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We show that inconclusive photon subtraction(IPS) on a twin beam produces non-Gaussian states that
violate Bell’s inequality in the phase space. The violation is larger than for the twin beam itself irrespective of
the IPS quantum efficiency. The explicit expression for the IPS map is given both for the density matrix and the
Wigner function representations.
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I. INTRODUCTION

The twin-beam(TWB) state of two modes of radiation
can be expressed in the photon number basis as

kuLllab = Î1 − l2o
n=0

`

lnun,nlab, s1d

where l=tanhsrd, r being the TWB squeezing parameter.
The TWB state is described by a Gaussian Wigner function

Wrsa,bd =
4

p2 exph− 2Asuau2 + ubu2d + 2Bsab + āb̄dj,

s2d

with A;Asrd=coshs2rd and B;Bsrd=sinhs2rd. Since Eq.
(2) is positive definite, TWBs are not suitable to test nonlo-
cality through homodyne detection. Indeed, the Wigner func-
tion itself provides an explicit hidden variable model for ho-
modyne measurements[1,2]. On the other hand, it has been
shown[2] that a TWB state exhibits a nonlocal character for
parity measurements. This is known as nonlocality in the
phase space since Bell inequalities can be written in terms of
the Wigner function, which in turn describes correlations for
the joint measurement of displaced parity operators. Overall,
the positivity or the negativity of the Wigner function has a
rather weak relation to the locality or the nonlocality of
quantum correlations.

In Ref. [5] we suggested a conditional measurement
scheme on TWBs leading to a non-Gaussian entangled
mixed state, which improves fidelity in the teleportation of
coherent states. This process, called inconclusive photon
subtraction(IPS), is based on mixing each mode of the TWB
with the vacuum in an unbalanced beam splitter and then
performing inconclusive photodetection on both modes, i.e.,
revealing the reflected beams without discriminating the
number of detected photons.

A single-mode version of the IPS, mapping squeezed light
onto non-Gaussian states, has been recently realized experi-
mentally[6]. Moreover, IPS has been suggested as a feasible

method to modify the TWB state and test nonlocality using
homodyne detection[3,4].

In this paper we address IPS as ade-Gaussificationmap
for a TWB, give its explicit expression for the density matrix
and the Wigner function, and investigate the nonlocality of
the resulting state in the phase space.

The paper is structured as follows. In Sec. II we review
nonlocality in the phase space, i.e., the Wigner function
Bell’s inequality based on measuring the displaced parity
operator on two modes of radiation. In Sec. III we illustrate
the IPS process as a de-Gaussification map and calculate the
Wigner function of the IPS state. The nonlocality of the IPS
state in the phase space is then analyzed in Sec. IV, whereas
in Sec. V we discuss nonlocality using homodyne detection,
extending the analysis of Refs.[3] and[4]. Section VI closes
the paper with some concluding remarks.

II. NONLOCALITY IN THE PHASE SPACE

The displaced parity operator on two modes is defined as

P̂sa,bd = Dasads− 1da†aDa
†sad ^ Dbsbds− 1db†bDb

†sbd,

s3d

where a, bPC, a, and b are mode operators, andDasad
=exphaa†−āaj andDbsbd are single-mode displacement op-
erators. Parity is a dichotomic variable and thus can be used
to establish Bell-like inequalities[7]. Since the two-mode
Wigner functionWsa ,bd can be expressed as

Wsa,bd =
4

p2Psa,bd, s4d

Psa ,bd being the expectation value ofP̂sa ,bd, the violation
of these inequalities is also known as nonlocality in the
phase space. The quantity involved in such inequalities can
be written as follows:

B = Psa1,b1d + Psa2,b1d + Psa1,b2d − Psa2,b2d, s5d

which, for local theories, satisfies the conditionuBuø2.
Following Ref. [2], one can choose a particular set of

displaced parity operators, arriving at the combination
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BsJd = Ps0,0d + PsÎJ,0d + Ps0,−ÎJd − PsÎJ,− ÎJd,

s6d

which depends only on the positive parameterJ, character-
izing the magnitude of the displacement. If we evaluate the
quantity (6) in the case of the TWB, we find that it exceeds
the upper bound imposed by local theories for a certain re-
gion of valuessJ,rd, its maximum beingB<2.19 [2].

On the other hand, the choice of the parameters leading to
Eq. (6) is not the best one, and the violation of the inequality
uBuø2 can be enhanced using a different parametrization[8].
A better result is achieved for

CsJd = PsÎJ,− ÎJd + Ps− 3ÎJ,− ÎJd + PsÎJ,3ÎJd

− Ps− 3ÎJ,3ÎJd, s7d

which, for the TWB, gives a maximumC<2.32, greater
than the value 2.19 obtained in Ref.[2]. Notice that, even in
the infinite squeezing limit, the violation is never maximal,
i.e., uBu,2Î2 [9].

In the following sections we will see that the violation of
the inequalitiesuBsJduø2 anduCsJduø2 can be enhanced by
de-Gaussification of the TWB.

III. THE DE-GAUSSIFICATION PROCESS

The de-Gaussification of a TWB can be achieved by sub-
tracting photons from both modes[5,10,11]. In Ref. [5] we
referred to this process as to inconclusive photon subtraction
and showed that the resulting state, the IPS state%IPS, can be
used to enhance the teleportation fidelity of coherent states
for a wide range of the experimental parameters.

The IPS scheme is sketched in Fig. 1. The two modesa
andb of the TWB are mixed with the vacuum(modesc and
d, respectively) at two unbalanced beam splitters(BSs) with
equal transmissivityt=cos2f; the modesc and d are then
revealed by avalanche photodetectors(APDs) with equal ef-
ficiency h. APDs can discriminate only the presence of ra-
diation from the vacuum. The positive-operator-valued mea-
sure(POVM) hP0shd ,P1shdj of each detector is given by

P0shd = o
j=0

`

s1 − hd ju jlk j u, P1shd = I − P0shd, s8d

h being the quantum efficiency. Overall, the conditional
measurement on the modesc and d is described by the
POVM (we are assuming the same quantum efficiency for
both photodetectors)

P00shd = P0,cshd ^ P0,dshd, s9d

P01shd = P0,cshd ^ P1,dshd, s10d

P10shd = P1,cshd ^ P0,dshd, s11d

P11shd = P1,cshd ^ P1,dshd. s12d

When the two photodetectors jointly click, the conditioned
output state of modesa andb is given by

EsRd =
1

p11sr,f,hd
TrcdfUacsfd ^ UbdsfdR ^ u0lcck0u

^ u0lddk0uUac
† sfd ^ Ubd

† sfdIa ^ Ib ^ P11shdg,

s13d

whereUacsfd=exph−fsa†c−ac†dj andUbdsfd are the evolu-
tion operators of the beam splitters andR the density opera-
tor of the two-mode state entering the beam splitters(in our
caseR=%TWB= uLllabbakkLu). The partial trace on modesc
andd can be explicitly evaluated, thus arriving at the Kraus
decomposition of the IPS map. We have

EsRd =
1

p11sr,f,hd o
p,q=1

`

mpsf,hdMpqsfdRMpq
† sfdmqsf,hd

s14d

with

mpsf,hd =
tan2p f f1 − s1 − hdpg

p!
s15d

and

Mpqsfd = apbqscosfda†a+b†b, s16d

and

p11sr,f,hd = TrabfEsRdg s17d

is the probability of a click in both detectors.
Now, in order to investigate the nonlocality of the state

%IPS=Es%TWBd in the phase space, we explicitly calculate its
Wigner function, which, as one may expect, is no longer
Gaussian and positive definite.

The state entering the two beam splitters is described by
the Wigner function

Wr
sindsa,b,z,jd = Wrsa,bd

4

p2 exph− 2uzu2 − 2uju2j, s18d

where the second factor on the right hand side represents the
two vacuum states of modesc andd. The action of the beam
splitters onWr

sind can be summarized by the following change
of variables:

a → a cosf + z sinf, z → z cosf − a sinf, s19d

b → b cosf + j sinf, j → j cosf − b sinf, s20d

and the output state, after the beam splitters, is then given by

FIG. 1. Scheme of the IPS process.
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Wr,f
soutdsa,b,z,jd =

4

p2Wr,fsa,bdexph− auju2 + wj + w̄j̄j

3exph− auzu2 + sv + 2Bj sin2 fdz

+ sv̄ + 2Bj̄ sin2 fdz̄j, s21d

where

Wr,fsa,bd =
4

p2 exph− bsuau2 + ubu2d + 2B cos2 f sab + āb̄dj

s22d

and

a ; asr,fd = 2sA sin2 f + cos2 fd, s23d

b ; bsr,fd = 2sA cos2 f + sin2 fd, s24d

v ; vsr,fd = 2 cosf sinf fs1 − Adā + Bbg, s25d

w ; wsr,fd = 2 cosf sinf fs1 − Adb̄ + Bag. s26d

At this stage conditional on/off detection is performed on
modesc andd (see Fig. 1). We are interested in the situation
when both the detectors click. The Wigner function of the
double click elementP11shd of the POVM [see Eq.(12)] is
given by [5,12]

Whsz,jd ; WfP11shdgsz,jd =
1

p2h1 − Qhszd − Qhsjd

+ QhszdQhsjdj, s27d

with

Qhszd =
2

2 − h
expH−

2h

2 − h
uzu2J . s28d

Using Eq.(13) and the phase-space expression of the trace
(for each mode)

TrfO1O2g = pE
C

d2zWfO1gszdWfO2gszd, s29d

O1 andO2 being two operators andWfO1gszd andWfO2gszd
their Wigner functions, respectively, the Wigner function of
the output state, conditioned to the double-click event, is
then given by

Wr,f,hsa,bd =
f r,f,hsa,bd
p11sr,f,hd

, s30d

where

f r,f,hsa,bd = p2E
C2

d2zd2j
4

p2Wr,fsa,bdo
j=1

4
Cjshd

p2

3Gr,f,h
s jd sa,b,z,jd, s31d

and p11sr ,f ,hd is the double-click probability(17), which
can be written as a function off r,f,hsa ,bd as follows:

p11sr,f,hd = p2E
C2

d2ad2bf r,f,hsa,bd. s32d

The quantityGr,f,h
s jd sa ,b ,z ,jd appearing in Eq.(31) is

Gr,f,h
s jd sa,b,z,jd = exph− xjuzu2 + sv + 2Bj sin2 fdz

+ sv̄ + 2Bj̄ sin2 fdz̄j

3exph− yjuju2 + wj + w̄j̄j, s33d

and the expressions ofCjshd, xj ;xjsr ,f ,hd, and yj

;yjsr ,f ,hd are given in Table I.
The mixing with the vacuum in a beam splitter with trans-

missivity t followed by on/off detection with quantum effi-
ciencyh is equivalent to mixing with an effective transmis-
sivity [5]

teff ; teffsf,hd = 1 −hs1 − td s34d

followed by an ideal(i.e., efficiency equal to 1) on/off detec-
tion. Therefore, the state(30) can be studied forh=1 and
replacingt with teff. Thanks to this substitution, after the
integrations we have

f r,f,hsa,bd =
1

p2o
j=1

4
16Cjshd

xjyj − 4B2s1 − teffd2exph− sb − f jduau2

− sb − gjdubu2 + s2Bteff + hjdsab + āb̄dj s35d

and

p11sr,f,hd = o
j=1

4
16fxjyj − 4B2s1 − teffd2g−1Cjshd

sb − f jdsb − gjd − s2Bhjteffd2 , s36d

where we defined

f j ; f jsr,f,hd = Njfxjs1 − Ad2 + 4B2s1 − Ads1 − teffd + yjB
2g,

s37d

gj ; gjsr,f,hd = NjfxjB
2 + 4B2s1 − Ads1 − teffd + yjs1 − Ad2g,

s38d

TABLE I. Expressions ofCj, xj, andyj appearing in Eq.(33).

j xjsr ,f ,hd yjsr ,f ,hd Cjshd

1 a a 1

2 a +
2

2 − h a −
2

2 − h

3 a a +
2

2 − h
−

2

2 − h

4 a +
2

2 − h
a +

2

2 − h
S 2

2 − h
D2
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hj ; hjsr,f,hd

= Njhsxj + yjdBs1 − Ad + 4BfB2 + s1 − Ad2gs1 − teffdj,

s39d

Nj ; Njsr,f,hd =
4teffs1 − teffd

xjyj − 4B2s1 − teffd2 . s40d

In this way, the Wigner function of the IPS state can be
rewritten as

Wr,f,hsa,bd = Wr,fsa,bdo
j=1

4
4CjshdKr,f,h

s jd sa,bd
p11sr,f,hdfxjyj − 4B2s1 − teffd2g

,

s41d

where we introduced

Kr,f,h
s jd sa,bd = exphf juau2 + gjubu2 + hjsab + āb̄dj. s42d

The state given in Eq.(41) is no longer a Gaussian state.

IV. NONLOCALITY OF THE IPS STATE

In this section we investigate the nonlocality of the state
(41) in phase space using the quantityB given in Eq. (5),
referring to both the parametrizationsBsJd [see Eq.(6)] and
CsJd [see Eq.(7)].

As for a TWB, the violation of the Bell’s inequality is
observed for smallr [2]. From now on, we will refer toBsJd
as Br

sTWBdsJd when it is evaluated for a TWB(2), and as
Br,f,h

sIPSd sJd when we consider the IPS state(41).
We plotBr

sTWBdsJd andBr,f,h
sIPSd sJd in Figs. 2 and 3 for different

values of the effective transmissivityteff and of the param-
eter J: for not too big values of the squeezing parameterr,
one has that 2,Br,f,h

sTWBdsJd,Br,f,h
sIPSd sJd. Moreover, whenteff

approaches unity, i.e., when at most one photon is subtracted
from each mode, the maximum ofBr,f,h

sIPSd is always greater
than the one obtained using a TWB. A numerical analysis
shows that in the limitteff→1 the maximum is 2.27, which
is greater than the value 2.19 obtained for a TWB[2]. The

FIG. 2. Plot ofBsJd given in Eq.(6) for J=10−2. The dashed line
is Br

sTWBdsJd, while the solid lines areBr,f,h
sIPSd sJd for different values

of teff (see the text): from top to bottomteff=0.999, 0.99, and 0.9.
Whenteff=0.999, the maximum ofBr,f,h

sIPSd sJd is 2.23. The lower plot
is a magnification of the region 0ø r ø0.11 of the upper one. No-
tice that for small r there is always a region where
Br

sTWBdsJd,Br,f,h
sIPSd sJd.

FIG. 3. Plots ofBsJd given in Eq. (6) as a function of the
squeezing parameterr for different values ofJ: (a) J=5310−2, (b)
J=10−1, and (c) J=2310−1. In all the plots the dashed line is
Br

sTWBdsJd, while the solid lines areBr,f,h
sIPSd sJd for different values of

teff (see the text): from top to bottomteff=0.999, 0.9, 0.8, 0.7, and
0.5. Notice that there is always a region for smallr where
Br

sTWBdsJd,Br,f,h
sIPSd sJd. Whenteff=0.999 the maximum ofBr,f,h

sIPSd sJd is
always greater than that ofBr

sTWBdsJd.
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limit teff→1 corresponds to the case of one single photon
subtracted from each mode[10,11]. Notice that increasingJ
reduces the interval of the values ofr for which one has the
violation. For larger the best result is thus obtained with the
TWB since, as the energy grows, more photons are sub-
tracted from the initial state[5]. Since the relevant parameter
for violation of Bell inequalities isteff, we have, from Eq.
(34), that the IPS state is nonlocal also for low quantum
efficiency of the IPS detector.

The same conclusions hold when we consider the param-
etrization of Eq. (7). In Fig. 4 we plot Cr

sTWBdsJd and
Cr,f,h

sIPSd sJd, i.e.,CsJd evaluated for the TWB and the IPS state,
respectively. The behavior is similar to that ofBsJd, the
maximum violation being nowCr,f,h

sIPSd sJd=2.40 for teff

=0.999 andJ=1.6310−4.
Finally, notice that the maximum violation using IPS

states is achieved(for both parametrizations) when teff ap-
proaches unity and for values ofr smaller than for the TWB.

V. NONLOCALITY AND HOMODYNE DETECTION

The Wigner functionWr,f,hsa ,bd given in Eq.(41) is not
positive definite and thusrIPS can be used to test the viola-
tion of Bell’s inequalities by means of homodyne detection,
i.e., measuring the quadraturesxq and xw of the two IPS
modesa andb, respectively, as proposed in Refs.[3] and[4].
In this case, if one discretizes the measured quadratures as-
suming as outcome +1 whenxù0 and −1 otherwise, one
obtains the following Bell parameter:

S= Esq1,w1d + Esq1,w2d + Esq2,w1d − Esq2,w2d, s43d

whereq j and w j are the phases of the two homodyne mea-
surements at the modesa andb, respectively, and

Esq j,wkd =E
R2

dxq j
dxwk

sgnfxq j
xwk

gPsxq j
,xwk

d, s44d

Psxq j
,xwk

d being the joint probability of obtaining the two
outcomesxq j

and xwk
[4]. As usual, violation of Bell’s in-

equality is achieved whenuSu.2.

In Fig. 5 we plotS for q1=0, q2=p /2, w1=−p /4, and
w2=p /4: as pointed out in Ref.[4], Bell’s inequality is vio-
lated for a suitable choice of the squeezing parameterr.
Moreover, whenteff decreases the maximum of violation
shifts toward higher values ofr.

As one expects, taking into account the efficiencyhH of
the homodyne detection further reduces the violation(see
Fig. 6). Notice that, whenhH,1, violation occurs for higher
values of r, although its maximum is actually reduced: in
order to have a significant violation one needs a homodyne
efficiency greater than 80%(whenteff=0.99).

On the other hand, the high efficiencies of this kind of
detector allow a loophole-free test of hidden variable theories
[13,14], although the violations obtained are quite small.
This is due to the intrinsic information loss of the binning
process, which is used to convert the continuous homodyne
data in dichotomic results[15]. Better results, even if the
violation is always small, can be achieved using acircle
coherent state[13,14] or a superposition of photon number
states[15], while maximal violation, i.e.,S=2Î2, is obtained
by means of a different binning process, called root binning,
and choosing a particular family of quantum states[16,17].

FIG. 4. Plots ofCsJd given in Eq. (7) as a function of the
squeezing parameterr for J=1.6310−4. In all the plots the dashed
line is Cr

sTWBdsJd, while the solid lines areCr,f,h
sIPSd sJd for different

values ofteff (see the text): from top to bottomteff=0.999, 0.99,
0.95, 0.9, and 0.8. Whenteff=0.999 the maximum ofCr,f,h

sIPSd sJd is
2.40.

FIG. 5. Plots ofS given in Eq.(43) as a function of tanhsrd for
different values ofteff and for ideal homodyne detection(i.e., with
quantum efficiencyhH=1): from top to bottomteff=0.99, 0.95,
0.90, 0.80, and 0.70.

FIG. 6. Plots ofSgiven in Eq.(43) as a function of tanhsrd with
teff=0.99 and for different values of the homodyne detection effi-
ciency hH: from top to bottomhH=1, 0.95, 0.90, 0.85, and 0.80.
The maximum of the violation decreases and shifts toward higher
values ofr ashH decreases. For smaller values ofteff the violation
is further reduced.
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VI. CONCLUDING REMARKS

In this paper we have shown that IPS can be used to
produce non-Gaussian two-mode states starting from a TWB.
We have studied the nonlocality of IPS states in phase space
using the Wigner function. As for the improvement of IPS-
assisted teleportation[5], we have found that the nonlocal
correlations are enhanced for small energies of the TWB
(small squeezing parameterr). Moreover, the nonlocality of
%IPS is larger than that of TWB irrespective of the IPS quan-
tum efficiency.

Since the Wigner function of the IPS state is not positive
definite, we have also analyzed its nonlocality using homo-
dyne detection. In this case violation of Bell’s inequality is
much less than in the phase space, and is further reduced for
nonunit homodyne efficiencyhH,1. However, this setup

(IPS with homodyning) is of particular interest, since it can
be realized with current technology, achieving a loophole-
free test of Bell’s inequality[3,4].

On the other hand, the experimental verification of phase-
space nonlocality is challenging, due to the difficulties of
measuring the parity, either directly or through measurement
of the photon distribution. However, the recent experimental
generation of IPS states[6] is indeed a step toward its imple-
mentation.
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