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which applies also in the quantum regime, while maintaining the
physical content of its classical counterpart. Such formulation re-
quires the introduction of a gravitational field not to modify the
Fisher information about the mass of a freely-falling probe, ex-
tractable through measurements of its position. We discover that,
while in a uniform field quantum probes satisfy our formulation of
the WEP exactly, gravity gradients can encode nontrivial informa-
tion about the particle’s mass in its wavefunction, leading to viola-
tions of the WEP.
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1. Introduction

The weak equivalence principle (WEP) is one of the foundational bedrock of classical gravitational
theory [1–3]. It states that the solutions of the equations of motion for a structureless particle falling
in a gravitational field exhibit a special form of universality: they do not depend on the particle’smass.
Since the mass represents the charge through which the particle couples to gravity, theWEP suggests
that gravity may be fundamentally different from the other forces of nature. In fact, the WEP lies at
the basis of the possibility of describing gravity in purely geometric terms [4].

However, the test bodies that appear in its formulation are just a classical idealization. Physical
particles are consistently described only in a quantum framework. The question therefore arises
whether a form of universality (i.e. independence from the probe’s internal properties) also holds
for quantum particles falling under gravity and, if not, how does the principle of equivalence emerges
in the classical limit.

Assessing the validity of theWEP for freely-falling quantum particles offers interesting conceptual
challenges [5–10]. In fact, the formulation of theWEP in general relativity refers to test particles with
a conserved four-momentum, moving along precise trajectories. However, the description of the dy-
namics of a quantumparticle in terms of awavefunction ismarkedly different. First, thewavefunction
is not by itself localized, which calls into question the abstraction of a test body in relation to a quan-
tum probe. Second, neither position nor momentum of a propagating wavepacket are well-defined
classical variables, but instead represent incompatible observables whose measurements are subject
to quantum fluctuations according to the uncertainty principle. Therefore, the Galilean procedure of
preparing probes in identical dynamical conditions (same initial position and velocity), and letting
them evolve freely, loses operational meaning. The concept of a trajectory dissipates and one can only
speak about the results of positionmeasurements. As a consequence, the theory of quantummeasure-
ments is expected to play an important part in the formulation of any quantum version of the WEP.

These fundamental difficulties [11] may be ascribed to the fact that a quantum particle does not
follow a unique trajectory, making it challenging to associate a unique geometry to spacetime. In fact,
from the viewpoint of the path integral formulation of quantum mechanics [12], a particle follows
all possible trajectories between two fixed spacetime events. Even if the classical trajectory repre-
sents the most important contribution to the total amplitude, fluctuations around it are expected
from nearby trajectories. Such fluctuations arise in powers of Planck’s constant h̄, so that when h̄ ! 0
only the classical trajectory predicted by general relativity survives. The present paper aims to discuss
the problem of what becomes of the WEP in the opposite regime, i.e. when quantum fluctuations are
turned on.

Apart for the previously mentioned problems, a further difficulty is linked to the fact that
the quantum dynamics of a probe under gravity is often mass-dependent [13]. One may have
thought of identifying universality of free-fall in the quantum regime with mass-independence of the
wavefunction. After all, the wavefunction provides a complete description of the physical state of a
quantum system and thus plays a role similar to the solution of the equations ofmotion in the classical
setting. However, the mass of a particle appears explicitly in the dynamical evolution equations—
which is in stark contrast with the theory of classical point particles in gravitational fields.

For example, in the non-relativistic limit, the action for a classical particle ofmassm in aNewtonian
potential ' is

S =
Z

dt
✓
mẋ

2

2
� m'

◆
. (1)

The mathematical statement of the universality of free-fall is the fact that m appears only as a
multiplicative constant, and thus does not enter the equations of motion. The same happens in a fully
relativistic (but still classical) context where the action takes the form

S = �mc
Z

ds, (2)
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the corresponding extremal paths being the geodesics with respect to the metric element ds2 =
gµ⌫dxµdx⌫ . However, the action for a field � describing a quantum scalar particle of massm is

S = h̄2

2m

Z
d4x

p�g
✓
gµ⌫Dµ�

ÑD⌫� + m2c2

h̄2 �Ñ�

◆
. (3)

The constant in front has been chosen so that the action has the correct dimensions and agrees with
the non-relativistic limit (see also Section 2.2). The corresponding equation of motion

1p�g
@µ(

p�g gµ⌫@⌫�) + m2c2

h̄2 � = 0 (4)

depends parametrically on the combination h̄/m. Whenever quantum effects become relevant,
an explicit dependence of the dynamics on the particle’s mass is unavoidable. Therefore, the
wavefunction cannot play the role of the classical trajectory in the formulation of the WEP.

In the present paper, we approach the problem from an information-theory perspective. The WEP
can be interpreted as a statement about the information that an experimenter is allowed to extract
about the mass of a freely-falling particle by monitoring its trajectory. That is, the experimenter sets
up an experiment with test bodies of different masses, which are left freely-falling under gravity. For
test bodies obeying the laws of classical physics, the experimenter can gain no information about
the masses of the probes by knowing their trajectories. Can quantumness of the probe allow the
experimenter to extract a nonzero amount of information?

To quantify information about an unknown parameter, one has to resort to quantum parameter
estimation theory [14–16]. Since in quantum mechanics the mass of a particle does not correspond
directly to an observable, one has to infer its value from the statistics of the measurements of
some other observable. We are interested in measurements of position. From the outcomes of such
measurements, the experimenter builds an estimator, i.e. a post-processing of the measurements
which produces an estimate of the parameter. Being a random variable, any estimator has a mean
square error around the true value, which quantifies the sensitivity of any given measurement
strategy. One is interested in keeping the average error as small as possible. It is a standard result [17]
that, for locally unbiased estimators, the mean square error is lower-bounded by the inverse of the
Fisher information, multiplied by the number of measurements. More details about the quantum
parameter estimation problem can be found in Section 2.1.

Though the Fisher information has a precise statistical meaning, it can be interpreted more gener-
ally as ameasure of the information content of amodel about an unknown parameter [18]. In our case,
the statistical model consists of the parametric family of position-space wavefunctions, which are ob-
tained as solutions of the matter wave equation coupled to gravity, labeled by the possible values of
the massm. Measurements of position are then used to extract information onm, which is quantified
by the Fisher information Fx(m).

Because quantum dynamics under gravity depends on the ratio h̄/m, the Fisher information Fx(m)
is in general nonzero. This however should not be taken as quick proof that the gravitational coupling
violates universality in a quantum setting. In fact, Fx(m) would be nonzero even in the absence of
any gravitational field. In other words, the dependence on the ratio h̄/m of matter wave equations
like (4) survives in the limit when the metric becomes flat. For example, a free gaussian wavepacket
in non-relativistic quantum mechanics, has a variance � 2 which spreads with time like � 2(t) =
� 2(0)+ h̄t/2m. In principle, one can extract information onm by monitoring the velocity with which
thewavepacket spreads. The conclusion is thatwemust carefully distinguish between the information
on the mass which is present when the field is removed, and the information which is explicitly
introduced by the gravitational coupling.

We are now ready to state our formulation of quantum universality of free-fall. For the WEP to
apply to quantum probes, we will require the introduction of a gravitational field not to change the
Fisher information about their mass when in free-fall, extractable through measurements of their
position, that is

Fx(m) = Fx(m)|free, (5)
where Fx(m)|free is the Fisher information in the free case, i.e. when no external field is present.
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The rest of the paper is structured in order to discuss to what degree quantum mechanics is
compatible with such a statement. We start, in Section 2.2, by introducing the relevant background
material about quantum estimation theory and the spacetime propagation of a quantum probe. We
then focus on two separate testbeds for theWEP. At first, in Section 3, we consider the non-relativistic
limit (i.e. the first nontrivial term in the 1/c expansion) of Eq. (4) and solve its quantum dynamics up
to second order in the disentangling of the time evolution operator via the Baker–Campbell–Hausdorff
(BCH) formula [19]. In this way, we are able to discuss the effects of gravity gradients on the Fisher
information and to conclude that while in a uniform field quantum probes satisfy the WEP exactly,
gravity gradients can encode nontrivial information about the mass, leading to violations of the WEP.
Then, in Section 4 we start again from the relativistic Klein–Gordon equation (4) and solve it in the
semiclassical approximation (i.e. by considering the first nontrivial term in the h̄ expansion), showing
how the WEP is recovered in the classical limit h̄ ! 0.

2. Background

2.1. Parameter estimation theory

Many tasks in physics take the form of estimating an unknown parameter. A typical problem is to
learn a probability distribution from a series of measurements. Such a probability distribution may
describe the uncertainty in the measurement of a classical variable due to stochastic noise, or it may
describe the intrinsic uncertainty in the measurement of a quantum observable. The experimenter
assumes to know its functional form, except for the value of one or more parameters, and has to
produce an estimate for them so as to agree as closely as possiblewith the data. Naturally, her estimate
will in general be different from the true value of the parameter. The question is what is the lowest
possible error she can achieve, and how can one reach this ultimate limit.

The problem of parameter estimation is particularly relevant for extracting information from
quantum systems. In quantummechanics, it is often the case that quantities of interest do not directly
correspond to an observable, i.e. there is no Hermitian operator whose spectrum gives the possible
values of the parameter. A typical example is a Hamiltonian parameter [20], that is a parameter which
appears inside the Hamiltonian, e.g. a coupling constant.

For definiteness, let us assume the Hamiltonian of the system is H(�⇤), where �⇤ is the true, but
unknown, value of the parameter we are interested in. The initial state of the system is given by the
density operator ⇢(0), which is left evolving unitarily for a time t , i.e. ⇢(0) ! e�iH(�⇤)t ⇢(0) eiH(�⇤)t .
We assume that the initial preparation ⇢(0) is independent of the value of �⇤, i.e. the encoding of
the parameter on the system is entirely due to its dynamical evolution. Since �⇤ is unknown, the
experimenter in reality has to discriminate among a whole family of density operators

⇢�(t) = e�iH(�)t ⇢(0) eiH(�)t (6)

where the parameter � belongs to a parameter space⇤which includes the true value �⇤. To this end,
she performs a measurement on the system, for example a projective measurement of an observable
X̂ . Let the outcomes of themeasurements be denoted by x (the eigenvalues of X̂). Then the probability
of the outcomes is

p�(x) = hx|⇢�(t)|xi, (7)

where |xi are the eigenstates of X̂ . The parametric family of probability distributions (7) defines the
statistical model of the problem.

From the outcomes of the measurement, the experimenter builds an estimator �̂. Being a function
of the sampled values (x1, x2, . . . , xN) 2 �N (N is the number of repeated measurements of X̂ and �
the sample space of X̂), the estimator �̂ is itself a random variable. If the estimator is locally unbiased
then its expectation value h�̂i equals the true value of the parameter �⇤, where the expectation
is taken with respect to p�⇤ . We are interested moreover in keeping its fluctuations around �⇤,
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i.e. Var(�̂) = h(�̂ � �⇤)2i, as small as possible. A lower bound to the value of Var(�̂) for any possible
locally unbiased estimator is given by the Cramér–Rao theorem [17],

Var(�̂) � 1
N FX (�⇤)

. (8)

The Fisher information FX (�⇤) in particular is given by the expectation value of the score squared, i.e.

FX (�) = h(@� log p�)2i =
Z

dµ(x) p�(x)(@� log p�(x))2, (9)

whereµ is the geometric measure on the sample space � , i.e. the statistical model is normalized such
that

R
dµ(x) p�(x) = 1.

For a pure statistical model, i.e. ⇢(0) = | ih |, the Fisher information takes the form

FX (�) =
Z

dµ(x) | �(x, t)|2 (@� log | �(x, t)|2)2, (10)

where  �(x, t) is the wavefunction in the X̂-representation, i.e.  �(x, t) = hx|e�iH(�)t | i. Here, we
will deal with pure models and with measurements of position, so that the measured observable X̂
will be the position operator x̂ and the unknown parameter will be the massm of the particle.

2.2. Propagation of matter waves under gravity

In this section,we reviewhow to describe the propagation of a quantumprobe on a fixed spacetime
background. More precisely, we consider the case of a relativistic spinless particle of mass m which
moves through a spacetime described by the metric gµ⌫ . The particle emerges from the quantization
of a relativistic scalar field �, whose action functional is given by Eq. (3), where g = det(gµ⌫), gµ⌫ is
the inversemetric tensor andDµ is the covariant derivative in themetric background. In (3), minimal-
coupling between the matter field and gravity has been assumed, i.e. interaction terms involving the
scalar curvature have been neglected.1

From the action (3), it follows that the field � satisfies the covariant Klein–Gordon equation (4).
In order to give a probabilistic, single particle interpretation to (4), one may proceed as in the case
of the Schrödinger equation, i.e. rewriting it as a continuity equation and identifying the temporal
component of the conserved current as a bona fide probability density if nonnegative. Eq. (4) can
indeed be rewritten in the form of a covariant continuity equation,

Dµ(�Ñ@µ� � � @µ�Ñ) = 0. (11)

The corresponding 4-current, normalized so as to agree with the non-relativistic limit, takes the form

jµ = ih̄
2m

(�Ñ@µ� � � @µ�Ñ). (12)

From (11), it follows that, upon integrating over three dimensional space,

@t

✓Z
d3x

p�g jt(x)
◆

= 0. (13)

Therefore, our candidate to the role of a position-space density is
p�g jt : if such quantity is

normalized to unity at some initial time, it remains so for all times.

1 In particular, themost relevant such termwould be of the form ⇠R�Ñ�, where R is the Ricci curvature. The reason for setting
⇠ to zero is twofold. First, if present, such a termwould trivially violate the equivalence principle from the beginning: since the
Ricci curvature R involves derivatives of the Christoffel symbols, it would not vanish in a local inertial frame. Moreover, it is in
general negligible anyway, as long as the particle propagates through regions much smaller than the curvature length scale.
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However,
p�g jt is not necessarily nonnegative, which in principle forbids any probabilistic

interpretation of the relativistic wave equation (4). It is indeed well-known [21] that no consistent
relativistic single-particle theory can exist: relativity implies the possibility of pair-production and
thus particle number is not conserved. Therefore, we make use of relativistic wave equations like (4)
only as approximations, with the caveat that they be considered at length scalesmuch bigger than the
Compton wavelength of the particle.

Let us now discuss what happens to Eq. (4) in the non-relativistic limit. The metric tensor gµ⌫ in
the weak-field limit takes the form

gµ⌫ = ⌘µ⌫ + 2'
c2
�µ⌫, (14)

where ⌘µ⌫ is the Minkowski metric, c is the speed of light and '(x) is the Newtonian gravitational
potential (this follows from solving the Einstein’s field equations to order 1/c2 [22]). One can then
assume for � an ansatz of the form

�(x, t) = e� imc2
h̄ t  (x, t). (15)

In the limit c ! 1, the exponential factor in front is rapidly oscillating, while  depends on t
much more slowly and plays the role of the non-relativistic wavefunction. Substituting the ansatz
(15) inside the Klein–Gordon equation (4) and collecting similar powers of 1/c , one obtains [23] to
lowest nontrivial order the Schrödinger-type equation

ih̄ @t (x, t) = � h̄2

2m
 (x, t) + m'(x). (16)

Thus, in the non-relativistic limit the Newtonian potential energy m' enters into the Schrödinger
equation in the canonical way, despite the fact that gravity is geometrical in origin [24].

Finally, let us return to the fully relativistic wave equation (4) and solve it in the complementary
situationwhen c is kept finite, but� is expanded in powers of h̄. That is, we are considering the probe’s
dynamics to be fully relativistic (with the caveat mentioned before), but amenable to a semiclassical
approximation. Explicitly, � is taken to obey the ansatz

�(x) = A(x) e
i
h̄ S(x), (17)

where A and S are real functions of the spacetime coordinates. By substituting in (4) and separating
real and imaginary parts, one obtains the system of equations

⇢
h̄2 Dµ@

µA � A @µS @µS + m2A = 0,
2@µA @µS + ADµ@

µS = 0. (18)

The second equation is strictly equivalent to the continuity equation (11), since when multiplied
by A it takes the form

Dµ(A2@µS) = 0, (19)

where A2@µS can be checked to be proportional to the 4-current (12) using the ansatz (17). The first
equation can be rearranged in the form

@µS @µS � m2 = h̄2 Dµ@
µA

A
. (20)

An asymptotic solution can be obtained through a WKB expansion truncated to order O(h̄) [25], i.e.

A = A0 + h̄A1 + O(h̄2), S = S0 + h̄S1 + O(h̄2). (21)

Neglecting terms of order h̄2 in (20) requires that
����h̄

2 Dµ@
µA

A

���� ⌧ m2, (22)
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i.e. that the Compton wavelength of the particle be much smaller than the length scale of variation of
A. Under this assumption, Eq. (20) becomes to lowest order

@µS0 @µS0 = m2, (23)

which is the classical Hamilton–Jacobi equation. Therefore S0 is the classical action and @µS0 is the
classical 4-momentum pµ. To determine A0, one would have to solve the continuity equation (19),

Dµ(A2
0 p

µ) = 0. (24)

Finally, the corrections to the next order are determined by solving the system
⇢
@µS1 pµ = 0,
Dµ(A2

0 @
µS1 + 2A0A1 pµ) = 0. (25)

3. The fully quantum, non-relativistic case: effects of gravity gradients on the Fisher information

In this section, we focus on the case of a properly quantum probe whichmoves non-relativistically
in a weak external field. Accordingly, we set h̄ to unity, and look for approximate solutions of the
Schrödinger equation (16). The time evolution operator

Ut = e�iHt = e
it�
2m �imt'(x) (26)

can be disentangled via the BCH formula [19]. To second order, one has in general that

eA+B ⇠ e
1
6 (2[B,[A,B]]+[A,[A,B]]) e

1
2 [A,B] eB eA. (27)

In our case, A = it�/2m and B = �imt'. One thus finds

[A, B] = t2

2
[�,'(x)] = t2

2
(1'(x) + 2r'(x) · r)

= t2 r'(x) · r = �t2g(x) · r. (28)

To simplify the commutator, one has to use the classical field equation for '(x), i.e. 1'(x) = 0 (g is
the gravitational field g(x) = �r'(x)). Moreover,

[B, [A, B]] = imt3 ['(x), g(x) · r] = imt3 g(x)2, (29)

and

[A, [A, B]] = � it3

2m
[�, g(x) · r] = � it3

m
rg(x) · rr, (30)

which depends explicitly on the gravity gradient rg.2
Let us emphasize that formula (27) is exact for uniform fields. In fact, all the terms neglected in

the BCH expansion involve further commutators with A or B of the previously obtained commutators
(29) and (30). All such commutators vanish identically for uniform fields. Thus, the exact propagator
for uniform fields is

Ut = e
img2t3

3 e� gt2
2 ·r e�imt'(x) Ut, free, (31)

2 The notationrg ·rr stands for the second-order differential operator (@igj) @i@j , where repeated latin indices are summed
over from 1 to 3. Notice also that @igj = @jgi . Thus, in expressions likerg ·v, with v an arbitrary vector, it is immaterial whether
v is contracted with r or with g.
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where Ut,free = exp(�it�/2m) is the time evolution operator in the free case. Eq. (31) can also be
rewritten via Hadamard’s lemma3 as

Ut = e
img2t3

3 e� gt2
2 ·r e�imt'(x) e

gt2
2 ·r e� gt2

2 ·rUt, free

= e
�img2t3

6 e�imt'(x) e� gt2
2 ·r Ut, free. (32)

We have thus recovered a well-known result [26,27]: the propagator in a uniform gravitational field
amounts to the composition of a pure phase factor, a translation operator along the classical trajectory,
and the free evolution operator.

The implication is that the information an observer can extract about the mass of a freely-falling
probe is the same as in the free case. In fact, let  (x, 0) describe a wavepacket at time t = 0 which
is left evolving in a uniform field, and let  free(x, t) describe its free evolution. The wavefunction for
general time t is given by

 (x, t) = Ut  (x, 0) = e
�img2t3

6 e�imt'(x)  free

✓
x � gt2

2
, t

◆
. (33)

It is now sufficient to use the deviation with respect to the classical trajectory as a new variable of
integration in order to see that

Fx(m) =
Z

dx | (x, t)|2 (@m log | (x, t)|2)2

=
Z

dx | free(x � gt2/2, t)|2 (@m log | free(x � gt2/2, t)|2)2

=
Z

dx | free(x, t)|2 (@m log | free(x, t)|2)2

= Fx(m)|free, (34)

which is precisely what we mean by universality of free-fall in the quantum regime.
Let us return to the case of an arbitrary gravitational potential '(x). We will solve the Schrödinger

equation (16) operatorially to second order in the BCH expansion (27). We will also make the
approximation of neglecting terms at the exponent which are second order in the gravity gradient
or its derivatives, but will keep terms which involve first derivatives of the field. In fact, the neglected
terms are of the same order as terms already neglected by truncating the BCH expansion and which
involve further commutators of expressions (29) and (30). The time evolution operator using (27)–
(30) reads

Ut ⇠ e
imt3
3 g(x)2 e� it3

6m rg(x)·rr� g(x)t2
2 ·r e�imt'(x) Ut, free. (35)

We have disentangled and rearranged the exponentials, ignoring contributions which would entail
higher powers of the gravity gradient or its derivatives.

In analogywith the uniform case,we canmanipulate (35) by collecting in front all the phase factors.
In the Appendix it is proved that, once this is done, the position-space density reads

| (x, t)|2 =
���� free

✓
y + t3

3m
p̂ · rg(x), t

◆����
2

, (36)

where

y(x) = x + t2

2
(x · rg(x) � g(x)) + 5t4

48
rg

2(x). (37)

3 That is, eAeBe�A = e
P1

n=0 adnA(B)/n! , where adA(B) = [A, B]. For a uniform field, only the first two terms of the series are
nonzero.
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Due to the presence of the second term in parenthesis involving the momentum operator p̂, the
functional dependence of the position-space probability density on the mass is different compared
to the free case. An experimenter can use repeated measurements of position to extract a higher
information on the probe’s mass thanks to its gravitational coupling.

If such a term is negligible, however, one may shift variable of integration x ! y(x) and then the
Fisher information would be unchanged, with a nontrivial sample-space measure µ, i.e.

Fx(m) ⇠
Z

dµ(x) | free(x, t)|2 (@m log | free(x, t)|2)2. (38)

We can estimate very roughly when this is possible by substituting the momentum operator with its
classical expression in a uniform field, p = mgt and imposing the condition

����
t3

m
p · rg

���� ⌧ |gt2|, (39)

which implies |gt2| ⌧ `, where ` is the characteristic scale over which the gravitational field is
changing. Therefore, as long as the particle does not have the time to explore regions of the order
of the curvature scale, universality is recovered.

In general however the quantumwavefunction is sensitive to gravity gradients, which can imprint
nontrivial information about the mass. The quantum wavefunction behaves in analogy with a
classical extended body, which in fact can also sense tidal forces and thus does not move in general
geodesically [28].

4. The semiclassical relativistic case: recovering the WEP

In the previous section, we considered a probe which is fully quantum, but non-relativistic, and
showed that universality is recovered in the limit when the wavefunction is sufficiently localized
with respect to the curvature scale. In this section, we consider the complementary situation where
the probe is relativistic, but its dynamics can be treated semiclassically. Accordingly, we set c to 1, but
keep powers of h̄ explicit.

We are going to discuss the solutions of the system of Eq. (18), focusing in particular on their
functional dependence on the mass m. This in turn determines the information about the mass
available to any observer, and thus whether the WEP can be satisfied or not by a quantum probe.

The first equation in (18), Eq. (20), leads to lowest order in powers of h̄ to a Hamilton–Jacobi
equation, see (23). Its solution S0 is therefore the classical action (2) and @µS0 is the classical 4-
momentum pµ. S0 thus depends onm only multiplicatively.

The second equation in (18) leads to (24). Since pµ is the classical 4-momentum, it also depends on
m multiplicatively, i.e. pµ = mdxµ/ds and xµ does not depend on m because of the WEP for classical
probes. This means that the differential equation for A0 is actually mass-independent, and so is A0.

In conclusion, the solution of (4) to lowest-order in powers of h̄ is

�(x) ⇠ A0(x) e
i
h̄ S0(x) (0th order), (40)

where S0 is the classical action for a classical point-particle of mass m and A0 is mass-independent.
The corresponding probability density is

p�gjt = �p�g
A0pt

m
, (41)

which ismass-independent and thus leads to vanishing Fisher information.We conclude that theWEP
emerges in the geometrical optics limit of quantum mechanics, with the rays being the geodesics of
the manifold and the wave surfaces the submanifolds of constant classical action.

Now let us study the corrections arising at the next order in the semiclassical expansion. The
system of equations for the corrections of order h̄ is given in (25). One can see that S1 is mass-
independent, but the equation for A1 is mass-dependent. It can be made independent ofm by shifting



222 L. Seveso, M.G.A. Paris / Annals of Physics 380 (2017) 213–223

to the adimensional variable xµ ! mxµ. Since the introduction of the gravitational field modifies
the functional form of A1, it also changes nontrivially its functional dependence on the mass, and thus
also the Fisher information. Therefore, we conclude again that the universality of free-fall is in general
violated when quantum fluctuations around the classical trajectory are turned on.

5. Conclusions

In this paper, we have addressed the question whether quantum probes in a gravitational field
can be approximated as test particles obeying theWEP. To this end, we have assumed an information
theory-inspired definition of universality of free-fall in the quantum regime. In particular, we have
identified the Fisher information about the mass of a freely-falling probe, extractable from position
measurements, as the truly universal quantity for quantum free-fall, since it is unchanged by the
introduction of a uniform gravitational field.

Though quantum mechanics respects our formulation of the WEP to lowest order in the BCH
expansion of the propagator, this does not hold at higher orders. The quantum wavefunction can
sense gravity gradients, which encode nontrivial information about the mass both in its phase and
in its amplitude, thus leading to an increase of the corresponding Fisher information compared to
the free case. We therefore conclude that the WEP is untenable for a quantum particle described
by a wavefunction. Our results instead agree with a general conclusion common to many quantum
gravity programs, i.e. the fact that in the quantum regime no unique geometry may be associated to
the spacetime structure of our universe [11,4].

Finally, we discussed how the WEP is recovered in the classical limit. The WEP is recovered either
when the particle is localized with respect to the curvature scale, and inhomogeneities in the gravity
field can thus be neglected, or in the semiclassical limit h̄ ! 0, when quantum fluctuations around
the geodesic trajectory are suppressed.

Appendix. Proof of Eq. (36)

In this appendixwe are going to providemore details about the derivation of Eq. (36). Starting from
Eq. (35) for the propagator, we employ Hadamard’s lemma to rewrite

e� it3
6m rg(x)·rr� g(x)t2

2 ·r e�imt'(x) e
it3
6m rg(x)·rr+ g(x)t2

2 ·r (A.1)

as

⇠ e�imt'(x)+ t4
6 rg

2(x)·r� img

2(x)t3
2 , (A.2)

which can be further disentangled as

⇠ e� img

2(x)t3
2 e� imt

2 rg

2(x)·g(x) e�imt'(x) e
t4
6 rg

2(x)·r . (A.3)

Thus, the propagator can be rewritten with all derivative operators acting on the right as

e� img

2(x)t3
6 e� imt

2 rg

2(x)·g(x) e�imt'(x) e� it3
6m rg(x)·rr+ t4

6 rg

2(x)·r� g(x)t2
2 ·r Ut, free. (A.4)

Let us denote by D the derivative operator which appears in the last exponential,

D = � it3

6m
rg(x) · rr + t4

6
rg

2(x) · r � g(x)t2

2
· r. (A.5)

Contrary to what we found for uniform fields, in the presence of gravity gradients D is no longer a
simple displacement. This is because of the first term in (A.5) which is second order in derivatives.

When Ut, free acts on the initial wavepacket  (x, 0), one obtains

Ut, free  (x, 0) =  free(x, t) = ex·r free(0, t) = e�D(eDex·re�D) free(0, t). (A.6)
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The term in parenthesis can be transformed again using Hadamard’s lemma. The time-evolved
wavefunction can finally be written as

 (x, t) ⇠ e� img

2(x)t3
6 e� imt

2 rg

2(x)·g(x) e�imt'(x)  free

✓
y(x) + t3

3m
p̂ · rg(x), t

◆
(A.7)

where we defined

y(x) = x + t2

2
(x · rg(x) � g(x)) + 5t4

48
rg

2(x) (A.8)

and p̂ = �ir is the momentum operator. In particular, the position-space density is

| (x, t)|2 =
���� free

✓
y + t3

3m
p̂ · rg(x), t

◆����
2

, (A.9)

which is Eq. (36).

References

[1] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Vol. 1, Wiley,
New York, 1972.

[2] C.M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press, 1993.
[3] E. Di Casola, S. Liberati, S. Sonego, Am. J. Phys. 83 (1) (2015) 39–46.
[4] E. Okon, C. Callender, Eur. J. Philos. Sci. 1 (1) (2011) 133–145.
[5] L. Viola, R. Onofrio, Phys. Rev. D 55 (2) (1997) 455.
[6] M. Rabinowitz, Concepts Phys. 3 (2006) 323–335.
[7] C. Lämmerzahl, Acta Phys. Pol. 29 (1998) 1057.
[8] C. Lämmerzahl, Gen. Relativity Gravitation 28 (9) (1996) 1043–1070.
[9] D. Greenberger, Ann. Phys. 47 (1) (1968) 116–126.

[10] P.C.W. Davies, Classical Quantum Gravity 21 (11) (2004) 2761.
[11] S. Sonego, Phys. Lett. A 208 (1) (1995) 1–7.
[12] R.P. Feynman, A.R. Hibbs, D.F. Styer, Quantum Mechanics and Path Integrals, Courier Corporation, 2005.
[13] L. Seveso, V. Peri, M.G.A. Paris, Quantum limits to mass sensing in a gravitational field, preprint.
[14] A.S. Holevo, Statistical Structure of Quantum Theory, Vol. 67, Springer Science & Business Media, 2003.
[15] M.G.A. Paris, Int. J. Quantum Inf. 7 (supp01) (2009) 125–137.
[16] S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72 (22) (1994) 3439.
[17] H. Cramér, Mathematical Methods of Statistics, Vol. 9, Princeton University Press, 1945.
[18] S. Amari, H. Nagaoka, Methods of Information Geometry, American Mathematical Society, 2007.
[19] J.-P. Serre, Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, Springer, 2009.
[20] S. Pang, T.A. Brun, Phys. Rev. A 90 (2) (2014) 022117.
[21] J. Bjorken, S. Drell, Relativistic Quantum Mechanics, in: International Series in Pure and Applied Physics, McGraw-Hill,

1964.
[22] F.G. Friedlander, The Wave Equation on a Curved Space-Time, Vol. 2, Cambridge university press, 1975.
[23] C. Kiefer, T.P. Singh, Phys. Rev. D (1991).
[24] J.J. Sakurai, J. Napolitano, Modern QuantumMechanics, Addison-Wesley, 2011.
[25] L.D. Landau, E. Lifshitz, Course of Theoretical Physics Vol 3 QuantumMechanics, Pergamon Press, 1958.
[26] E.H. Kennard, Z. Phys. 44 (4–5) (1927) 326–352.
[27] E. Kennard, J. Franklin Inst. 207 (1) (1929) 47–78.
[28] R. Geroch, P.S. Jang, J. Math. Phys. 16 (1) (1975) 65–67.


