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Reliable source of conditional states from single-mode pulsed thermal fields
by multiple-photon subtraction
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We demonstrate the effect of multiple-photon subtraction on the generation of conditional states in the pulsed
regime. Our experimental scheme relies on a beam splitter (BS) and a pair of linear photodetectors that are able to
resolve up to tens of photons. We use a single-mode thermal field at the input port of the BS to test the reliability
of our scheme, and we show good agreement with the theory by fully characterizing the conditional outgoing
states in terms of photon-number statistics and non-Gaussianity.
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I. INTRODUCTION

The subtraction of photons from an optical field is of
both fundamental and practical interest, as it is linked to the
properties of the annihilation operator [1] and plays a leading
role in quantum information protocols involving non-Gaussian
state generation, manipulation, and distillation [2–4]. In fact,
the simplest way to generate a non-Gaussian optical state by
starting from a Gaussian one consists of subtracting photons
from it [5]. Photon subtraction can be implemented by inserting
a beam splitter (BS) in the optical path of the original state,
by detecting the number of photons at one output port, and by
selecting the output of the other port only if a certain condition
on the number of detected photons is satisfied. As we use short-
pulsed fields, the challenging part of this scheme is the shot-by-
shot measurement of sizable numbers of photons. As a matter
of fact, it is nowadays quite easy to detect a single photon
(see, e.g., Ref. [6] and references therein), while the limited
availability of genuine photon counters has led to the quest for
indirect ways to measure photon numbers in light pulses [7–9].

It is worth mentioning that the subtraction of photons
allows not only the generation of non-Gaussian states, but
also the enhancement of the nonlocality of bipartite states
[10–14], or the generation of highly nonclassical states [15–17]
useful for quantum information purposes [18]. Moreover, non-
Gaussianity is a necessary ingredient for continuous-variable
entanglement distillation [19–21] and different protocols,
which rely on Gaussification of entangled non-Gaussian states
[22–24] or on de-Gaussification of entangled Gaussian states,
have been proposed [4]. In all these approaches, an important
role is played by photodetectors able to perform reliable
conditional measurements.

In this paper, we report a thorough analysis of a setup based
on hybrid photodetectors, which allow the discrimination of
up to tens of the number of detected photons [25,26]. The aim
of the paper is twofold: First, we demonstrate the feasibility
of our setup and, second, we investigate its reliability by
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characterizing the generated conditional states. The input
states we employ to achieve these goals are single-mode
thermal fields. Although photon-subtracted thermal states are
not directly involved in any quantum information protocol,
they are suitable probes to investigate the performances of our
particular scheme. In fact, thermal states are Gaussian states
diagonal in the photon-number basis, thus, the knowledge of
their photon statistics fully characterizes them and their con-
ditional non-Gaussian counterparts, which are still diagonal.
Thanks to this property, we can give a complete analytical
description of the behavior of our setup, which includes the
actual expressions of the conditional states, and we can verify,
with very high accuracy and control, the agreement of the
theoretical expectations with the experimental results. This is a
fundamental test in view of the application of our setup to more
sophisticated cases, which involve nonclassical, multipartite,
and multimode fields [27], including states whose conditional
counterparts cannot be fully characterized analytically, in
which case, the certified reliability of our scheme becomes
crucial.

Throughout the paper, we investigate two possible scenar-
ios. We refer to the first one as conclusive photon subtraction
(CPS): A photon-number-resolving detector is used to condi-
tion the signal and to conclude which is the effective number
of subtracted photons. The second one is the inconclusive
photon subtraction (IPS): an on-off Geiger-like detector (i.e., a
detector only able to distinguish the presence from the absence
of photons is employed), which prevents us from inferring the
actual number of subtracted photons. The paper is structured
as follows. Section II addresses the generation of conditional
states by means of detectors with an effective photon-number-
resolving power. We discuss the model in the presence of
nonunit quantum efficiency and give some analytical results.
In Sec. III, we briefly review the IPS process on thermal
Gaussian fields; we also investigate the main properties of
the generated conditional non-Gaussian states that will turn
out to be useful for the characterization of our setup. In
Sec. IV, we report the experimental demonstration of our
scheme and thoroughly characterize the obtained conditional
states. Section V closes the paper and draws some concluding
remarks.
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II. CONDITIONAL NON-GAUSSIAN STATES FROM
THERMAL FIELDS VIA CONDITIONAL

MEASUREMENTS

In Fig. 1, we depict the conditional photon-subtraction
scheme based on a BS and two photon-number-resolving
detectors. Although, in our experimental realization, we will
consider only thermal states, for the sake of generality, here,
we consider a diagonal state of the form � = ∑

n �n|n〉〈n|.
After the evolution through the BS with transmissivity τ , the
initial two-mode state R0 = � ⊗ |0〉〈0| is transformed into the
state,

R =
∞∑

n=0

�n

n∑
k,l=0

An
k (τ )An

l (τ )|n − k〉〈n − l| ⊗ |k〉〈l|, (1)

where An
s (τ ) =

√
( n

s
)τn−s(1 − τ )s . Then, the reflected part

of the beam undergoes measurement. The positive-operator-
valued measure (POVM), which describes a realistic photon-
counting device with quantum efficiency η, is given by [28]

�m(η) =
∞∑

s=m

Bs,m(η)|s〉〈s|, (2)

in which Bs,m(η) = ( s

m
)ηm(1 − η)s−m. If the photon counter in

the reflected beam detects mR photons, the CPS state obtained
in the transmitted beam is

�CPS(mR) = 1

pR(mR)
TrR [R I ⊗ �mR (ηR)]

= 1

pR(mR)

∞∑
s=mR

∞∑
n=0

Bs,mR (ηR)

× �s+n

[
As+n

s (τ )
]2|n〉〈n|, (3)

where ηk is the quantum efficiency of the detector located in the
reflected (k = R) and in the transmitted (k = T) beam paths,
respectively. Note that the state in Eq. (3) is still diagonal. The
overall probability pR(mR) of measuring mR in the reflected
beam reads

pR(mR) =
∞∑

s=mR

∞∑
n=0

Bs,mR (ηR)�n+s

[
An+s

s (τ )
]2

, (4)
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FIG. 1. Scheme for the generation of conditional non-Gaussian
states via photon subtraction. A thermal input state � is mixed with
the vacuum state �0 = |0〉〈0| at a BS with transmissivity τ . Two
photon counters (R, T) with quantum efficiency ηk , k = R,T are used
to generate and to analyze conditional states. See text for details.

which represents the marginal distribution of the joint proba-
bility,

pTR(mT,mR) = Tr [R �mT (ηT) ⊗ �mR (ηR)]

=
∞∑

t=mT

∞∑
s=mR

Bs,mR (ηR) Bt,mT (ηT)
[
As+t

s (τ )
]2

�s+t ,

(5)

that detectors T and R measure mT and mR photons, respec-
tively. By taking � in a single-mode thermal state ν(Nth),

ν(Nth) =
∞∑

n=0

νn(Nth)|n〉〈n|, (6)

νn(Nth) = 1

1 + Nth

(
Nth

1 + Nth

)n

, (7)

where Nth denotes the mean number of thermal photons,
Eq. (5) reduces to

pTR(mT,mR) =
(

mT + mR

mR

)
MT

mT MR
mR

(1 + MT + MR)mT+mR+1
, (8)

where MT = τ ηT Nth and MR = (1 − τ ) ηR Nth are the mean
numbers of detected photons of the transmitted and reflected
beams, respectively.

Given mR and pR(mR), the conditional state �CPS in Eq. (3)
can be obtained straightforwardly. From Eq. (3), we can then
evaluate the Fano factor,

FCPS = σ 2(MCPS)
MCPS

, (9)

which is the ratio between the variance σ 2(MCPS) and the
mean number MCPS of the photons detected in the CPS state.
As we will see in what follows, FT � FCPS � 1, where FT =
1 + MT is the Fano factor of the single-mode thermal field of
the (unconditional) transmitted beam. Note that �CPS is always
super-Poissonian, which is consistent with the classical nature
of the field.

To deeply characterize the output conditional state, we
evaluate its non-Gaussianity. Since the state has the form
�CPS = ∑

n pn|n〉〈n|, the non-Gaussianity measure [29] can
be written as

δ[�CPS] = S[ν(NCPS)] +
∑

n

pn log pn, (10)

where NCPS is the mean photon number of �CPS, and
S[ν(N )] = N log (1 + 1/N ) + log (1 + N ) is the entropy of
the thermal state ν(N ).

However, due to the inefficient detection, we cannot
reconstruct the actual photon-number distribution pn, but only
the detected photon-number distribution qmT = pTR(mT, mR)
given in Eq. (8), where mR is the conditioning value, and mT

is the number of detected photons. Thus, we can evaluate the
quantity:

ε[�CPS] = S[ν(MCPS)] +
∑
mT

qmT log qmT � δ[�CPS]. (11)

The last inequality follows from the fact that the inefficient
detection may be described by a Gaussian lossy channel that
does not increase the non-Gaussianity, followed by an ideal
(i.e., unit quantum efficiency) detection (see the Appendix for
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details). The quantity ε[�CPS], which can easily be evaluated
from our experimental data, turns out to be a lower bound for
the actual non-Gaussianity, that is, significant values of ε[�CPS]
correspond to more markedly non-Gaussian states �CPS.

III. INCONCLUSIVE PHOTON SUBTRACTION
ON THERMAL STATES

The conditional states introduced in Sec. II can be generated
only if the detector in the reflected beam path is able to
resolve the number of incoming photons. In this section,
we consider a scenario in which the detector R (see Fig. 1)
can only distinguish the presence from the absence of light
(Geiger-like detector): We will refer to this measurement as
inconclusive, as it does not resolve the number of the detected
photons. When the detector clicks, an unknown number of
photons is subtracted from �, and we obtain the IPS state
�IPS. To characterize this class of conditional state, we use
the phase-space description of the system evolution, which
allows a simpler analysis with respect to that based on the
photon-number basis.

The phase-space description of the IPS operated on single-
mode Gaussian states can be obtained by generalizing the
analysis given in Ref. [16]. The Wigner function of the thermal
state in Eq. (6) reads as follows (in Cartesian notation):

Wth(X) = exp
(− 1

2 XT σ−1
th X

)
2π

√
Det [σ th]

, (12)

where

σ th ≡ σ th(Nth) = 1 + 2Nth

2
1 (13)

is the covariance matrix (CM), with 1 as the 2 × 2 identity
matrix. According to Ref. [16], the action of the BS transforms
the CM of the two-mode input state (thermal + vacuum),

σ in =
(

σ th 0
0 σ 0

)
, (14)

as follows [30]:

σ ′ ≡ ST
BS(τ ) σ in SBS(τ ) ≡

(
A C

CT B

)
, (15)

where A, B, and C are 2 × 2 matrices, and

SBS(τ ) =
(√

τ1
√

1 − τ1

−√
1 − τ1

√
τ1

)
(16)

is the symplectic transformation associated with the evolution
operator UBS of the BS.

The probability pon = pon(r,τ,ηR) that the on-off detector
endowed with quantum efficiency ηR clicks is given by [30]

pon = 1 − poff(r,τ,ηR) (17)

= 1 − [ηR

√
Det (B + σ M)]−1 (18)

= ηR(1 − τ )Nth

1 + ηR(1 − τ )Nth
, (19)

where poff is the probability of a nonclick event, and

σ M = 2 − ηR

2ηR
1. (20)

The Wigner function associated with the IPS state �IPS reads

WIPS(X) = Wa(X) − poff Wb(X)

pon
, (21)

where

Wk(X) = exp
(− 1

2 XT �−1
k X

)
2π

√
Det [�k]

(k = a,b), (22)

�a = A and �b = A − C(B − σ M)CT . Note that the IPS,
because it is the linear combination of two Gaussian functions,
is no longer Gaussian: For this reason, the IPS process is also
referred to as a de-Gaussification process [15]. The Wigner
functions in Eq. (22) are those of two thermal states ν(Nk)
with the mean number of photons Nk given by

Na = τNth, Nb = τNth

1 + ηR(1 − τ )Nth
, (23)

respectively; thus, the density matrix associated with Eq. (21)
can be written as

�IPS = ν(Na) − poff ν(Nb)

pon
, (24)

and the corresponding conditional distribution of the detected
photons is

pT (mT) = νmT (Ma) − poff νmT (Mb)

pon
, (25)

where Ma = ηTNa and Mb = ηTNb, ηT is the quantum
efficiency of the photon-resolving detector of the IPS state,
and ν(Nk) are given by Eq. (7).

By starting from the previous results, we can give further
details about the IPS thermal state in Eq. (24). The mean
number of detected photons is

MIPS = Ma − poff Mb

pon
, (26)

and the variance σ 2(MIPS) is

σ 2(MIPS) = Ma(1 + Ma) − poff Mb(1 + Mb)

pon

− poff(Ma − Mb)2

p2
on

. (27)

Moreover, as Ma � Mb, the Fano factor FIPS is

FIPS = σ 2(MIPS)

MIPS
(28)

= 1 + Mb + 2
Ma(Ma − Mb)

Ma − poff Mb

− Ma − Mb

1 − poff
� 1, (29)

in which the final inequality can be checked by substituting
the actual expressions of Ma , Mb, and poff . The state is always
super-Poissonian (also, in this case, as one would expect,
FT � FIPS � 1). As for the conditional states �CPS, we can
characterize the non-Gaussianity of the state �IPS from the
experimental data by evaluating the quantity,

ε[�IPS] = S[ν(MIPS)] +
∑
mT

qmT log qmT , (30)
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which is still a lower bound for the non-Gaussianity measure
(i.e. ε[�IPS] � δ[�IPS]) as explained in more detail in Sec. II
and in the Appendix.

IV. RELIABLE SOURCE OF NON-GAUSSIAN STATES

A. Experimental setup

We produced a single-mode pseudothermal state by in-
serting a rotating ground-glass plate in the pathway of a
coherent field, followed by a pin hole to select a single
coherence area in the far-field speckle pattern (see Fig. 2). As
most detectors have the maximum quantum efficiency in the
visible spectral range, we chose to exploit the second-harmonic
linearly polarized pulses (λ = 523 nm, 5.4-ps pulse duration)
of an Nd:yttrium-lithium-fluoride mode-locked laser amplified
at 500 Hz. The thermal light was split into two parts by a
polarizing cube beam splitter (PBS) whose transmissivity τ

can be continuously varied by means of a half-wave plate (λ/2
in Fig. 2). We balanced the two exiting arms of the PBS to
achieve τ � 0.5. The light exiting the PBS was focused in two
multimode fibers and was delivered to two hybrid photodetec-
tors ([HPDR,T], model R10467U-40, Hamamatsu), endowed
not only with a partial photon-resolving capability, but also
with a linear response up to 100 incident photons. The outputs
of the detectors were amplified (preamplifier A250 plus ampli-
fier A275, Amptek), synchronously integrated (SGI, SR250,
Stanford), digitized (ATMIO-16E-1, National Instruments),
and processed off-line. To analyze the outputs, we model the
detection process as a Bernoullian convolution and the overall
amplification-conversion process through a very precise con-
stant factor γ , which allows the shot-by-shot detector output
to be converted into a number of detected photons [31,32]. The
calibration procedure required performing a set of measure-
ments of the light at different values of the overall detection
efficiency of the apparatus η set by rotating a continuously
variable neutral-density filter wheel placed in front of the λ/2
plate. For each value of η, we recorded the data from 30 000
subsequent laser shots. For the results presented in the follow-
ing, we obtained the values γR = 0.104 V and γT = 0.093 V
for the calibration of the detection chains in the reflected and
transmitted arms of the BS, respectively. These values of γR,T

were used to convert the voltages into the number of detected
photons that were finally rebinned into unitary bins to obtain
probability distributions. Once checked the reliability of the

PBS HPDT

HPDR

λλ /2ND
AMP

LP

ADC

MF

L
+

PC
SGIMF

sync
AMP

PH

Nd:YLF

FIG. 2. (Color online) Scheme of the experimental setup: P,
rotating ground-glass plate; PH, pin hole; ND, continuously variable
neutral-density filter; λ/2, half-wave plate; PBS, polarizing cube
beam splitter; L, collective lens; MF, multimode fiber; HPDR,T, hybrid
photodetector; AMP, preamplifier plus amplifier; SGI, synchronous-
gated integrator; ADC + PC, analog-to-digital converter.

calibrations from the quality of these distributions, the voltage
outputs of the HPDR,T detectors were associated with numbers
mR and mT in real time. The linearity of the detectors and the
absence of significant dark counts make our system suitable for
conducting experiments in both the CPS and the IPS scenarios
to produce conditional states. In the case of IPS, we only distin-
guish the HPDR outputs that give mR = 0 from those that give
any mR � 1 to mimic the behavior of a Geiger-like detector.

B. Conditional non-Gaussian states

The good photon-resolving capability of HPD detectors
and their linearity make it possible to implement the CPS
scheme described in Sec. II. Conditional measurements
in the reflected beam irreversibly modify the states mea-
sured in the transmitted arm and, in particular, make them
non-Gaussian.

To better understand the power and the limits of this kind of
conditioning operation, we follow two different approaches:
First of all, we fix the energy Nth of the initial thermal field and
characterize the CPS state as a function of the conditioning
value mR. Second, we consider the properties of CPS states as
a function of the mean incoming photons Nth for a particular
choice of the number mR of photons detected in the reflected
arm. The final aim is the production of non-Gaussian states
with a well-defined conditioning value.

We start by presenting the results obtained by choosing a
set of measurements with MT ≈ 1.254.

The joint probability pTR(mT,mR) of measuring mR pho-
tons in the reflected arm and mT photons in the transmitted one
is plotted in Fig. 3 as dots together with the theoretical surface
to which they perfectly superimpose. Of course, by starting
from the theoretical joint probability, we can calculate the
expected photon-number distribution of the states obtained by
performing different conditional measurements in the reflected
arm [see Eq. (3)] and, thus, evaluate all the quantities necessary
to characterize the CPS states.

FIG. 3. (Color online) Joint probability pTR(mT,mR) to measure
mR photons in the reflected beam and mT photons in the transmitted
one. The experimental data (red dots) are plotted together with the
theoretical surface (gray mesh). The other involved experimental
values are MR = 1.679 and MT = 1.254.
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FIG. 4. (Color online) Fano factors FCPS of the conditional states:
experiment (black dots) and theory [solid black (lower) line] as
functions of the conditioning value mR. The green (higher) line
corresponds to the Fano factor FT = 1 + MT of the (unconditional)
transmitted state. The inset refers to mean number of detected
photons MCPS of the CPS states as a function of the conditioning
value mR: experimental data (dots) and theoretical curve (solid line).
The values of the other involved parameters are MR = 1.679 and
MT = 1.254.

In Fig. 4, we plot the behavior of the mean number of
photons MCPS of the conditional states and their Fano factors
FCPS as a function of the different conditioning values mR.
We find that the Fano factor does not depend on the particular
choice of the conditioning value mR, in agreement with the
analytical result calculated from Eq. (8):

FCPS = 1 + MT + MR

1 + MR
≈ 1.468. (31)

Note that the obtained value is definitely lower than that of the
unconditional state FT ≈ 2.225.

The photon-number distributions of the conditional states
look quite different from each other. As shown in Fig. 5, the
larger the conditioning value, the more different the statistics
of the conditional state (colored symbols + lines) is from that
of the incoming one (black triangles + dashed line). We note
that, due to the limited number of recorded shots (only 30 000
laser shots), the experimental points tend to deviate from the
expected pT distributions at increasing conditioning values.
This behavior can be quantified by calculating the fidelity (see
f values reported in Fig. 5): f = ∑m̄

m=0

√
pth

T (m) pT(m), in
which pth

T (m) and pT(m) are the theoretical and experimental
distributions, respectively, and the sum is extended up to the
maximum detected photon number m̄ above which both pth

T (m)
and pT(m) become negligible. For all data displayed in Fig. 5,
the fidelity is rather satisfactory.

Finally, the behavior of the lower bound for the non-
Gaussianity measure as a function of the conditioning value mR

(Fig. 6) predicted by the theory (line) is well reproduced by the
experimental data (dots). In particular, it is worth noting that
the value of ε[�CPS] increases at increasing the conditioning
value.

FIG. 5. (Color online) Reconstructed photon-number distribu-
tions of the (unconditional) thermal state with mean number of
photons MT = 1.254 (black triangles) and of the conditional states for
six different conditioning values mR (colored dots and squares). The
theoretical curves are plotted as lines according to the same choice
of colors. The corresponding fidelity f is also reported.

As an example of the second approach, we consider the
CPS states obtained by choosing mR = 2 as the conditioning
value for different values of Nth. In the inset of Fig. 7, the mean
number of photons of the CPS states is plotted together with
the mean number of photons of the initial states measured in
the transmitted arm: It is interesting to notice that the values
of MCPS actually approach the conditioning value mR = 2.
Again, the experimental results (dots) are well superimposed
to the theoretical curves, calculated starting from Eq. (3) with
the measured mean values.

Figure 7 also shows the comparison between the Fano factor
of the unconditional states FT (green squares) and that of the
CPS states FCPS (black dots): As expected from the theory,
the conditional states preserve the super-Poissonian nature of
the incoming states, although with a smaller value of the Fano
factor (FT � FCPS � 1).

In Fig. 8, we show three examples of conditional-state
photon distributions for different values of the total incident

FIG. 6. Lower bound ε[�CPS] for the non-Gaussianity measure
δ[�CPS] as a function of the conditioning value mR for MT = 1.254.
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FIG. 7. (Color online) Log-linear plot of the Fano factors FCPS of
the CPS states (black dots) and of the unconditional states FT (green
squares) as functions of the total mean detected photons MT + MR

for conditioning mR = 2. The solid lines refer to the corresponding
theoretical curves. The inset shows the mean number of detected
photons MCPS of the CPS states as a function of the mean number of
detected photons MT of the unconditional states: experimental data
(black dots) and theoretical curve (solid line). The green (straight) line
refers to the mean photon number MT of the unconditional states.

intensity. For each example, we plot both the original thermal
distribution (full symbols) and that of the conditional state
(empty symbols). The agreement with the corresponding
theoretical predictions (lines) is again witnessed by the high
value of the fidelities.

In Fig. 9, we plot the lower bound for the non-Gaussianity
ε[�CPS] as a function of the total mean detected photons (see
Fig. 9) together with the expected theoretical results.

C. IPS non-Gaussian states

Here, we consider the scenario in which an on-off Geiger-
like detector measures the reflected part of the input signal.
In particular, as described in Sec. III, we are interested in
studying the properties of the state produced in the transmitted

FIG. 8. (Color online) Reconstructed photon-number distribu-
tions for three different examples [black (lowest), green (middle),
red (highest)] of unconditional states (full symbols) and for the
corresponding CPS states (empty symbols) with mR = 2. The
theoretical curves are plotted as lines according to the same choice
of colors. The corresponding fidelity f is also reported.

FIG. 9. Log-linear plot of the lower bound ε[�CPS] for the non-
Gaussianity δ[�IPS] as a function of the total mean detected photons
MT + MR and for mR = 2: experimental data (dots) and theoretical
curve (solid line).

arm of the PBS whenever the detector placed in the reflected
arm clicks. To this aim, we performed a set of measurements
by fixing the transmissivity of the PBS τ = 0.5 and by
changing the mean intensity of the light that impinges on
the PBS.

In the inset of Fig. 10, we plot the mean number of detected
photons MIPS of the IPS states as a function of the mean number
of detected photons MT of the unconditional thermal states
(black dots) together with the theoretical prediction (solid
line) according to Eq. (26). We note that the effect of the
conditioning operation is to increase the mean value of the
original state. As described in Sec. III, another quantity to
characterize the IPS state is the Fano factor FIPS: To better
appreciate the difference between the unconditional states and
the corresponding conditional ones, in Fig. 10 we plot the cor-
responding Fano factors as functions of the total mean detected
photons (symbols). For each set of experimental results, we

FIG. 10. (Color online) Log-linear plot of the Fano factors FIPS

of the IPS states (black dots) and of the unconditional states (green
squares) as functions of the total mean detected photons MT + MR.
The solid lines refer to the corresponding theoretical curves. The inset
shows the mean number of detected photons MIPS of the IPS states
as a function of the mean number of detected photons MT of the
unconditional states: experimental data (black dots) and theoretical
curve [solid (higher) line]. The green (lower) line refers to the mean
photon number MT of the unconditional states.
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FIG. 11. (Color online) Reconstructed photon-number distribu-
tions for three different examples [black (lowest), green (middle),
red (highest)] of unconditional states (full symbols) and for the
corresponding IPS states (empty symbols). The theoretical curves are
plotted as lines according to the same choice of colors. The fidelity
f is also reported.

also plot the theoretical behaviors (lines): Analogous to the
conditional case, we have FT � FIPS � 1.

In Fig. 11, we show the reconstruction of the detected
photons distribution pT(mT) of both the unconditional (full
symbols) and the conditional states (empty symbols) for three
different mean values [black (lowest), green (middle), red
(highest)] of the incident intensity. The agreement with the
corresponding theoretical distributions [colored (middle and
highest) lines], calculated with the measured mean values,
can be checked by evaluating the fidelity, as reported in
Fig. 11.

Finally, in Fig. 12, we plot the lower bound for the
non-Gaussianity measure ε[�IPS] as a function of the total
mean detected photons. The correspondence between the
experimental results (dots) and the theoretical prediction (line)
is good. Note that ε[�IPS] increases as the mean number of
detected photons increases: This allows the generation of
highly populated non-Gaussian states.

FIG. 12. Log-linear plot of the lower bound ε[�IPS] for the non-
Gaussianity δ[�IPS] as a function of the total mean detected photons
MT + MR: experimental data (dots) and theoretical curve (line).

V. CONCLUDING REMARKS

In this paper, we have discussed in detail, both from a
theoretical and an experimental point of view, a setup based
on a single BS and two photon-number-resolving detectors
to subtract photons from an incoming state and, thus, to
generate non-Gaussian states by starting from Gaussian ones.
In order to show the reliability of our setup, we used (Gaussian)
thermal states as input probes and completely characterized the
conditional photon-subtracted non-Gaussian outgoing states.
In our analysis, we adopted two possible detection schemes:
The first one is based on the CPS; whereas the second one
is based on the IPS. In particular, we have demonstrated, as
one may expect, that the non-Gaussianity of a state increases
by increasing either the intensity of the input states or the
conditioning value in the CPS scenario. This last condition
requires photon-counting detectors endowed with a good linear
response, such as those used in our experiment.

The use of thermal states, a class of states diagonal in the
photon-number basis, allows us to obtain high-degree controls
in both analytical theoretical expectations and experimental re-
alization, which is a key point in possible further investigations.
In particular, we are planning to apply our scheme to more
exotic classical states, such as the phase-averaged coherent
states [25]. As these are already non-Gaussian, the possibility
to perform conditional non-Gaussian measurements on them
would be particularly intriguing. Since analytical calculations
may be carried out only to a certain extent in this case, we
would provide an example in which the reliability of the
setup is fundamental, as theoretical expectations are limited
to numerical results.

Although we only focused on classical states, our exper-
imental procedure could be applied to nonclassical states in
order to obtain more sophisticated quantum fields [27,32],
which may be useful for quantum information protocols in-
volving photon-subtracted non-Gaussian states [3,10–12,17],
such as entanglement distillation protocols [4,22,23].
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APPENDIX: EXPERIMENTAL LOWER BOUND FOR THE
NON-GAUSSIANITY

For a single-mode state diagonal in the Fock basis
(i.e., � = ∑

n pn|n〉〈n|), the non-Gaussianity measure [29] is
given by

δ[�] = S[ν(N )] − S(�) = S[ν(N )] +
∑

n

pn log pn, (A1)

where ν(N ) is a thermal state with mean photon number N =∑
n n pn. As it is based on the knowledge of the actual photon

distribution pn, the calculation of δ[�] requires measuring with
an ideal (i.e., with unit quantum efficiency) photon-number
resolving detector. In the presence of inefficient detection,
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one can only retrieve the detected photon number distribution
qm = Tr [��m(η)], where �m(η) is given in Eq. (2) and η is
the quantum efficiency. Nevertheless, in the following, we will
show that the quantity,

ε[�] = S[ν(M)] +
∑
m

qm log qm, (A2)

where M = ∑
m m and qm = ηN , is a lower bound for the real

non-Gaussianity δ[�] (i.e., ε[�] � δ[�]). Note that since ε[�]
depends only on qm, it can be calculated by starting from the
experimental results.

The inefficient photodetection process can be described
by mixing the quantum state � with the vacuum at a BS
with transmissivity η followed by perfect detection on the
transmitted beam, to obtain

qm = Tr[E(�)|m〉〈m|], (A3)

where E(�) = Tr2[UBS(η)� ⊗ |0〉〈0|U †
BS(η)] is the lossy Gaus-

sian channel. Since � is diagonal in the Fock basis, E(�) is still
diagonal,

E(�) =
∑

n

pnE(|n〉〈n|) =
∑
m

qm|m〉〈m|, (A4)

in which qm = ∑∞
n=m pnBn,m(η). To obtain E(�), we used

E(|n〉〈n|) = ∑n
l=0 Bn,l(η)|l〉〈l|, with Bn,l(η) defined in Eq. (2).

By using Eq. (A1), we obtain

δ[E(�)] = S[ν(M)] + ∑
n qn log qn = ε[�]. (A5)

As the non-Gaussianity measure δ[�] is nonincreasing under
Gaussian maps [29], we finally get

ε[�] = δ[E(�)] � δ[�]. (A6)

To summarize, given a quantum state �, diagonal in the
Fock basis, we can measure the probability distribution of
the detected photons qm, and we can evaluate Eq. (A2) as a
lower bound for the actual non-Gaussianity δ[�].
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