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Abstract
We show that the exponential phase moments associated with the s-ordered
generalized Wigner function can be sampled from homodyne data for s � 0.
The tomographic sampling functions are evaluated for non-unit homodyne
quantum efficiency, and the statistical reliability of the reconstruction is
tested by Monte Carlo simulated experiments. The reconstruction of the
s-ordered phase distribution from sampled moments is discussed, and the
reduction of statistical fluctuations by adaptive techniques is also analysed.

Keywords: Quantum tomography, nonclassical light, operational definition
of quantum phase

1. Introduction

One widely used concept of phase in quantum optics relies
on examining phase properties of a quantum state via the
associated s-ordered quasiprobability distributions W(x, p, s)

in phase space [1, 2]. We remind ourselves that W(x, p, s)

contains the complete information about the quantum state, as
does the density operator and, for s = 1, 0 and −1, coincides
with the Glauber–Sudershan P function, the Wigner function
and the Q function, respectively [3]. Integrating W(x, p, s)

expressed in polar coordinates over the radial coordinate yields
the s-parametrized ‘phase distribution’:

P(φ, s) =
∫ ∞

0
W(r, φ, s)r dr = 1

2π

∞∑
k=−∞

P (k)(s)eikφ (1)

where P (k)(s) = ∫ 2π
0 eikφP (φ, s) are the s-parametrized

exponential phase moments, i.e. the Fourier coefficients of
the s-parametrized phase distribution. In the last decade
these quasiprobabilites changed from purely mathematical
tools to experimentally determinable quantities using the
method of quantum state tomography (see [4–6] for
reviews). In particular, s-parametrized phase distributions
are intimately connected with specific experimental setups
which are designed from a classical point of view for phase
measurements. Let us consider an ensemble of classical
electric fields E(t) = E0 cos(ωt + φ) = x1 cos(ωt) −
x2 sin(ωt) characterized by the joint probability distribution

P(x1, x2) � 0 for the quadrature components x1 and x2. Once
P(x1, x2) is determined from measurements the corresponding
phase distribution can be calculated via the analogue of
equation (1). One possibility to determine P(x1, x2) is to
measure on each member of the ensemble simultaneously both
x1 and x2. To this end the signal field is first split into two
identical beams by a 50/50 beam splitter and on one beam the
quadrature distribution x1, and on the other one x2, is measured
with the help of two balanced homodyne detectors [7]. Another
possibility to obtain P(x1, x2) is to use only a single balanced
homodyne detector and to measure the rotated quadrature
component x� = x1 cos� + x2 sin �. The desired joint
probabilityP(x1, x2) can be reconstructed from the probability
distributionw(x�,�) for the quadrature component x� via the
inverse Radon transformation. In the framework of a classical
description both experimental schemes, of course, lead to one
and the same phase distribution. This is, however, no longer
the case in the quantum regime. It is well known that the joint
probability distribution determined via the first scheme equals
the Q function of the signal field [8, 9]. Compared to it, what
is reconstructed via the inverse Radon transformation is the
Wigner function W(x, p) of the underlying quantum state [10]
or a smoothed Wigner function W(x, p, s) with s = −(1 −
η)/η in the case of a balanced homodyne detector of overall
efficiency η [11]. Interestingly, phase detection schemes based
on amplification [12, 13], heterodyne detection [14] and six-
port detection [15, 16] yield the radius integrated Q function
too. Once the Wigner function is reconstructed from the
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measured homodyne data the expectation value of any physical
quantity of interest can in principle be calculated. In this
way both the Wigner phase distribution and the canonical
phase distribution of a squeezed vacuum state [17] and a weak
coherent state [18] have been successfully reconstructed.

Now the question arises if it is possible to avoid the detour
of first reconstructing the s-parametrized quasiprobability
(which, in turn, introduces classical noise), and to determine
the exponential phase moments in equation (1) directly from
the measured quadrature distribution, i.e. by sampling over the
homodyne data. The analogous reconstruction problem for
the canonical phase distribution has been recently discussed
in [19]. It turns out that the phase distribution itself cannot
be directly sampled from the homodyne data. However, the
exponential phase moments can be effectively sampled. The
corresponding sampling functions have been derived in terms
of integrals containing confluent hypergeometric functions.
Using these expressions the canonical phase distribution has
been directly determined for various squeezed states from
experimental data [20]. Notice that this method leads to much
more precise reconstruction than the original procedure, that
implied reconstructing first the whole quantum state [17, 18].
Moreover, from these expressions the (quite simple) sampling
functions for the Wigner exponential phase moments (s = 0)
have been derived after some tedious calculations. In this
paper we derive this result in a much more straightforward
and concise way. Moreover, we do not restrict to the case
s = 0. Rather we derive simple analytical expressions for the
sampling functions needed to determine the exponential phase
moments of any s-parametrized phase distribution with s � 0.
In a recent paper [21] the same problem has been tackled using
a different approach. We notice that, contrary to [21], we obtain
a closed expression in terms of known functions not only for
the sampling function of the odd exponential phase moments
but for the even ones too.

The statistical reliability of the reconstructed exponential
phase moments is studied also for non-unit quantum efficiency
of the homodyne detector. This allows us to discuss the
quality of the reconstruction in realistic situations. Moreover,
we analyse the reconstruction of the phase distribution from
the sampled exponential moments. In order to improve the
reconstruction by the reduction of statistical fluctuations, we
adopt an adaptive modification of the sampling functions
within an equivalence class [22]. Monte Carlo simulated
experiments confirm the reliability of the method.

The paper is organized as follows. In section 2 we express
the s-parametrized exponential phase moments in terms of
normally ordered moments of the field and briefly review the
sampling function for the normally ordered moments. This
allows us in section 3 to express the sampling functions for
the s-parametrized exponential phase moments in terms of
series over Hermite polynomials. Making explicit use of
the ambiguity of the desired sampling functions we succeed
in deriving for them rather simple expressions in terms of
known functions. Moreover, we present an alternative integral
representation. The effects of detection losses are considered
in section 4, whereas the noise reduction problem is analysed
in section 5. Section 6 closes the paper by summarizing the
results.

2. Basic relationships

The starting point is the s-ordered quasiprobability distribution
of a single mode quantum field in terms of its normally ordered
moments 〈a† kal〉 [3,23]. In polar coordinates x = r cosφ and
y = r sin φ the quasiprobability W(r, φ, s) takes the form of
a Fourier series

W(r, φ, s) = 1

π

∞∑
k=−∞

P (k)(r, s) eikφ (2)

where the Fourier coefficient P (k)(r, s) is given by

P (k)(r, s) =
∞∑

m=0

(−1)m

(1 − s)m+k+1

√
22m+k

(m + k)!
rk

× exp

( −r2

1 − s

)
Lk

m

(
r2

1 − s

)
〈a†m+kam〉 (3)

with P (−k)(r, s) = P (k)(r, s)∗. Here Lk
m(x) denotes

the generalized Laguerre polynomial. To obtain the s-
parametrized phase distribution we apply the definition (1) to
W(r, φ, s). The integration over r can be performed explicitly
using the relation [24]:∫ ∞

0
dx xα−1e−xLk

m(x) = (1 − α + k)m

m!
�(α) (4)

and we get

P(φ, s) = 1

2π

{
1 + Re

∞∑
k=1

P (k)(s)eikφ

}
(5)

where

P (k)(s) = 1

2

∞∑
m=0

(−1)m

(1 − s)m+(k/2)

k�(m + k
2 )

√
22m+k

m!(m + k)!
〈a†m+kam〉.

(6)
Equation (6) is the sought-after representation of the
exponential phase moments in terms of normally ordered
moments. In passing we note that expressions for the
exponential phase moments in terms of the density matrix
elements �mn have been derived several times in the literature
(see, e.g., [1]). However, the sampling functions for �mn

are rather complicated compared with those for the normally
ordered moments and the resulting series are difficult to handle.
In contrast the sampling functions for the normally ordered
moments are quite simple and the series in question can be
more or less directly read off from tables, as we will see in the
following.

A realistic homodyne detector of overall efficiency
η measures a smoothed ideal quadrature distribution
w(x�,�, η) (see, e.g., [11]):

w(x�,�, η) = 1√
π(1 − η)

∫ ∞

−∞
dx w(x,�)

× exp

[
− η

1 − η

(
x − x�√

η

)2
]

(7)

where w(x�,�) ≡ w(x�,�, η = 1) is the (ideal)
quadrature distribution corresponding to the density operator
�̂ of the signal state. It is well known that w(x�,�, η)

can be interpreted as the (ideal) quadrature distribution of
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the reduced density operator �(η) describing the attenuated
signal field after passing a (fictitious) beam splitter of intensity
transmittivity η [11]. In terms of the normally ordered
moments 〈â†mân〉 the realistic quadrature distribution is [25]

w(x�,�, η) =
∞∑

k=−∞
wk(x�, η) exp(ik�) (8)

where

wk(x�, η) = 1√
π

∞∑
m=0

√
η2m+k

√
22m+km!(m + k)!

〈â†m+kâm〉

×H2m+k(x�) exp(−x2
�) (9)

for k � 0 and w−k(x�, η) = w 
k(x�, η). Here Hk(x) denotes

a Hermite polynomial. From equations (8) and (9) follows
immediately the reconstruction formula for the normally
ordered moments:

〈a†nam〉 =
∫ 2π

0
d�

∫ ∞

−∞
dx� w(x�,�, η)

× exp[i(m − n)�]Sn,m(x�, η) (10)

where the sampling function Sn,m is given by

Sn,m(x�, η) =
[

2π

(
n + m

m

) √
(2η)n+m

]−1

Hn+m(x�). (11)

The sampling function Sn,m is not uniquely determined,
since there exists a large class of null functions, namely
functions with zero tomographic average [22]. Adding any
number of null functions to a generic sampling function results
in a new function which has the same average, and thus it is
equivalent in the reconstruction of the given expectation value.
This fact will be exploited in section 5 to reduce statistical
fluctuations in the reconstruction of phase moments. With
respect to the sampling function Sn,m(x�, η) we note that the
lowest Hermite polynomial occurring in expression (9) for
wk(x�, η) is of the order of k = |n − m|. As a result we can
use in equation (10) instead of Sn,m just as well the function

S̄n,m(x�, η) = Sn,m(x�, η) +
|n−m|−1∑

s=0

csHs(x�) (12)

for |n − m| � 1 without changing the reconstructed quantity.

3. Sampling functions for exponential phase
moments

In view of equations (6) and (10) we immediately arrive at the
following sampling formula for the s-parametrized exponential
phase moments (k � 1):

P (k)(s, η) =
∫ ∞

−∞
dx�

∫ 2π

0
d�w(x�,�)e−ik�Kk(x�, s, η)

(13)
where the sampling functionKk(x�, s, η) is given by the series

Kk(x�, s, η) = 1

4π

∞∑
m=0

(−1)m

[η(1 − s)]m+ k
2

k �(m + k
2 )

(2m + k)!
H2m+k(x�).

(14)
Obviously the sampling functions do not depend on s and η

separately but through the combination η(1−s) only. We shall

profit from this fact discussing the compensation of detection
losses in section 4. For the moment, however, we restrict
ourselves to the case of ideal detection, η = 1. It turns out to
be of advantage to consider even and odd exponential phase
moments separately. In the case of k = 2l + 1 equation (14)
becomes (Kk(x�, s, η = 1) ≡ Kk(x�, s))

K2l+1(x�, s) = (−1)l

4π

2l + 1√
1 − s

∞∑
n=l

(
− 1

1 − s

)n �(n + 1
2 )

(2n + 1)!

×H2n+1(x�). (15)

Now we make explicit use of the ambiguity of the sampling
function. Repeating the reasoning leading to equation (12),
we note that the lower summation limit in equation (15) can be
extended ton = 0 without changing the reconstructed quantity.
For convenience we use for the modified sampling function the
same symbol so that we have

K2l+1(x�, s) = 1

4π
(−1)l

2l + 1√
1 − s

∞∑
n=0

(−1)n

(1 − s)n

�(n + 1
2 )

(2n + 1)!

×H2n+1(x�). (16)

Analogously we find for the sampling functions belonging to
the even exponential phase moments, i.e. for k = 2l with l � 1,

K2l(x�, s) = (−1)l

2π
l

∞∑
n=1

(
− 1

1 − s

)n
(n − 1)!

(2n)!
H2n(x�).

(17)
We now proceed by considering the special case s = 0
separately, then passing to the general case.

3.1. Wigner function, s = 0

For s = 0 the series on the right-hand side of equation (15)
can be directly read off from tables [24]:

∞∑
k=0

(−1)k�(k + 1/2)

(2k + 1)!
H2k+1(x) = π sgn(x) (18)

and we immediately obtain (Kk(x, s = 0) ≡ Kk(x))

K2l+1(x�) = (−1)l

4
(2l + 1) sgn(x�). (19)

In the case of the even moments we use [24]
∞∑
n=1

(−1)n
(n − 1)!

(2n)!
H2n(x�) =

∞∑
n=1

(n − 1)!

(1/2)n
L−1/2

n (x2)

= − γ − 2ln2 + 2 − ln(x2) (20)

where (α)k = �(k + α)/�(α) is the Pochhammer symbol
and γ denotes Euler’s constant. Utilizing the ambiguity of
the sampling function once again we can neglect the irrelevant
constant and get

K2l(x�) = l
(−1)l+1

π
ln|x�|. (21)

In this way we have rederived in a very concise and
straightforward way a result first found in [19]. We emphasize
that, as explained in the introduction and noticed in [19],
the sampling function Kk(x�) applies to both the quantum
mechanical Wigner function and the classical joint probability
distribution P(x1, x2). In order to check the statistical
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Figure 1. Direct sampling of exponential phase moments (s = 0) from homodyne detection. Left: the reconstructed values of the real part
of the moments (the imaginary part in the inset). Right: reconstruction of the Wigner phase distribution from moments compared to the
theoretical one. Empty squares denote theoretical values, grey regions confidence intervals. The Monte Carlo simulated experiments consist
of 105 homodyne data at random but known phases on a squeezed coherent state with 〈a†a〉 = 1 average photons and γ = 0.5 squeezing
fraction. The reconstruction of the phase distribution has been carried out using 29 moments (k ∈ [−14, 14]).

reliability of the reconstruction method we have performed
a set of Monte Carlo simulated experiments. In figure 1(a)
we report the reconstructed exponential phase moments of a
squeezed-coherent state with 〈a†a〉 = 1 average photons and
a squeezing fraction (the fraction of the total energy engaged
in squeezing) γ = 0.5. The homodyne sample consists of 105

data (at random but known phases). In figure 1(b) we report
the Wigner phase distribution of the same state reconstructed
as a Fourier series with the sampled exponential moments as
Fourier coefficients (see equation (5)). Of course the series (5)
should be truncated, and the quality of the reconstruction
depends both on the truncation dimension (the number of
moments used in the reconstruction) and on the precision
of the reconstructed moments. As a general rule we found
that with few moments the resulting distribution is smoother
but contains artefacts due to aliasing. On the other hand,
using too many moments with a small-size sample produces a
noisy distribution. By numerical analysis we found that for a
squeezed state with a few photons using a number of moments
of the order of ten generally led to a good reconstruction of the
phase distribution.

3.2. Smoothed Wigner function, s < 0

Using the series [24] valid for s < 0

1√
π

∞∑
n=0

�(n + 1
2 )

(2n + 1)!

(
− 1

1 − s

)n

H2n+1(x) = 2
√

1 + |s| x√|s|

×1F1

(
1

2
; 3

2
; − x

|s|2
)

=
√

1 + |s| √πerf

(
x√|s|

)
(22)

where 1F1(a; c; x) denotes the confluent hypergeometric
function and erf(x) = (2/

√
π)

∫ x

0 exp(−t2) dt is the error
function, we find for the odd sampling function

K2l+1(x�,−|s|) = (−1)l

4
(2l + 1) erf(x�/

√
|s|). (23)

Obviously the sampling function does not depend on x� and
s separately, but only through the combination x�/

√|s|, i.e.

through the rescaled quadrature variable x ′
� = x�/

√|s|. In
the limit s = 0, of course, the above expression simplifies to
equation (19).

To obtain a closed expression for the sampling function
of the even moments we insert the explicit expression of the
Hermite polynomials in equation (17). Utilizing the series [24]

∞∑
k=0

(m + k)!

k!
xk = m!

(1 − x)m+1
(24)

valid for |x| < 1, we obtain after straightforward
manipulations

K2l(x�,−|s|) = (−1)l+1

π
l
x2
�

|s|
∞∑
n=0

(1)n (1)n
(3/2)n (2)n

(−x2
�/|s|)n
n!

+
(−1)l

2π

l

1 − s

∞∑
n=0

1

n + 1

(
1

1 − s

)n

. (25)

The first series is just the power series expansion of the general-
ized hypergeometric function 2F2(1, 1; 3/2, 2; −x2/|s|) [24],
whereas the numerical series yields a constant which can be
neglected due to the ambiguity of the sampling function. Thus
we obtain

K2l(x�, s) = (−1)l+1

π
l
x2
�

|s| 2F2

(
1, 1; 3

2
, 2; −x2

�

|s|
)
. (26)

Obviously, the sampling function for the even moments
depends on the square of the scaled quadrature variable
x�/

√|s|. We note that the result (23) for the sampling
functions of the odd moments has been found in [21] too using
a different approach. The expression (26) for the sampling
function of the even phase moments is new. A different
handling of the series (17) reveals the close connection between
K2l(x�) and another sampling function well known from
optical homodyne tomography. To this end we derive both
sides of equation (17) with respect to x�. Making use of
dHn (x)/dx = 2nHn−1(x) and of the series [24] (|t | � 1)

∞∑
k=0

k!

(2k + 1)!
tk H2k+1(x) = 1

1 + t
2x 1F1

(
1; 3

2
; tx2

1 + t

)
(27)
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Figure 2. Functions Hodd(y) (full curve) and Heven(y) (broken
curve) appearing in the expression of the sampling functions for the
exponential phase moments.

we obtain for s < 0 and with x ′
� = x�/

√|s| and Kk(x
′
�) ≡

Kk(x�,−|s|)
d

dx ′
�

K2l(x
′
�) = (−1)l+1

π
2l x ′

� 1F1(1; 3/2; −x ′ 2
� ). (28)

Deriving both sides of equation (28) once more with respect
to x ′

� we obtain

d2

dx ′
�

2 K2l(x
′
�) = (−1)l+1 l f00(x

′
�). (29)

Here f00 is the well known function for direct sampling of both
the vacuum matrix element �00 in the Fock basis [3–5] and
a smoothed Wigner function [26, 27]. For completeness we
note that the expression (27) for the even sampling function
becomes the one derived in [21], if we express 1F1 by the
imaginary error function. We may summarize our results in a
compact formula for the desired sampling functions:

K2l+1(x�,−|s|) = (−1)l(2l + 1)Hodd

(
x�√|s|

)
(30)

K2l(x�,−|s|) = (−1)l+1lHeven

(
x�√|s|

)
. (31)

The functions Hodd(y) = 1
4 erf(y) and Heven(y) =

1
π
y2

2F2(1; 1; 3/2; 2; −y2) are plotted in figure 2.

3.3. Alternative integral representation

Once the sampling functions for the exponential phase
moments of the Wigner function are known we can easily
derive an integral representation of the sampling functions
Kk(x�, s) with s < 0. To this end we utilize the following
transformation property of the s-ordered quasiprobability
distribution [28]:

W�̂(x, p, s) = ηW�̂(η)(
√
ηx,

√
ηp, 1 − η(1 − s)). (32)

Here W�̂(x, p, s) denotes the s-ordered quasiprobability of
the signal state described by the density operator �̂. The

density operator �̂(η) is the reduced density operator of
the attenuated signal field after passing a beam splitter of
intensity transmittivity η. Obviously, the Wigner function
W�̂(η)(x, p, s = 0) associated with �(η) is basically the
rescaled s-ordered quasiprobability of the original signal field
with s = −(1 − η)/η:

W�̂(η)(x, p, s = 0) = 1

η
W�̂

(
x√
η
,

p√
η
, s = −1 − η

η

)
.

(33)
From equation (33) follows immediately

P�̂(η)(φ, s = 0) = P�̂(φ, s = −(1 − η)/η) (34)

i.e. the phase distribution associated with the Wigner function
of the attenuated signal state coincides with the phase
distribution associated with the s-ordered quasiprobability
distribution of the original signal field with s = −(1 − η)/η.
Since the quadrature distribution belonging to the state �(η)

is given by w(x�,�, η) we find in view of equation (13) with
η = 1

P
(k)

�̂(η)
(s = 0) ≡ P

(k)

�̂
(s = 1 − 1/η)

=
∫ 2π

0
d�

∫ ∞

−∞
dx� w(x�,�, η) e−ik� Kk(x�). (35)

Substituting (7) for w(x�,�, η) into equation (35) we obtain
for the desired function Kk(x�, s) in equation (13) with η = 1
after simple manipulations

Kk(x�,−|s|) =
√

1 + |s|
π |s|

∫ ∞

−∞
dx Kk(x)

× exp

[
− 1

|s|
(
x� −

√
1 + |s| x

)2
]
. (36)

Using the expressions forKk(x�, s = 0) and tables of integrals
one can easily recover the representations (23) and (26),
respectively, from equation (36).

4. Effect of detection losses

So far we have considered the sampling functions needed
to reconstruct the s-parametrized exponential phase moments
from the ideal quadrature distribution w(xθ ,�). But what is
reconstructed if we substitute in equation (13) with η = 1
for the ideal quadrature distribution w(x�,�) the realistic
distribution w(x�,�, η)? Let us denote the reconstructed
quantity by P (k)(s, η), so that

P (k)(s, η) =
∫ ∞

−∞
dx�

∫ 2π

0
d�w(x�,�, η) e−ik� Kk(x�, s).

(37)
For the special case s = 0 equation (35) already gives
the answer: averaging the sampling function Kk(x�) with
the realistic quadrature distribution yields the exponential
phase moment of a smoothed Wigner function, namely the s-
parametrized exponential phase moment with s = −(1−η)/η.
To answer the question in the general case we substitute in
equation (37) both the expression (7) for w(x�,�, η) and
the expression (36) for Kk(x�, s). After a straightforward
calculation we find

P (k)(s, η) = P (k)(s ′ = −(1 − η + |s|)/η). (38)
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Figure 3. Direct sampling of exponential phase moments (s = −1) from inefficient (η = 50%) homodyne detection. Left: the reconstructed
values of the real part of the moments (the imaginary part in the inset). Right: reconstruction of the Q phase distribution from moments
compared to the theoretical one. Empty squares denote theoretical values, grey regions confidence intervals. The Monte Carlo simulated
experiments consists of 105 homodyne data at random but known phases on a squeezed vacuum with 〈a†a〉 = 1 average photons. The
reconstruction of the phase distribution has been carried out using 29 moments (k ∈ [−14, 14]).

Thus we arrive at the result that applying the sampling
function Kk(x�, s) to the realistic quadrature distribution via
equation (37) yields the s ′-parametrized exponential phase
moment with s ′ = −(1 − η + |s|)/η). Obviously, s ′ is less
than −|s| for 0 < η < 1 and, as expected, the exponential
phase moments of a more smoothed phase distribution are
reconstructed.

Now the obvious question arises if it is possible to
compensate for the detection loss by using the modified
sampling function Kk(x�, s, η). Fortunately equation (14)
already gives the answer. This sampling function compensates
for the detection loss and can be obtained from the sampling
function Kk(x�, s) simply by replacing s by s ′ = 1−η(1− s)

therein. We then find

Kk(x�,−|s|, η) = Kk(x�, s
′ = 1 − η(1 + |s|)) (39)

provided that s < 1 − 1/η. Thus we arrive at the result that
the modified sampling function is just the sampling function
corresponding to perfect detection taken at a larger value of
the parameter s. But note that the above condition implies
that at best s-parametrized exponential phase moments with
s = 1 − 1/η can be directly sampled from realistic quadrature
distributions. Hence the sampling functions do not allow
one to compensate for detection losses in the case of s >

1 − 1/η. In figure 3 we report the results from Monte Carlo
simulated sampling of s = −1 ordered exponential phase
moments from inefficient (η = 50%) homodyne detection.
The reconstruction of the ‘Q phase’ distribution from moments
is also reported. The simulated experiments consist of 105

homodyne data at random but known phases on a squeezed
vacuum with 〈a†a〉 = 1 average photons. The reconstruction
of the phase distribution has been carried out using 29 moments
(k ∈ [−14, 14]).

5. Noise reduction

As a matter of fact there exists a large class of functions
F(x�,�) which have zero tomographic average for any state

of the radiation field [22]:

F =
∫ 2π

0

d�

π

∫ ∞

−∞
dx� w(x,�)F(x�,�) ≡ 0. (40)

An example is provided by the functions Fk(x, φ) =
xk exp{±i(k + 2)φ} with k = 0, 1, . . . . This fact can be
exploited to reduce statistical fluctuations of the sampled
quantities, and ultimately the tomographic noise. The key
idea of adaptive tomography [22] is that adding null functions
to sampling functions does not affect their mean values, but
changes statistical errors, which can then be reduced by an
optimization method that ‘adapts’ kernels to homodyne data.
Let us consider a generic real sampling function R(x�,�). By
adding M null functions with the constraint of maintaining the
function as real, we have the new function

H(x�,�) = R(x�,�) +
M−1∑
k=0

µkFk(x�,�)

+
M−1∑
k=0

µ∗
kF

∗
k (x�,�) (41)

where µk are complex coefficients. From the definition of a
null function, we have H = R, whereas the variance of H is
given by3

-H 2 = -R2 + 2

{ ∑
kl

µkµ
∗
l FkF

∗
l

+
∑
k

µkRFk +
∑
k

µ∗
kRF ∗

k

}
. (42)

The variance (42) can be minimized with respect to the
coefficients µk , leading to the linear set of equations∑

l

µlFkF
∗
l = −RF ∗

k . (43)

The optimization equations (43) can be written in the matrix
form [20]

Aµ = b. (44)
3 Notice that the square of a null function is again a null function.
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Figure 4. Adaptive noise reduction in the reconstruction of phase moments. Left: the reconstructed values of the real part of the moments
using normal sampling functions. Right: the reconstruction with modified sampling functions. Empty squares denote theoretical values,
grey regions confidence intervals. The Monte Carlo simulated experiments consist of 20 000 homodyne data at random but known phases on
a squeezed coherent state with 〈a†a〉 = 1 average photons and γ = 0.5 squeezing fraction. The adaptive noise reduction procedure has been
applied using 10 (k = 0, . . . , 9) null functions.

A being a Hermitian M × M matrix and b a complex vector

Alk = FkF
∗
l ≡ xk+l exp{i(k − l)�} bk = −RF ∗

k . (45)

The vector b depends both on the kernel to be optimized and on
the state �̂ under examination, whereas the matrix A depends
on the state only. By substituting equation (43) in (42) and
inverting (44) we obtain

-2 = -R2 − -H 2 = 2
M−1∑
kl

µkAkl µ
∗
l = 2

M−1∑
kl

bk(A
−1)klb

∗
l

(46)
which expresses the decrease of the variance in terms of A and
b. The noise reduction procedure proceeds as follows: after
collecting a tomographic data sample the quantities A and b
are evaluated as experimental averages. Then, by solving the
linear systems (44) one obtains the coefficients which are used
to build the optimized sampling function. After that the same
data sample is used to average the new sampling function and
to evaluate the experimental error. Of course, for a finite data
sample the mean values of the initial and optimized sampling
functions may be different.

We applied this procedure to the reconstruction of the
exponential phase moments for s = 0 starting from the kernel
Rk(x�,�) = exp(−ik�)Kk(x�,�) (optimization proceeds
separately on the real and imaginary parts), and we found
that it is effective especially with a reduced number of data,
where the direct reconstruction using the sampling functions
of the previous sections may be noisy. In figure 4 we plot
the reconstructed phase moments (with and without the noise
reduction procedure) of a squeezed coherent state with 〈a†a〉 =
1 average photons and γ = 0.5 squeezing fraction.

6. Summary

In this paper we have determined the sampling functions
needed to determine s-parametrized exponential phase
moments from quadrature distributions measured with realistic
detectors. These s-parametrized moments are nothing but

the Fourier coefficients of the phase distribution obtained by
integrating the s-ordered quasiprobability expressed in polar
coordinates over the radius. In deriving the sampling functions
for the s-parametrized moments we have explicitly taken
advantage of their ambiguity. Using this property we could
show that the sampling functions needed for the reconstruction
of the odd moments are basically given by the error function.
For the even moments the sampling functions are proportional
to a generalized hypergeometric function 2F2. We checked
the statistical reliability of the method by means of a set of
Monte Carlo simulated experiments, and applied the adaptive
tomography technique to minimize fluctuations. Our results
confirmed that quantum homodyne tomography is currently the
most precise method to determine the intrinsic phase properties
of quantum states of radiation.
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