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We present the full characterization of phase-randomized or phase-averaged coherent states, a class of states ex-
ploited in communication channels and in decoy state-based quantum key distribution protocols.We report on the
suitable formalism to analytically describe the main features of these states and on their experimental investiga-
tion, that results in agreement with theory. In particular, we consider a recently proposed non-Gaussianity mea-
sure based on the quantum fidelity, that we compare with previous ones, and we use the mutual information
to investigate the amount of correlations one can produce by manipulating this class of states. © 2013 Optical
Society of America
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1. INTRODUCTION
Laser radiation, which can be described in terms of coherent
states, plays a relevant role in practical communication
schemes. One of the main advantages of coherent states over
more exotic quantum states, such as squeezed ones, is that
they can propagate over long distances, only suffering attenu-
ation and without altering their fundamental properties. A co-
herent state is characterized by a Poissonian photon-number
statistics and a well-defined optical phase. Thus, one can
easily implement phase-shifted-keyed communication in
which the logical information (the bit) is encoded in two
coherent states with the same amplitude and a π-difference
in phase. Nevertheless, this kind of communication channel
lacks security. Remarkably, very recently quantum key
distribution involving coherent states and decoy states has
been realized and it has been pointed out that phase-averaged
coherent states (PHAVs) may enhance the security of the
channel [1–3]. In this case, the high degree of accuracy in
the phase randomization process is one of the main
requirements.

By contrast to a coherent state, which is described by a
Gaussian Wigner function, a PHAV clearly exhibits non-
Gaussian features [4]. Thus, the systematic study of the
nature of these states and the possibility to manipulate them
can be considered of real interest in enhancing the perfor-
mances of the communication protocols in which they are
employed [5].

In this paper we investigate the main features of PHAVs and
report on their fully experimental characterization by address-
ing the measurement of the photon-number statistics and
the reconstruction of the Wigner function. Furthermore, we

perform basic manipulation experiments by means of linear
optical elements, in order to assess the usefulness of these
states for communication and information processing. The
detection is performed in the mesoscopic photon-number
regime by means of hybrid photodetectors (HPDs). Moreover,
we consider a recent non-Gaussianity measure based on
the quantum fidelity and we compare it with other two
measures which exploit the Hilbert–Schmidt distance and
the relative entropy of non-Gaussianity. In addition, we
address the mutual information to investigate the amount
of correlations one can produce by the manipulation of
PHAVs.

The plan of the paper is as follows. In Section 2 we sum-
marize several properties of PHAVs like photon-number sta-
tistics and purity. We also present the experimental scheme
used for the generation, characterization, and manipulation
of these states. Section 3 is devoted to their description using
the characteristic functions (CFs) and the corresponding
quasi-probability densities. We also report on the strategy
and realization of the experimental reconstruction of the
Wigner function. Non-Gaussianity of PHAVs and its experi-
mental measurement are addressed in Section 4. Section 5 in-
vestigates the linear operations with PHAVs performed by a
beam splitter (BS). Here we give a complete analytical de-
scription of the output one-mode reduced states. The super-
positions of two PHAVs turn out to be Fock-diagonal and are
interesting for quantum information processing. We find a
good agreement between theory and experimental results
for what concerns non-Gaussianity and mutual information
of the beam-splitter output states. Our concluding remarks
are drawn in Section 6.
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2. QUANTUM DESCRIPTION OF PHASE-
AVERAGED COHERENT STATES
A single-mode PHAV is obtained by randomizing the phase ϕ
of a coherent state

jβi � exp
�
−

1
2
jβj2

�X∞
n�0

jβjneinϕ�����
n!

p jni; �1�

with β � jβjeiϕ. Any PHAV ϱ̂ is diagonal in the photon-number
basis, namely

ϱ̂ �
Z

2π

0

dϕ
2π

jβihβj �
X∞
n�0

ϱnnjnihnj; (2)

where

ϱnn � exp�−jβj2� jβj
2n

n!
; �3�

is a Poisson distribution. Therefore, randomizing the phase of
a coherent state does not change its photon-number distribu-
tion [see Eq. (3)]. Moreover, due to the diagonal structure of
its density matrix, the statistical properties of a PHAV can be
fully described by the photon-number distribution. Indeed,
while jβi is a pure state, the degree of purity μ�ϱ̂� of the PHAV
ϱ̂ can be directly evaluated by the photon-number distribution
and is given by

μ�ϱ̂� �
X∞
n�0

ϱ2nn � exp �−2jβj2�I0�2jβj2�; (4)

where I0�z� is the modified zeroth-order Bessel function of the
first kind. The purity μ�ϱ̂� is a strictly decreasing function of
the mean number of photons hâ†âi � Tr�ϱ̂â†â� � jβj2 (â is the
annihilation operator and �â; â†� � 1̂, where 1̂ is the identity
operator).

From the experimental point of view, we obtained this class
of states by sending the second-harmonics pulses of a mode-
locked Nd:YLF laser amplified at 500 Hz (high-Q laser produc-
tion) to a mirror mounted on a piezo-electric movement (see
Fig. 1). The displacement of the piezoelectric movement,
which is controlled by a function generator, is operated at
a frequency of 100 Hz and covers a 12 μm span [6].

In Fig. 2 we show the detected photon distributions of three
PHAVs at different energy values, obtained by using a direct
detection scheme employing a HPD (R10467U-40, maximum
quantum efficiency∼0.5 at 500 nm, Hamamatsu) characterized

by a partial photon-counting capability and a linear response
up to 100 photons [7,8]. In the same figure, we also show
the corresponding theoretical photon-number statistics for de-
tected photons [the photocount distribution is simply obtained
by using Eq. (3) and replacing jβj2 byM ≡ ηjβj2, where η is the
overall quantum efficiency]. It is worth noting that, despite the
fact we plotted the photon-statistics up to m � 15, the maxi-
mumnumber of detected photons in our reconstructions is typ-
ically up to mmax ≈ 70: for m > mmax the probability P�m� is
negligible. In particular, for the cases presented in Fig. 2, we
obtained P�mmax� ≈ 10−5 for mmax � 67 (red), mmax � 61
(blue), and mmax � 59 (black).

The good agreement between experimental data and theory
can be quantified by calculating the fidelity (see F values re-
ported in Fig. 2): F � P

m̄
m�0

���������������������������
Pth�m�P�m�

p
, in which Pth�m�

and P�m� are the theoretical and experimental distributions,
respectively, and the sum is extended up to the maximum
detected-photon number m̄ above which both Pth�m� and
P�m� become negligible.

3. BASIC CHARACTERIZATION
We insert Eq. (2) into the well-known definition of the CFs

χ�λ; s�≡ exp
�
s

2
jλj2

�
Tr�ϱ̂ D̂�λ��; �−1 ≤ s ≤ 1� (5)

to write

χ�λ; s� � exp
�
−

1 − s

2
jλj2

�X∞
n�0

ϱnnLn�jλj2�: (6)

The series (6) is obtained by substitution of the diagonal
matrix elements of the displacement operator
D̂�λ�≔ exp �λâ† − λ�â� in the photon-number basis, namely

hnjD̂�λ�jni � exp
�
−

1
2
jλj2

�
Ln�jλj2�; (7)

where Ln�z� is a Laguerre polynomial. By using one of the
generating functions of the Laguerre polynomials [9,10]
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Fig. 1. Experimental setup. Fj , variable neutral density filter; BS,
50∶50 beam splitter; Pz, piezoelectric movement; MF, multimode fiber
(600 μm core); and HPD, hybrid photodetector.

Fig. 2. Detected-photon distribution of a PHAV for three different
mean values. Colored dots: experimental data, lines: theoretical ex-
pectations. The purity is μ�ϱ̂� � 0.13 (red plot, dashed line), μ�ϱ̂� �
0.20 (blue plot, solid line), and μ�ϱ̂� � 0.39 (black plot, dotted line).
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X∞
n�0

Ln�z�
xn

n!
� exJ0

�
2

������
xz

p �
; (8)

where J0�z� is the zeroth-order Bessel function of the first
kind, we get the CFs

χ�λ; s� � exp
�
−

1 − s

2
jλj2

�
J0�2jβjjλj�; (9)

whose Fourier transforms give us the set of quasi-probability
densities [9–12]

W�z; s� � 2
1 − s

exp
�
−

2�jβj2 � jzj2�
1 − s

�
I0

�
4jzjjβj
1 − s

�
; (10)

where we used the identity I0�z� � J0�iz� [10].
If we set s � −1 in Eq. (10), we obtain the Q function:

Q�z� � 1
π
W�z;−1� � 1

π
exp �−�jβj2 � jzj2��I0�2jzjjβj�: (11)

The P function retrieved for s � 1 by employing asymptotic
expansions of Bessel functions is expressed in terms of
Dirac’s δ distribution

P�z� � W�z; 1� � 1
π
δ�jzj2 − jβj2� � 1

2πjβj δ�jzj − jβj�: (12)

The last equality in Eq. (12) follows from the properties of the
δ distribution. Equation (12) shows us that the mixed state
obtained by averaging over the phase of a pure coherent state
preserves the important feature of being at the classicality
threshold (remember that the coherent states are the only
pure states at the classicality threshold).

Finally, for s � 0 we get the Wigner function

W�z� � 2 exp �−2�jβj2 � jzj2��I0�4jzjjβj�; (13)

which is positive everywhere in the phase space. Recently,
states with positive Wigner functions have become interesting
for efficient classical simulation of a broad class of quantum
optics experiments. In [13,14] a protocol for classical simula-
tions using non-Gaussian states with positive Wigner function
was presented (see also the more recent [15]). Note that the
Wigner function in Eq. (13) is not Gaussian, a feature that be-
comes evident from the plot of the function that shows a dip at
the origin of the phase space (see Fig. 3).

In order to experimentally reconstruct the Wigner function
of PHAVs we adopted the same strategy presented in [16] and
based on the measurements of the statistics of the state under
investigation mixed at a BS with a coherent probe field whose
amplitude and phase can be continuously changed [17–19]. As
the PHAV is a diagonal state, its Wigner function is phase in-
sensitive, i.e., it exhibits a rotational invariance about the ori-
gin of the phase space. For this reason, in Fig. 3 we show the
experimental data (blue dots) corresponding to a section of
the Wigner function superimposed to the theoretical surface
(orange mesh)

~W�
���
ξ

p
α� � W

� ���
ξ

p
α
�
exp�−�jαj � jβj�

�����������
1 − ξ

p
�; (14)

ξ being the overall (spatial and temporal) overlap between
probe field and PHAV [16]. In Eq. (14), jβj2 is now the mean
number of photons we measured, which includes the quantum
efficiency. In fact, it is worth noting that for classical states the
functional form of the Wigner function is preserved also in the
presence of losses and its expression, given in terms of de-
tected photons, reads ~W�α� � 2∕π

P∞
m�0 �−1�mpelm;α, where

pelm;α represent the detected-photon-number distributions of
the state to be measured displaced by the probe field [16].

4. NON-GAUSSIANITY OF PHAVs
In order to quantify the non-Gaussanity of PHAVs, here we
compare three different measures of non-Gaussianity recently
introduced [20–23] and entirely determined by the density ma-
trix in Eqs. (2) and (3). All the three measures compare the
properties of the state under investigation ϱ̂ with that of a
Gaussian reference state, σ̂, having the same mean value and
covariance matrix as ϱ̂. In the case of PHAVs, the reference
Gaussian state is a thermal state with mean occupancy jβj2.

The first measure is based on the Hilbert–Schmidt distance

εA�ϱ̂�≔
D2

HS �ϱ̂; σ̂�
μ�ϱ̂� � μ�ϱ̂� � μ�σ̂� − 2κ�ϱ̂; σ̂�

2μ�ϱ̂� ; (15)

where μ is the purity of the state and κ�ϱ̂; σ̂� � Tr�ϱ̂ σ̂� [20]. The
Hilbert–Schmidt distance can be analytically calculated by us-
ing the purity (4), the degree of purity of the reference thermal
state μ�σ̂� � �2jβj2 � 1�−1 and the expression of κ�ϱ̂; σ̂�

κ�ϱ̂; σ̂� � 1

jβj2 � 1
exp

�
−

jβj2
jβj2 � 1

�
: (16)

The second measure is the relative entropy of non-
Gaussianity defined as

εB�ϱ̂�≔ S�σ̂� − S�ϱ̂�; (17)

where S�ϱ̂� � −Tr�ϱ̂ ln ϱ̂� is the von Neumann entropy of
the state ϱ̂ [21]. For all diagonal states, we have
S�ϱ̂� � −

P
nϱnn ln ϱnn, where in the present case ϱnn is given

in Eq. (3), and S�σ̂� � �jβj2 � 1� ln �jβj2 � 1� − jβj2 ln jβj2.

Fig. 3. Experimental reconstruction of a section of the Wigner func-
tion of a PHAVwith jβj2 � 1.97 and ξ � 0.999. Blue dots: experimental
data, orange mesh: theoretical expectation.
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The last measure we study has been recently introduced in
[23] and is based on the quantum fidelity, namely

εC�ϱ̂�≔ 1 −
����������������
F �ϱ̂; σ̂�

p
; (18)

where

F �ϱ̂; σ̂� �
�
Tr
� ����������������������̂

ϱ
p

σ̂
���̂
ϱ

pq �	
2

(19)

is the Uhlmann fidelity [24,25]. This measure can readily be
evaluated for Fock-diagonal states since they commute with
their reference thermal states.

It is worth noting that the evaluation of the considered mea-
sures only requires quantities that can be experimentally ac-
cessed by direct detection, as they can be expressed in terms
of photon-number distributions [26].

Figure 4 shows the behavior of the three non-Gaussianity
measures as functions of the average number M of detected
photons in the case of PHAVs. It is evident that the behaviors
of the three measures are very similar to each other except for
the absolute values [27].

5. ADVANCED CHARACTERIZATION AND
MANIPULATION
A. Mutual Information of Split PHAV
When a coherent state jβi is mixed with the vacuum at a BS
with transmissivity τ, the two emerging beams are excited in
the product state



 ���
τ

p
βi ⊗



 ����������
1 − τ

p
βi and thus are uncorrelated.

Nevertheless, when we consider a PHAV as the input state, a
correlation arises at the two outputs, even if intensity corre-
lations still vanish [28]. The total amount of correlation of the
output bipartite state ϱ̂12 can be evaluated in terms of the
mutual information (MI)

MI�ϱ̂12� � S�ϱ̂1� � S�ϱ̂2� − S�ϱ̂12�; (20)

where ϱ̂k � Trh�ϱ̂12� (h, k � 1, 2 and k ≠ h) are the output re-
duced states and S�ϱ̂� is the von Neumann entropy. In Fig. 5
we plot the experimental data (open squared symbols) and the
theoretical predictions (red dots) of the MI as a function of
the energy of the input PHAV. We experimentally measured

this parameter by using a scheme involving two HPDs to
simultaneously detect the light at the two outputs of the BS
[29], as shown in Fig. 1. Since from the experimental point
of view it is not possible to measure both the input and output
states simultaneously, in order to assess the last term in
Eq. (20) we assumed that the input state was a PHAV with
energy equal to the sum of the two output channels (losses
at the BS are negligible). We also notice that in Fig. 5 the slight
discrepancy between experiment and theory appearing at in-
creasing values of the input energy can be due to some satu-
ration effect of the acquisition chain.

B. Interference of Two PHAVs: 2-PHAV State
We have also investigated another interesting state obtained
by the interference of two PHAVs (see Fig. 1): we will refer to
this state, which is still diagonal in the photon-number basis,
as 2-PHAV [26]. The 2-PHAV can find useful applications in
passive decoy state quantum key distribution [5]. To describe
the 2-PHAV state, we start observing that when two uncorre-
lated field modes described by a product CF χ0�λ1; λ2; s� �
χ01�λ1; s�χ02�λ2; s� are mixed at a BS with transmissivity
τ, the output two-mode CF may be written as follows:
χ�λ1; λ2; s� � χ01�ζ1; s�χ02�ζ2; s� with ζ1 � λ1

���
τ

p
− λ2

����������
1 − τ

p
,

ζ2 � λ2
���
τ

p � λ1
����������
1 − τ

p
[4]. Therefore, the CF of the 2-PHAV

state, obtained by taking only one of the output modes, can
be formally written as (the CF of the other mode can be
obtained by replacing τ with 1 − τ)

χ�λ; s� � χ01
�
λ

���
τ

p
; s
�
χ02

�
λ

����������
1 − τ

p
; s
�
; (21)

which follows from the partial-trace rule in the reciprocal
phase space. Equation (21) gives the following multiplication
rule for the input states of the type (9)

χ�λ; s� � exp
�
−

1 − s

2
jλj2

�

× J0

�
2jβ1jjλj

���
τ

p �
J0

�
2jβ2jjλj

����������
1 − τ

p �
; (22)

where β1 and β2 are the coherent amplitudes of the corre-
sponding interfering PHAVs. Note that χ�λ; s�≡ χ�jλj; s�, as
expected for phase-insensitive states.

Fig. 4. Comparison among the three measures of non-Gaussianity
in the case of PHAVs as functions of the mean number of
photons. Open squared symbols: experimental data, dots: theoretical
expectations.

Fig. 5. Mutual information between the two outputs of the BS at
which a PHAV with energy MT is divided. Open squared symbols: ex-
perimental data, red dots: theory. The error bars are smaller than the
symbol size.
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In order to obtain the photon statistics of the 2-PHAV, we
can follow two strategies. On the one hand, we can use the
expansion of the density operator in terms of displacement
operators [11]

ϱ̂ � 1
π

Z
2

d

d2λ χ�λ; 0�D̂�−λ�: (23)

Therefore, the matrix elements of a phase-insensitive
single-mode state described by the CF χ�jλj�≡ χ�λ; 0� may
be written as

ϱlm � 2δlm

Z
∞

0
djλjjλj exp

�
−

1
2
jλj2

�
χ�jλj�Lm�jλj2�; (24)

where we used Eq. (7) and performed the integration over the
polar angle, thus being left with an integral over jλj.

On the other hand, we can exploit high-order correlation
functions via the series [11,12]

ϱnn � 1
n!

X∞
k�n

�−1�k−n
�k − n�! h�â

†�kâki: (25)

Using a generating-function method, we are able to derive the
kth-order correlation functions in terms of Legendre polyno-
mials Pk�x�

h�â†�kâki � �jβ1j2τ� jβ2j2�1 − τ��kukPk

�
1
u

�
; (26)

where

u :� jjβ1j2τ − jβ2j2�1 − τ�j
jβ1j2τ� jβ2j2�1 − τ� : (27)

The kth-order normalized correlation functions are then

g�k��0� � h�â†�kâki
hâ†âik � ukPk

�
1
u

�
: (28)

Now, thanks to the relationship (25) we obtain the density
matrix elements as series expansions involving Legendre
polynomials

ϱnn � 1
n!

X∞
k�n

�−1�k−n
�k − n�! �jβ1j

2τ� jβ2j2�1 − τ��kukPk

�
1
u

�
: (29)

In particular, if τ � 1∕2 (balanced BS) and jβ1j � jβ2j � jβj
(identical inputs), we find a simple result for the degree of
coherence (28), namely

g�k��0� � �2k − 1�!!
k!

> 1; �k > 1�; (30)

which indicates a super-Poissonian photon statistics. The
photon-number distribution is obtained after some algebra
via (29) as

ϱnn � exp �−2jβj2� �2n − 1�!!
�n!�2 jβj2n1F1

�
1
2
;n� 1; 2jβj2

�
; (31)

where 1F1�p; q; z� is a confluent hypergeometric function and
�−1�!! � 1 [9,30].

In Fig. 6 we plot the photon-number distribution (31) for
different energy values (colored lines). We remark the good
agreement between experimental data (colored dots) and
theory predictions confirmed also by the high values of the
fidelity. As in the case of Fig. 2, the maximum number of
detected photons is mmax ≈ 70.

Finally, we have obtained the set of quasi-probability
densities associated with a 2-PHAV as having the following
expansion

W�α; s� � 2
1 − s

exp
�
−

2jαj2
1 − s

�

×
X∞
k�0

�−1�k
k!

�
2�jβ1j2τ� jβ2j2�1 − τ��

1 − s

�
k

× ukPk

�
1
u

�
Lk

�
2jαj2
1 − s

�
; (32)

where Pk�z� are Legendre polynomials and u is defined in
Eq. (27). In particular, the quasi-probability densities of the
balanced state (32) have a simpler form due to the explicit
correlation functions (30). We get

W�α; s� � 2
1 − s

exp
�
−

2jαj2
1 − s

�X∞
k�0

�2k − 1�!!
�k!�2

×
�
−

2jβj2
1 − s

�
k

Lk

�
2jαj2
1 − s

�
: (33)

In Fig. 7 we report a section of the phase-insensitive Wigner
function of a 2-PHAV (on the right) obtained by the interfer-
ence at a balanced BS of two identical PHAVs (whose section
of Wigner function is shown on the left). Even in the case of
2-PHAV, the experimental data (red dots) are well superim-
posed to the theoretical surface (blue mesh)

Fig. 6. Detected-photon distribution of a balanced 2-PHAV state for
three different mean values. Colored dots: experimental data, lines:
theoretical expectations (31). The purity is μ�ϱ̂� � 0.09 (red plot,
dashed line), μ�ϱ̂� � 0.13 (blue plot, solid line) and μ�ϱ̂� � 0.21 (black
plot, dotted line).
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~W2−PHAV

� �����
ξP

p
α
�
� W2−PHAV

� ���
ξ

p
Pα

�

× exp
h
−jαj

�������������
1 − ξP

p
− �jβ1j � jβ2j�

�������������
1 − ξS

p i
;

(34)

where ξP describes the overall overlap between the probe and
the 2-PHAV and ξS the overall overlap between the two com-
ponents of the 2-PHAV. It is evident that the single PHAV has a
dip at the origin of the phase space, whereas the 2-PHAV has a
peak. This difference results in a reduction of non-Gaussianity
of the 2-PHAV with respect to that of a single PHAV at fixed
energy, as testified by the non-Gaussianity measures intro-
duced above [26,27]. To stress this result, in Fig. 8 we show
the behavior of the three measures as functions of the energy
values M for a balanced 2-PHAV: we can notice that the ab-
solute values of εk, k � A, B, C, are smaller than the ones we
obtained in the case of a single PHAV. Moreover, in Fig. 9 we
plot the same measures as functions of the balancing between
the two components of the 2-PHAV at fixed energy value M .
As one may expect, the three measures monotonically
decrease at increasing the balancing. In fact, the most
unbalanced condition reduces to the case in which there is

only a single PHAV, whereas the most balanced one corre-
sponds to have a balanced 2-PHAV.

C. Mutual Information of Split 2-PHAV
As in the case of a single PHAV, when a 2-PHAV state is mixed
with the vacuum at a 50∶50 BS, the two outputs show a corre-
lated nature, testified by the non-zero value of the mutual in-
formation. In Fig. 10 we report the MI between the two
outputs of the BS at which a balanced 2-PHAV is divided
as a function of the input energy value. Furthermore, Fig. 11
shows the MI at fixed input energy of the 2-PHAV as a func-
tion of the ratio R � jβ1j∕jβ2j between the two single PHAVs
used to generate the 2-PHAV state.

In both figures the accordance between the experimental
data (open squared symbols), whose error bars are smaller
than the symbol size, and the theoretical predictions (red
dots) is good. As in the case of a single PHAV, in order to as-
sess the last term in Eq. (20) we again assumed that the input
state was a 2-PHAV with energy equal to the sum of the two
output channels.

Fig. 7. Left: experimental reconstruction of a section of the Wigner
function of a PHAV with jβj2 � 1.97 and ξ � 0.999. Blue dots: exper-
imental data, orange mesh: theoretical expectation. Right: experimen-
tal reconstruction of a section of the Wigner function of a balanced
2-PHAV with jβ1j2 � 1.03, jβ2j2 � 0.91, ξP � 0.95, and ξS � 1. Red
dots: experimental data, blue mesh: theoretical expectation.

Fig. 8. Comparison among the three measures of non-Gaussianity in
the case of balanced 2-PHAVs as functions of the mean number of
photons. Open squared symbols: experimental data, dots: theoretical
expectations.

Fig. 9. Comparison among the three measures of non-Gaussianity in
the case of 2-PHAVs at fixed total energy as functions of the
balancing between the two single PHAVs. Open squared symbols:
experimental data, dots: theoretical expectations.

Fig. 10. Mutual information between the two outputs of the BS at
which a balanced 2-PHAV is divided as a function of the total input
energy MT . Open squared symbols: experimental data, red dots:
theory. The error bars are smaller than the symbol size.
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6. CONCLUDING REMARKS
In conclusion, we have studied the main properties of PHAVs:
we have reported an analytic description and verified the
theoretical predictions by means of a direct detection scheme
involving HPDs. In detail, we have investigated the detected
photon-number distribution and the Wigner function that is
non-Gaussian. Moreover, we have used three different non-
Gaussianity measures, all based on quantities experimentally
accessed by direct detection, to quantify the non-Gaussianity
amount and have proven the consistency of the different ap-
proaches. Furthermore, we have manipulated PHAVs by
means of linear optical elements and generated a new class
of phase-randomized states, namely 2-PHAVs, obtained as
superpositions of two PHAVs at a BS. The consistent exper-
imental and theoretical results we obtained in the characteri-
zation of both PHAVs and their superpositions 2-PHAVs
reinforce the possibility of using them for applications to com-
munication protocols. These classical states appear to be ro-
bust, experimentally accessible and theoretically convenient.
The investigation of the non-Gaussianity and correlations of
some other output BS-states manipulated by conditional
measurements is one of our present interests.
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