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Enhancement of nonlocality in phase space
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We show that inconclusive photon subtractidRS) on a twin beam produces non-Gaussian states that
violate Bell's inequality in the phase space. The violation is larger than for the twin beam itself irrespective of
the IPS quantum efficiency. The explicit expression for the IPS map is given both for the density matrix and the
Wigner function representations.
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[. INTRODUCTION method to modify the TWB state and test nonlocality using
homodyne detectiof3,4].
In this paper we address IPS asleGaussificatiormap
for a TWB, give its explicit expression for the density matrix
and the Wigner function, and investigate the nonlocality of
1) the resulting state in the phase space.
The paper is structured as follows. In Sec. Il we review
nonlocality in the phase space, i.e., the Wigner function
where A=tanH(r), r being the TWB squeezing parameter. Bell's inequality based on measuring the displaced parity
The TWB state is described by a Gaussian Wigner functioroperator on two modes of radiation. In Sec. Il we illustrate
the IPS process as a de-Gaussification map and calculate the
4 5 5 _— Wigner function of the IPS state. The nonlocality of the IPS
Wi(a, B) = 2 expl- 2A(lal* + | B°) + 2B(aB + ap)}, state in the phase space is then analyzed in Sec. IV, whereas
in Sec. V we discuss nonlocality using homodyne detection,
) extending the analysis of Ref&] and[4]. Section VI closes

with A=A(r)=cosh2r) and B=B(r)=sinh2r). Since Eq. the paper with some concluding remarks.

(2) is positive definite, TWBs are not suitable to test nonlo-

cality through homodyne detection. Indeed, the Wigner func- II. NONLOCALITY IN THE PHASE SPACE

tion itself provides an explicit hidden variable model for ho- ) . . .
modyne measurements,2]. On the other hand, it has been The displaced parity operator on two modes is defined as
shown[2] that a TWB state exhibits a nonlocal character for

parity measurements. This is known as nonlocality in the TII(«,8) =D (a)(- 1)aTaD;(a) ® Dy(B)(— 1)bTng(,8),
phase space since Bell inequalities can be written in terms of

the Wigner function, which in turn describes correlations for

the joint measurement of displaced parity operators. Overal
the positivity or the negativity of the Wigner function has a
rather weak relation to the locality or the nonlocality of
quantum correlations.

In Ref. [5] we suggested a conditional measuremen
scheme on TWBs leading to a non-Gaussian entangle
mixed state, which improves fidelity in the teleportation of
coherent states. This process, called inconclusive photon W(a,ﬁ):il_[(a,ﬁ), (4)
subtractionIPS), is based on mixing each mode of the TWB w?
with the vacuum in an unbalanced beam splitter and then
performing inconclusive photodetection on both modes, i.e.II(«, 8) being the expectation value ﬁf(a,ﬂ), the violation
revealing the reflected beams without discriminating thepf these inequalities is also known as nonlocality in the

number of detected photons. _ ~ phase space. The quantity involved in such inequalities can
A single-mode version of the IPS, mapping squeezed lighpe written as follows:

onto non-Gaussian states, has been recently realized experi-
mentally[6]. Moreover, IPS has been suggested as a feasible g =1](q,, 8;) + [1(ay By) + [(ay, o) - (e By), (5)

The twin-beam(TWB) state of two modes of radiation
can be expressed in the photon number basis as

|A>>ab= V1- )\ZE A" nvn>ab!
n=0

3

bvhere a, BeC, a, andb are mode operators, arfd,(«)
=exp{aa’ - aa} andD,(pB) are single-mode displacement op-
erators. Parity is a dichotomic variable and thus can be used
o establish Bell-like inequalitie§7]. Since the two-mode
igWgner functionW(«, 8) can be expressed as

which, for local theories, satisfies the conditid#) < 2.
*Electronic address: Stefano.Olivares@mi.infn.it Following Ref.[2], one can choose a particular set of
"Electronic address: Matteo.Paris@fisica.unimi.it displaced parity operators, arriving at the combination
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Hoy(7) =g (7) @ I 4(7), (10
Ho(7) =111 (77) ® Hog(m), (11)
14(7) =111 (7)) ® I 4(7). (12)
When the two photodetectors jointly click, the conditioned
FIG. 1. Scheme of the IPS process. output state of modes andb is given by
- - 1
B(J) =T1(0,0) + T1(1J,0) + IT(0,~ V) - TI(\J,-\J), ER)= mTrcd[Uac(¢) ® Upg(p)R @ [0)c{0|
6

© © [0 OUL( &) ® U1z 1y ® Thiy( )],

which depends only on the positive parameigecharacter- (13)

izing the magnitude of the displacement. If we evaluate the

quantity (6) in the case of the TWB, we find that it exceeds whereU,(¢)=expg-¢(a'c—ac’)} andU,4(¢) are the evolu-

the upper bound imposed by local theories for a certain retion operators of the beam splitters aRdhe density opera-

gion of values(J,r), its maximum being3=2.19[2]. tor of the two-mode state entering the beam splitterour
On the other hand, the choice of the parameters leading tcaseR= 0w =|A)app(A]). The partial trace on modes

Eq. (6) is not the best one, and the violation of the inequalityandd can be explicitly evaluated, thus arriving at the Kraus

|B|<2 can be enhanced using a different parametriza8pn decomposition of the IPS map. We have

A better result is achieved for

C(J) = H(I,~\I) + (= 313, \J) +11(3,3\J) ER =S my(h DMy HRM( DMy 7)
— - pll(r:d” 7]) p.g=1

- H(_ 3\‘":], 3\J), (7) (14)
which, for the TWB, gives a maximunC=2.32, greater .
than the value 2.19 obtained in RE2]. Notice that, even in with
the infinite squeezing limit, the violation is never maximal, tart? ¢[1 - (1 - 7)°]
i.e., |B|<2y2[9]. my(¢h, m) = | (15)

In the following sections we will see that the violation of p:
the inequalitiegB(J)|<2 and|C(J)|<2 can be enhanced by 4.
de-Gaussification of the TWB.
Mp($) = aPb%(cos ) 2™, (16)

Ill. THE DE-GAUSSIFICATION PROCESS

The de-Gaussification of a TWB can be achieved by subfjlnd
tracting photons from both modgs,10,1]. In Ref. [5] we P11(r,é, ) = Tra[ER)] (17)
referred to this process as to inconclusive photon subtraction
and showed that the resulting state, the IPS sigte can be i the probability of a click in both detectors.
used to enhance the teleportation fidelity of coherent states Now, in order to investigate the nonlocality of the state
for a wide range of the experimental parameters. 2ips=&(ewe) in the phase space, we explicitly calculate its
The IPS scheme is sketched in Fig. 1. The two maales Wigner function, which, as one may expect, is no longer
andb of the TWB are mixed with the vacuufmodesc and ~ Gaussian and positive definite.
d, respectively at two unbalanced beam splittgBS9 with The state entering the two beam splitters is described by
equal transmissivityr=cog¢; the modesc andd are then  the Wigner function
revealed by avalanche photodetect@®Ds) with equal ef-
fipiency 7. APDs can discriminate. iny the presence of ra- Mi”)(a,ﬁ, 5o IWr(a,,B)i expl- 2|¢2-21¢3, (18)
diation from the vacuum. The positive-operator-valued mea- ?

POVM) {I1y(7),I1 f h detector is gi b . .
sure( ) {llo(m), i)} of each detector is given by where the second factor on the right hand side represents the

* _ two vacuum states of modesandd. The action of the beam
o(n) =2 A-ni)Xjl, Myn=1-T»n, (B splitters o™ can be summarized by the following change
i=0 of variables:
n being the quantum efficiency. Overall, the conditional
measurement on the modesand d is described by the
POVM (we are assuming the same quantum efficiency for
both photodetectoys B— Bcosp+ésing, §— cosep-Bsing, (20

[oo( ) = o o(n) @ g 4(7), 9 and the output state, after the beam splitters, is then given by

a— aCoS¢p+{sing, (— {cos¢p—asing, (19
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TABLE I. Expressions oC;, x;, andy; appearing in Eq(33).

4 -
WO (@, B,¢,8) = Wi gl lexpl- alef + we+we)

j Xj(r:(f’ﬂl) yj(rl¢vn) CJ(”)
Xexp(- a|f|>+ (v + 2BE sir? ¢){
o o 1 a a 1
+ (v + 2BEsir? ¢) ¢, (21) ) )
where 2 S, a T2,
4 .
W o(a,8) = 5 expl=b(|af* +|B]%) + 2B cos’ ¢ (aB + ap)}
2 2
(22 3 a S, T2-4
and
a=al(r,$) = 2(Asir ¢ + cog ¢), (23) 5 5 5 \2
4 ar 2-7n ar 2-7n <;}>
b= b(r,$) = 2(A coS ¢+ Sirf ¢), (24)
v=uv(r,¢p)=2cos¢gsing[(L-Aa+Bg], (25
w=w(r,¢)=2cospsing[(L-AB+Bal. (26) P1a(r, é,77) = ﬂZJ{‘Z dPad?Bt, 4,(a, B). (32

At this stage conditional on/off detection is performed on () . )
modesc andd (see Fig. 1. We are interested in the situation 1he duantityG, , .(a,3.¢,¢) appearing in Eq(31) is
when both the detectors click. The Wigner function of the Gﬁjzﬁ(a,,& &) = expl- x| + (v + 2BEsir? )¢
double click elementl;;(7) of the POVM[see Eq(12)] is o

given by[5,12] + (v +2BEsir ¢) ¢}
1 —y;le? wg, 33
W, (2.6 = WLy (]2, = 511 -Q,(0) - Q, (& | xetylweg, @3
and the expressions oCi(7n), x=xr,¢,7), and Yy,
+Q,(0Q,(8)}, (270 =yj(r,¢,n) are given in Table I.

The mixing with the vacuum in a beam splitter with trans-
missivity 7 followed by on/off detection with quantum effi-
2 7 ciency # is equivalent to mixing with an effective transmis-
Q,(2)= P s R 7I|Z|2 . (28)  sivity [5]

with

. . Tett = Terl(, 1) =1 = (1 = 7) (34)

Using Eq.(13) and the phase-space expression of the trace _eﬁ _eﬁ o
(for each modg followed by an ideali.e., efficiency equal to)lon/off detec-
tion. Therefore, the stat€80) can be studied fom=1 and

replacing 7 with 7 Thanks to this substitution, after the
T0,0,]= J PWOI@WOI@, (29 jntogrations we have
. 14 16C(7)
0O, _and QZ being two operators.an‘vzl/[ol](z) .and \A/[OZ](Z) frgnlcB) = =3 21' 7 sexpi- (b- fj)|a|2
their Wigner functions, respectively, the Wigner function of " 772,-:1 Xjyj — 4B (1 — 7ep)
the output state, conditioned to the double-click event, is ) L
then given by = (b-g)|B]*+ (2Be + hy)(aB +aB)}  (35)
frog( ) and
W, 4, B) = S L (30) 4 2 21-1
P1a(r, b, 77) ot dm) =S, 160xy; = 4B%(1 = 7e)*]'Ci(m) (36)
where HERTTE (b-f)b-g) - (2Bhyrep)?
4 4 Ci(p) where we defined
_ 226" hd AS/24
fron(@B) = ﬂzfcz d°¢d fﬂZWr,¢(a,B)§1 2 £y = 1,01, 0, 7) = NiDXj(1 = A)2+ 4B3(1 ~ A)(1 — 7g) +;B2],
. (37
xGU), (a,8,4,9), (31)
and pyy(r, ¢, 7) is the double-click probability17), which 9 =g(r.¢,7) = Ni[xB? + 4BX(1 ~ A)(1 = 7er) +y;(1 - A)?],
can be written as a function df , ,(a, ) as follows: (38)
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FIG. 2. Plot ofB(J) given in Eq.(6) for J=1072. The dashed line
is BﬁTWB)(J), while the solid lines ar@E[Z? (J) for different values
of 7.4 (see the teyt from top to bottomz.4=0.999, 0.99, and 0.9.
When 7,=0.999, the maximum cBﬁ[Pf)”(J) is 2.23. The lower plot
is a magnification of the region<9r=0.11 of the upper one. No-
tice that for small r there is always a region where

(TWB) (IPS
BP9 <8

hj = hi(r,¢,7)
= Ni{(x; +y))B(1 = A) + 4B[B* + (1 = A)*](1 - 7},
(39

A7eii(1 — Tert)
XY} = 4B%(1 = 7eq)?

N; = N;(r,¢,7) = (40)
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FIG. 3. Plots ofB(J) given in Eq.(6) as a function of the
squeezing parameterfor different values of): (a) J=5X 1072, (b)
J=101, and (c) J=2x 107 In all the plots the dashed line is

BETWB)(J), while the solid lines artBﬁ'PS) (J) for different values of

In this way, the Wigner function of the IPS state can ber (see the text from top to bottomr4=0.999, 0.9, 0.8, 0.7, and

rewritten as

4 4Ci(pKY), (a,B)
W, B) =W, ) : e~y '
&br?](a’ IB) ’45(6! ﬁ)z pll(r' ¢, n)[xly] - 482(1 - Teff)z]

(41)

where we introduced

Ky (. B) = explfjlal” + gj| B° + hy(aB + ap)}. (42)

The state given in Eq41) is no longer a Gaussian state.

IV. NONLOCALITY OF THE IPS STATE

(41) in phase space using the quantifygiven in Eq.(5),
referring to both the parametrizatioB$J) [see Eq(6)] and
C(J) [see Eq(7)].

0.5. Notice that there is always a region for smallwhere
B(TWB)(J)< BP9 (J). Whenr¢;=0.999 the maximum "o (J) is

r r.é.n Twe) r.é.m
always greater than that ﬁi J).

As for a TWB, the violation of the Bell's inequality is
observed for small [2]. From now on, we will refer tdB(J)
as B"™®(J) when it is evaluated for a TWR2), and as
BE"Z’S;(J) when we consider the IPS statg4l).
We plot BﬁTWB)(J) and Bﬁ';ysz](.]) in Figs. 2 and 3 for different
values of the effective transmissivitys and of the param-
eterJ: for not too big values of the squeezing parameter

one has that ZBSX’?(J)<B$§L(J). Moreover, whenrg

approaches unity, i.e., when at most one photon is subtracted
In this section we investigate the nonlocality of the statefrom each mode, the maximum &

r!PTQ’L is always greater
than the one obtained using a TW§. A numerical analysis
shows that in the limito;— 1 the maximum is 2.27, which
is greater than the value 2.19 obtained for a TR The
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limit 7o4— 1 corresponds to the case of one single photon 205
subtracted from each mod&0,11]. Notice that increasing 204
reduces the interval of the valuesrofor which one has the

violation. For larger the best result is thus obtained with the
TWB since, as the energy grows, more photons are sub- 2.02
tracted from the initial statgs]. Since the relevant parameter 201
for violation of Bell inequalities isre, we have, from Eq.

(34), that the IPS state is nonlocal also for low quantum

2.03

efficiency of the IPS detector. 1.99

The same conclusions hold when we consider the param-
etrization of Eq.(7). In Fig. 4 we plot CETWB)(J) and 04 05 06 07 038 09 1
C/"9(J), i.e.,C(J) evaluated for the TWB and the IPS state, tanh r
respectively. The behavior is similar to that BfJ), the FIG. 5. Plots ofS given in Eq.(43) as a function of tanfn) for
maximum violation being nOWC?’Z]Sz](J):ZAO for 7o¢  different values ofr.; and for ideal homodyne detectigie., with
=0.999 andJ=1.6x 107 qguantum efficiencyny=1): from top to bottom7.4=0.99, 0.95,

Finally, notice that the maximum violation using IPS 0.90, 0.80, and 0.70.
states is achieve@for both parametrizationsvhen 7. ap-
proaches unity and for values nmaller than for the TWB. In Fig. 5 we plotS for 9,=0, 9,=m/2, ¢;=—=/4, and
p,=l4: as pointed out in Ref4], Bell's inequality is vio-
lated for a suitable choice of the squeezing parameter
The Wigner functionV, 4 ,(«,8) given in Eq.(41) is not ~ Moreover, whenry decreases the maximum of violation
positive definite and thup,ps can be used to test the viola- shifts toward higher values of
tion of Bell's inequalities by means of homodyne detection, As one expects, taking into account the efficiengy of
i.e., measuring the quadraturgs and x, of the two IPS the homodyne detection further reduces the violatisee
modesa andb, respectively, as proposed in Reff3] and[4]. Fig. 6). Notice that, wheny, <1, violation occurs for higher
In this case, if one discretizes the measured quadratures aglues ofr, although its maximum is actually reduced: in
suming as outcome +1 wher=0 and —1 otherwise, one order to have a significant violation one needs a homodyne
obtains the following Bell parameter: efficiency greater than 80%vhen 7.4=0.99.
On the other hand, the high efficiencies of this kind of
S=E(91,¢1) + E(91,02) + E(I2,01) ~ E(92,02), (43 detector allow a loophole-free test of hidden variable theories
where 9, and ¢; are the phases of the two homodyne mea{13.14, although the violations obtained are quite small.
surements at the modesandb, respectively, and This is due to the intrinsic information loss of the binning
process, which is used to convert the continuous homodyne
_ data in dichotomic resultfl5]. Better results, even if the
E(9) o) = LzdxﬁjdxwkSgdxﬁjxw]P(Xﬂj’xwk)’ (44 yiolation is always small, can be achieved usingiele
‘ coherent stat§¢l3,14 or a superposition of photon number
P(xﬂj,x k) being the joint probability of obtaining the two stateq15], while maximal violation, i.e.S=2.2, is obtained
outcomesxﬁj and Xg, [4]. As usual, violation of Bell's in- by means of a different binning process, called root binning,
equality is achieved whelg > 2. and choosing a particular family of quantum stetes,17).

V. NONLOCALITY AND HOMODYNE DETECTION

2,05
2.04
2.03
202

S

2.01

1.99

04 0.5 0.6 0.7 0.3 09 1
tanh r

FIG. 4. Plots of C(J) given in Eq.(7) as a function of the FIG. 6. Plots ofSgiven in Eq.(43) as a function of tanfn) with
squeezing parameterfor J=1.6x 10°“. In all the plots the dashed 7.,=0.99 and for different values of the homodyne detection effi-
line is C;""®(J), while the solid lines areC;";(J) for different  ciency #: from top to bottomz,=1, 0.95, 0.90, 0.85, and 0.80.
values of 7 (see the teyt from top to bottom7.4=0.999, 0.99, The maximum of the violation decreases and shifts toward higher
0.95, 0.9, and 0.8. Wher¢=0.999 the maximum on'ZS;(J) is values ofr as 7y decreases. For smaller values7g§ the violation
2.40. o is further reduced.
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VI. CONCLUDING REMARKS (IPS with homodyninygis of particular interest, since it can

In this paper we have shown that IPS can be used tge realized with current technology, achieving a loophole-
produce non-Gaussian two-mode states starting from a TWETe€ test of Bell's inequality3,4]. o
We have studied the nonlocality of IPS states in phase space On the other hand, the experimental verification of phase-
using the Wigner function. As for the improvement of IPS- SPace nonlocality is challenging, due to the difficulties of
assisted teleportatiofs], we have found that the nonlocal Measuring the parity, either directly or through measurement
correlations are enhanced for small energies of the TWEPf the photon distribution. However, the recent experimental
(small squeezing parametex. Moreover, the nonlocality of 9eneration of IPS stat¢8] is indeed a step toward its imple-
oipsis larger than that of TWB irrespective of the IPS quan-mentation.
tum efficiency.

_Since the Wigner function of the IPS state is not positive ACKNOWLEDGMENTS
definite, we have also analyzed its nonlocality using homo-
dyne detection. In this case violation of Bell's inequality is  S.O. would like to express his gratitude to A. R. Rossi and
much less than in the phase space, and is further reduced f8c Ferraro for stimulating discussions and for their continu-
nonunit homodyne efficiencyyy<1. However, this setup ous assistance.
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