well-defined positive-definite function ∀θ ∈ Θ.
For regular statistical models one has the following results, which provide the standard 

tools of current classical and quantum metrology

Proposition 1. Given a regular classical statistical model pθ,

 •  For any unbiased estimator θ̂, the Cramér–Rao bound Varθ(θ̂) ! (M Fθ)−1 holds, where 
M is the number of repetitions and Fθ the Fisher information,

Fθ =
∑

y

[∂θpθ(y)]
2

pθ(y)
. (1)

 •  The Cramér–Rao bound is attainable: (i) for finite M, if pθ belongs to the exponential 
family and θ is a natural parameter of pθ, by the unique efficient estimator of θ (ii) as-
ymptotically, as M → ∞, e.g. by the maximum-likelihood or Bayes estimators.

 •  The maximum-likelihood and Bayes estimators have the asymptotic normality property, 
i.e. convergence in distribution 

√
M(θ̂ − θ)

d→ N(0, 1/Fθ) as M → ∞.

In addition, we have that Fθ = fθ i.e the Fisher information equals the Fisher–Rao metric.

Proposition 2. Given a regular quantum statistical model ρθ,

 •  For any quantum measurement {Πx}x∈X, 
∑

x∈X Πx =  and unbiased estimator θ̂, the 
quantum Cramér–Rao bound Varθ(θ̂) ! (M Qθ)−1 holds, where M is the number of rep-
etitions, Qθ the quantum Fisher information,

Qθ = tr[ρθL2
θ] (2)

  and Lθ is the symmetric logarithmic derivative (SLD) operator, defined via the Lyapunov 
equation 2∂θρθ = Lθρθ + ρθLθ.

5 This is one of the conditions needed to make sure that the order of differentiation with respect to θ and integration 
over the sample space can be interchanged, for more mathematical details see [21, p 516] and also [16] and refer-
ences therein.
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 •  The quantum Cramér–Rao bound is attainable by implementing the optimal Braunstein–
Caves measurement, i.e. a projective measurement of the symmetric logarithmic deriv-
ative Lθ, and under the conditions stated before for the resulting classical statistical 
model.

In the quantum setting the optimal measurement generally depends on the true value of 
the parameter θ. Nonetheless, the single-parameter quantum CRB is attainable in the limit of 
many repetitions by implementing an adaptive strategy [22, 23], such as a two-stage adaptive 
measurement [24, 25].

By considering the spectral decomposition of the quantum statistical model 
ρθ =

∑
k λk,θ|λk,θ⟩⟨λk,θ|, one obtains that the SLD operator can be written as [6]

Lθ = 2
∑

λk,θ+λl,θ>0

⟨λk,θ|∂θρθ|λl,θ⟩
λk,θ + λl,θ

|λk,θ⟩⟨λl,θ|, (3)

and consequently the QFI can be evaluated as

Qθ = 2
∑

λk,θ+λl,θ>0

|⟨λk,θ|∂θρθ|λl,θ⟩|2

λk,θ + λl,θ
. (4)

Moreover, the QFI is proportional to the Fisher–Bures metric

Qθ = 4gθ. (5)

We remark that for non full-rank quantum models the Lyapunov equation does not have a 
unique solution. Nonetheless, there is no ambiguity in the definition of the QFI for fixed-rank 
models, since the unspecified components of the SLD do not play any role in equation (2) [3, 
26].

2. Non-regular case

If either of the three regularity conditions listed above is not true, propositions 1 and 2 do 
not hold in general. The second condition, if not verified, can often be realized by simply 
restricting the parameter space Θ or by a change of parametrization. Let us consider a trivial 
example, i.e. the statistical model ρθ = sin2 θ|0⟩⟨0|+ cos2 θ|1⟩⟨1|. If we consider θ ∈ , the 
model is not identifiable, but it can be made so by restricting the values of θ to the interval 
[0,π/2]. In a non-identifiable model, the true value of the parameter is in general non-unique, 
therefore a local approach becomes impossible and the Cramér–Rao bound is meaningless.

Let us now assume that the model is identifiable, or can be made so by a suitable repara-
metrization. However, the rank of the statistical model, or its support in the classical case, is 
allowed to vary by varying the parameter θ.

2.1. Variable-rank models

Let us start from the classical case, since our conclusions may then be translated to the quant um 
case. Denote by Xθ the support of pθ, i.e. the closure of the set {x | pθ(x) > 0}. Let us see why 
the derivation of the Cramér–Rao bound breaks down. For simplicity, we fix M  =  1. Given any 
two statistics t1 and t2, their inner product is defined in terms of the probability distribution 
pθ(x) as
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⟨t1, t2⟩ = θ(t1t2) =
∫

Xθ

dx pθ(x)t1(x)t2(x). (6)

Take t1(x) = θ̂(x)− θ and t2(x) = ∂θ log pθ(x). Then, by the Cauchy–Schwarz inequality 
⟨t1, t2⟩2 ! ⟨t1, t1⟩⟨t2, t2⟩, one obtains

∫

Xθ

dx [θ̂(x)− θ] ∂θpθ(x) ! Varθ(θ̂) · Fθ. (7)

Now, if Xθ were independent of θ, and under very mild assumptions regarding the smoothness 
of pθ (see e.g. [21, p. 516]), one could interchange the order of integration and differentiation, 
and conclude that the LHS is equal to 1, which would imply the Cramér–Rao bound. However, 
the very fact that Xθ depends on θ prevents one from interchanging integration and differentia-
tion and thus to obtain a general inequality independent from the particular unbiased estimator 
θ̂. The conclusion is that in this situation the Fisher information is not necessarily linked to the 
best possible precision of unbiased estimators.

Moving to the quantum case, since the quantum Fisher information is the Fisher informa-
tion corresponding to the optimal measurement [5, 27], it is also not directly linked to the 
best possible performance over the set of quantum estimation strategies. Notice that both the 
Fisher information and the quantum Fisher information are still well-defined even at the point 
θ̄  where the rank changes. They could, however, develop a discontinuity there.

2.2. Discontinuity of classical and quantum Fisher information

Suppose now that the statistical model pθ describes the p.m.f. of a discrete random variable X 
and that, as θ → θ̄ , the probability pθ(ȳ) of one of its outcomes ȳ ∈ X  goes to zero. Since the 
Fisher information is computed only on the support of the model, it follows that

∆F = lim
θ→θ̄

Fθ − Fθ̄ = lim
θ→θ̄

[∂θpθ(ȳ)]2

pθ(ȳ)
. (8)

If the limit on the RHS is non-zero, then the Fisher information is discontinuous.

Proposition 3. The Fisher information Fθ at θ = θ̄  is continuous if both the speed 
v = limθ→θ̄ ∂θpθ(y) and the acceleration a = limθ→θ̄ ∂

2
θpθ(y) with which pθ(y) → 0 are 

zero. Otherwise, if v = 0 but a ̸= 0, the discontinuity is equal to ∆F = 2a and if v ̸= 0 there 
is a discontinuity of the second kind.

Proof. Follows from L’Hôpital’s rule. □ 

We now move to the quantum case and suppose that the rank of the quantum statistical 
model ρθ diminishes by one at θ = θ̄  because one of its eigenvalues λm,θ vanishes as θ → θ̄ . Is 
the quantum Fisher information discontinuous as θ → θ̄? By looking at the formula in equa-
tion (4), one sees that the discontinuity can be evaluated as (in the following we are omitting 
the dependence on θ of eigenvalues and eigenvectors)

∆Q = lim
θ→θ̄

Qθ −Qθ̄ (9)

= lim
θ→θ̄

(
4
∑

λk=0

|⟨λk|∂θρθ|λm⟩|2

λm
+ 2

|⟨λm|∂θρθ|λm⟩|2

2λm
.

)

 (10)
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By analyzing the first term, where the sum runs over the kernel of the statistical model ρθ, we 
observe

|⟨λk|∂θρθ|λm⟩|2

λm
=

1
λm

|⟨λk|∂θλm⟩|2 |⟨λm|λm⟩|2 λ2
m

= λm|⟨λk|∂θλm⟩|2 →
θ→θ̄

0,
 (11)

as, by hypothesis, limθ→θ̄ λm = 0. The second term, by exploiting the orthogonality of the 
eigenstates of ρθ, reads

|⟨λm|∂θρθ|λm⟩|2

λm
=

|⟨λm|∂θ(λm|λm⟩⟨λm|)|λm⟩|2

λm

=
(∂θλm)2

λm
+ 2λm|⟨∂θλm|λm⟩|2 →

θ→θ̄

(∂θλm)2

λm
.

 (12)

We are thus left with the following proposition:

Proposition 4. The quantum Fisher information Qθ at θ = θ̄  is continuous if both the 
speed v = limθ→θ̄ ∂θλm and the acceleration a = limθ→θ̄ ∂

2
θλm with which the eigenvalue λm 

is vanishing are zero. Otherwise, if v = 0 but a ̸= 0, the discontinuity is equal to ∆Q = 2a 
and if v ̸= 0 there is a discontinuity of the second kind.

The discontinuity of the QFI in variable-rank models has been addressed in [12], where in 
particular it was shown that the continuous version of the standard QFI is proportional to the 
Bures metric, i.e.

lim
θ→θ̄

Qθ = 4gθ. (13)

This means that the Fisher–Bures metric can be exploited to evaluate the QFI only for regular 
models whereas for non regular ones this link is broken. In addition, as we pointed out above, 
the hypotheses at the basis of the derivation of the classical and quantum CRBs do not hold 
for this kind of models, and consequently these bounds can be violated and are of no use in 
quantum metrology. To better describe this issue, in the next section we provide two simple 
quantum estimation problems falling into this class of models. In both cases, we will show 
that the QFI is in fact discontinuous and, in turn, it is easy to construct an estimator with zero 
variance in the case θ = θ̄ . The existence of zero-variance estimators for non-regular models 
with parameter-dependent support is well-known in classical estimation [20].

Finally, we mention that the continuity of the QFI as a functional of the operators ρ  and ∂θρ 
has been studied [28]. Our point of view, similarly to [12], is to investigate discontinuities of 
the QFI as a function of the parameter itself, by assuming that ρ  and ∂θρ are both continuous 
functions of θ, also at the value θ̄ . Nonetheless, the results of [28] seem to be consistent with 
our findings.

3. Examples of quantum statistical models with parameter dependent rank

Let us now illustrate two paradigmatic examples of variable-rank quantum statistical models: 
a model that can be mapped to a classical statistical model, such as the ones discussed in [12], 
and a genuinely quantum statistical model. For the sake of clarity, in both the examples we 
consider single-qubit systems.

We will show that the maximum likelihood estimator has zero variance when θ = θ̄ ; this 
is an example of the meaninglessness of the CRB at this critical true value of the parameter. 
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However, we do not know if it is possible to build such zero-variance estimators for all varia-
ble-rank quantum statistical models.

3.1. A classical quantum statistical model

A quantum statistical model is said to be classical if the family of quantum states ρθ can be 
diagonalized with a θ-independent unitary, and thus the whole information on the parameter 
is contained in the eigenvalues [29].

The simplest example of classical model is described by the family of two-dimensional 
quantum states

ρp = p|0⟩⟨0|+ (1 − p)|1⟩⟨1|, 0 ! p ! 1. (14)

As it is apparent, this is also a variable-rank statistical model, when the parameter to be esti-
mated p  takes the limiting values p̄ = {0, 1}. For a generic value of the parameter between the 
two limiting values, 0  <  p   <  1, the QFI reads

Qp =
1

p(1 − p)
, (15)

while in the two limiting values p̄, one gets Qp̄ = 1. As expected, one observes a discontinuity 
of the second kind, and in particular an infinite Bures metric, limp→p̄ gp = ∞.

The optimal measurement corresponds trivially to the projections on the states 
{|0⟩⟨0|, |1⟩⟨1|} and clearly does not depend on the parameter to be estimated. For the limiting 
values, it is easy to check that a maximum likelihood estimator would give a variance equal 
to zero (in fact one always gets the same measurement outcome). It is well known that the 
estimation of parameters on the boundary of the parameter space breaks down the asymptotic 
normality of the maximum-likelihood estimator as well as the validity of the CRB [30–34].

Therefore, while on the one hand it should be now clear that no CRB holds in these 
instances, on the other hand this result would induce to say that the Bures metric gives the cor-
rect figure of merit to asses the performances for θ → θ̄ . However, this is not always the case: 
one could check that by reparametrizing the family of states to [12]

ρθ = sin2 θ|0⟩⟨0|+ cos2 θ|1⟩⟨1|, (16)

one would obtain that the Bures metric is identically equal for all values of θ, gθ = 1, while 
the standard QFI is discontinuous and reads

Qθ =

{
4 θ ̸= kπ/2
0 θ = kπ/2 . (17)

However, also in this case the optimal measurement and the maximum likelihood estimator 
would trivially give a zero variance estimation (at least if we restrict the values of θ to [0,π/2], 
so that the model becomes identifiable). In turn, the CRB is violated.

3.2. A genuine quantum statistical model

Let us now consider the quantum statistical model described by a family of two-dimensional 
quantum states ρθ that solve the Markovian master equation

dρθ
dt

= −i
θ

2
[σz, ρθ] +

κ

2
(σxρθσx − ρθ), (18)
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8

with initial condition ρθ(t = 0) = |+⟩⟨+|, where |+⟩ = (|0⟩+ |1⟩)/
√

2  denotes the eigen-
state of the x-Pauli matrix σx in terms of the eigenstates of the z-Pauli matrix σz. From a 
physical point of view this master equation describes the evolution of a spin-1/2 system, sub-
jected to a phase-rotation due to a magnetic field proportional to θ along the z-direction and 
subjected to transverse noise along the x-direction with rate κ.

The master equation can be solved analytically and the corresponding QFI Qθ and Bures 
metric gθ can be readily evaluated. For the parameter value θ̄ = 0, one observes how the mas-
ter equation has no effect on the initial state |+⟩ (the Pauli matrix σx clearly commutes with its 
eigenstate |+⟩⟨+|). As a consequence, for θ̄ = 0, the quantum state remains pure (and identi-
cal to the initial state) during the whole evolution, showing that the rank of the corresponding 
quantum statistical model changes by considering a non-zero frequency θ ̸= 0. Remarkably, 
unlike the previous example, both eigenstates and eigenvalues of ρθ depend on the parameter 
θ; in this sense, the quantum statistical model cannot be readily mapped onto a classical one.

The QFI and Bures metric at the discontinuity point θ = θ̄  can be analytically evaluated as

Qθ̄=0 = 4
e−κt sinh2 κt

2
κ2

 (19)

gθ̄=0 = 2
e−κt + κt − 1

κ2 . (20)

One can check that the eigenvalue of ρθ that goes to zero for θ → 0 is equal to

λ =
1
2

(
1 +

e−κt
2
√
κ2 cosh(ξt) + κξ sinh(ξt)− 4θ2

ξ

)
, (21)

where ξ =
√
κ2 − 4θ2 . The corresponding speed and acceleration read

v = lim
θ→0

∂θλ = 0, (22)

a = lim
θ→0

∂2
θλ =

2κt + 4e−κt − e−2κt + 3
κ2 . (23)

It is then easy to check that, as predicted by proposition 4, one gets ∆Q = 2a.
If one performs the optimal measurement for θ = 0, that trivially corresponds to the pro-

jection on eigenstates of the Pauli operator σx, one can build a maximum likelihood estimator 
yielding a zero variance. However it is important to remark that, contrarily to the previous 
example, in this model the optimal measurement generally depends on the true value of the 
parameter θ and it has to be implemented via an adaptive strategy, as previously mentioned. 
The adaptive scheme will be equivalent to the optimal measurement only asymptotically, 
while for arbitrarily large but finite number of repetitions M, one will implement a strategy 
with a small but finite difference from the optimal one. In such a scenario we heuristically 
expect that the variance of the asymptotic estimator will be bounded by (four times) the con-
tinuous Bures metric gθ̄ , obtained via the limit of θ going to θ̄ , and that one should consider 
this figure of merit to quantify the overall performance of the estimation process. While we 
lack a rigorous proof of this intuition, we believe that studying the performances of realistic 
adaptive estimation schemes for these non-regular models is an open topic for future research.

It is worth to remark that this quantum statistical model can be generalized to N qubits. In 
appendix, for an initial GHZ state, we evaluate the limit of the QFI for θ → 0, i.e. the Bures 
metric in θ = 0, as well as the discontinuous QFI obtained for θ = 0 and we underline a 
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markedly different behavior of the two quantities as functions the probing time t. Incidentally, 
the limit of the QFI for θ → 0 is exactly the quantity that we dubbed ultimate QFI for con-
tinuously monitored quantum systems, i.e. obtained by optimizing over all the possible meas-
urements on the system and the environment causing the Markovian non-unitary dynamics 
[35–37]. In such a framework, this quantity represents a valid statistical bound for all values 
of θ.

4. Conclusion

The quantum Cramér–Rao theorem is regarded as the foundation of quantum estimation the-
ory, promoting the QFI and the Bures metric as the two fundamental figures of merit that 
one should consider in order to obtain the ultimate precision achievable in the estimation of 
parameters in quantum systems. In this manuscript we have addressed variable-rank quantum 
statistical models and the corresponding discontinuity of the QFI. While this topic has been 
addressed before in the literature [12], the validity of the quantum Cramér–Rao theorem was 
not properly discussed. Here, we have shown in detail that the proof of the theorem in fact 
breaks down in these pathological cases both in the classical and quantum case; as a conse-
quence, the bound can be no longer considered valid. We have also addressed two paradig-
matic examples, and considered the corresponding behaviour of the QFI, of the Bures metric 
and of the variance of the maximum likelihood estimator. While in regular cases these quanti-
ties typically coincide, we have shown how they may differ in the presence of a discontinuity. 
In particular, for these qubit examples the maximum likelihood estimator is actually deter-
ministic at the critical true value of the paramater, but we do not know wether this is true for 
variable-rank models in general. Overall our results, apart from contributing to clarifying pre-
vious results on the discontinuity of the QFI, pave the way to further studies on the relation-
ships between optimal estimators and Bures metric in non-regular quantum statistical models.
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Appendix. Discontinuity for frequency estimation with N-qubit GHZ states in 
transverse independent noise

The calculation presented in this appendix is hinted, but not included, in [36]; we also mention 
that frequency estimation with transverse noise and a vanishing parameter was also consid-
ered in appendix D of [38], but without highlighting the appearance of a discontinuity.

A.1. Evolution of a GHZ state in transverse noise

Greenberg–Horne–Zeilinger (GHZ) states are the prototypical example of states showing 
a quantum advantage in metrology. Furthermore, they have a particularly simple evolution 
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under independent noises acting on the qubits [39, 40]. In particular, we consider a N-qubit 
GHZ state

|ψGHZ⟩ = (|0⟩⊗N + |1⟩⊗N)/
√

2, (A.1)

evolving according to a N-qubit version of the master equation (18):

dρ
dt

= −i
θ

2

N∑

j

[
σ( j)

z , ρ
]
+
κ

2

⎛

⎝
N∑

j=1

σ( j)
x ρσ( j)

x − Nρ

⎞

⎠ , (A.2)

where the the superscript ( j) labels operators acting on the j -th qubit (i.e. tensored with 
the identity on all the other qubits). The evolved state ρ  becomes a mixture of states of the 
form |s⟩± |̄s⟩, where s is a binary string and s̄ is its bitwise negation, e.g |s⟩ = |00101⟩ and 
|̄s⟩ = |11010⟩. In the computational basis the density matrix maintains a cross-diagonal form.

It is clever to parametrise the matrix elements with an index m ∈ [0, N], which counts how 
many 1s appear in the binary string s, i.e. the sum of the binary representation of s. Since we 
have N qubits there are 2N different possible strings, and there are 

(N
m

)
 different binary strings 

that sum to the value m, so that 
∑N

m=0

(N
m

)
= 2N. It turns out that the matrix elements of an 

evolved GHZ state only depend the value m. With such a parametrization we have the follow-
ing matrix elements [41]

Figure A1. Plots of the QFI per unit time as a function of time, for κ = 1, for different 
values of N.
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ρm,m =
1
2
[
dmaN−m + dN−mam]

ρm,N−m =
1
2

[
f m (b − ic)N−m + f N−m (b + ic)m

]
,

 (A.3)

where we can further notice the symmetry of the diagonal terms under the exchange 
m → N − m. The coefficients appearing in the expression are given by

a =
1
2
(
1 + e−κt) d =

1
2
(
1 − e−κt) b = e−

κt
2 cosh

( t
2

√
κ2 − 4θ2

)

f = κ
e−κt

2 sinh
(

t
2

√
κ2 − 4θ2

)

√
κ2 − 4θ2

c = 2θ
e−κt

2 sinh
(

t
2

√
κ2 − 4θ2

)

√
κ2 − 4θ2

.

 (A.4)
All these coefficients are real as long as θ < κ

2 , which is the case we are interested in, since 
we want to take the limit θ → 0.

A.1.1. Piecewise QFI for a qubit. The QFI for qubit states can be very conveniently written 
via the Bloch representation of qubit states [42]:

ρ =
1
2
( + v⃗ · σ⃗) ; (A.5)

the QFI is easily expressed in terms of the Bloch vector ⃗v

Qθ [ρ] =

{
|∂θ v⃗|2 + |∂θ v⃗·⃗v|2

1−|⃗v|2 |⃗v| < 1

|∂θ v⃗|2 |⃗v| = 1.
 (A.6)

From this piecewise definition it is easy to see the possibility of a discontinuity. In particular, 
for a qubit the only possible change of rank is that for θ̄  the state becomes pure, i.e. |⃗v| = 1 and 
so the limθ→θ̄ gives rise to a 00 indeterminate form; we can then use L’Hôpital’s rule and get

lim
θ→θ̄

Qθ [ρ] = −v⃗ · ∂2
θ v⃗|θ=θ̄. (A.7)

A.2. Continuous and discontinuous QFI

Given the cross structure of the evolved density matrix and the symmetry of the elements 
(A.3), we can reshuffle the 2N × 2N density matrix and write it as the direct sum of 2 × 2 
matrices defined as follows

ςm =

(
ρm,m ρm,N−m

ρ∗m,N−m ρm,m

)
, (A.8)

where now we need only half the values of the index m = 0, . . . , ⌊N/2⌋. Each of these ςm is 
repeated 

(N
m

)
 times, except the last matrix for m = ⌊N/2⌋ that appears 1

2

(N
m

)
 times if N is even 

and 
(N

m

)
 times if N is odd. This reshuffling is obtained by applying orthogonal permutation 

matrices that do not change the QFI. The diagonal elements do not depend on θ and the deriva-
tive of ςm reads

∂θςm =

(
0 ∂θρm,N−m

∂θρ∗m,N−m 0

)
. (A.9)
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We can renormalized the matrices ςm to get proper qubit states, i.e.

ς̃m =
1
2

(
1 ρm,N−m

ρm,m
ρ∗

m,N−m
ρm,m

1

)
∂θ ς̃m =

1
2

⎛

⎝
0 ∂θρm,N−m

ρm,m
∂θρ

∗
m,N−m

ρm,m
0

⎞

⎠ . (A.10)

With this normalization the Bloch vector of ς̃m is then [Re (ρm,N−m) , Im (ρm,N−m) , 0] /ρm,m.
It is not hard to see that the QFI of the global state is the average of the QFIs of these qubit 

states

Q [ρ] =
N∑

m=0

(
N
m

)
ρm,mQ [ς̃m] , (A.11)

where the factor 2 in the normalization vanishes because we have extended the sum to N and 
divided by 2, this is possible since Q [ςm] = Q [ςN−m] (the two states differ only for a conju-
gation of the off-diagonal elements). For θ = 0 we have that ρm,N−m = ρm,m and the states 
ς̃m all become pure, with Bloch vector [1, 0, 0], so that the global N qubit state goes from full 
rank (i.e. 2N) to rank 2N−1. To calculate the limit of the QFI for θ → 0 we need to use equa-
tion (A.7). In this case it is possible to compute the sum (A.11) explicitly

Qθ→0 = −
N∑

m=0

(
N
m

)
∂2
θρm,N−m

∣∣∣∣∣
θ=0

=
N2 (1 − e−κt)

2
+ N

[
2κt + 1 − (2 − e−κt)

2
]

κ2 , (A.12)

this equation corresponds to the ultimate QFI obtained in [36], i.e. the best possible precision 
achievable by continuously measuring the environment degrees of freedom causing the non-
unitary part of the Markovian evolution (A.2).

On the other hand, the discontinuous QFI for θ = 0 is obtained by applying the second line 
of equation (A.6), which results in

Qθ=0 =
N∑

m=0

(
N
m

)
|∂θρm,N−m|2

ρm,m

∣∣∣∣∣
θ=0

. (A.13)

In figure A1 we plot the two quantities Qθ→0 and Qθ=0 for some values of N as a function of 
the evolution time t. From the plots one can see that the behaviour for long evolution times is 
indeed dramatically different.
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