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Measuring high-order photon-number correlations in experiments with multimode
pulsed quantum states
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We implement a direct detection scheme based on hybrid photodetectors to experimentally investigate high-
order correlations for detected photons by means of experimentally accessible quantities. The scheme is self-
consistent, allowing the estimation of all the involved parameters (quantum efficiency, number of modes, and
average energy). In particular, we show how high-order correlation functions can be exploited to fully characterize
bipartite multimode states in regimes realistic for quantum technology, that is, in the mesoscopic photon-number
domain and with limited quantum efficiency. Furthermore, we introduce a nonclassicality criterion based on a
simple linear combination of high-order correlation functions.
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I. INTRODUCTION

Correlations play a fundamental role in the investigation of
optical coherence [1]. Since their introduction [2], correlation
functions have been extensively investigated in connection
with quantum-state characterization, to define nonclassicality
criteria [3], and for the enhancement of ghost-imaging proto-
cols [4,5]. From the experimental point of view, the study of
this topic dates back to the pioneering work in which Hanbury
Brown and Twiss discovered photon bunching in light emitted
by a chaotic source [6]. In the last decade, many experiments
have been developed in which the photon-number correlations
have been used to characterize the entangled states generated
by parametric down conversion [7–10]. In all the mentioned
cases, the detection was performed by means of single or
arrays of avalanche photodiodes so that the possibility to
recover the correlation of the number of photons was quite
straightforward [11,12], although the intensity range actually
investigated by these systems was limited to much less than
one mean photon [13]. However, the investigation of more
intense light beams is of extreme interest, especially in view
of possible applications to quantum technology: pulsed optical
states endowed with sizable numbers of photons represent
a useful resource as they are robust with respect to losses
and their reliable experimental detection and characterization
is relevant, especially for establishing nonclassicality, which
plays a major role in quantum information. Furthermore, the
very multimode nature of the bipartite states used in many
quantum protocols requires both theoretical and experimental
efforts to find suitable detection schemes to retrieve as
much information as possible from the state itself up to the
applicative level. In this case a fundamental requirement is
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represented by the possibility to have a scheme that is reliable
for different intensity regimes as well as for limited quantum
efficiency and that could be embedded in the experimental
setup used to implement a particular protocol.

In this paper we report on a direct detection scheme aimed
at measuring high-order correlations by means of a pair of
hybrid photodetectors [14] in the presence of low quantum
efficiency and bipartite multimode input states. In order to
investigate the reliability and performance of the method,
we will consider correlated bipartite optical states, namely,
a multimode twin-beam state (TWB) and a bipartite pseu-
dothermal state generated in the mesoscopic photon-number
domain [15]. We define and derive the analytical expression of
correlation functions at any order by only using quantities
that can be experimentally accessed by direct detection,
taking into account the nonunit quantum efficiency of the
detection scheme. We then show that high-order correlations
represent a useful discriminating tool of the nature of the
state and demonstrate that, at increasing correlation order, the
differences between classical and quantum states become more
and more evident.

II. THEORY

The correlation functions g
jk

n̂ are usually defined in terms of
the normally ordered creation and annihilation operators [16]:
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where âk is the field operator of the kth mode and n̂k = â
†
kâk .

g
jk

n̂ have a well-recognized meaning in connection with
coherence properties of light and the n-photon absorption
process [17]. However, in a realistic direct detection scheme,
we only have access to the shot-by-shot detected photons,
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and this requires a suitable description of the actual operation
performed by the detector. If we assimilate the real detection
to a Bernoullian process having efficiency η, we can express
all the operatorial moments of the detected-photon distribu-
tion as a function of those of the photon distribution, i.e.,
m̂

p

k = ∑p

h=1 ch(η)n̂h
k , where the coefficients ch(η) are given in

Ref. [18]. In this way we can build correlation functions in
analogy with normally ordered ones:

g
jk

m̂ = 〈
m̂

j

1m̂
k
2

〉
(〈m̂1〉j 〈m̂2〉k)−1 , (2)

where m̂k is the operator describing the actual number of
detected photons in the kth arm of the bipartite state. Indeed, we
can express detected-photon correlations in terms of normally
ordered ones, i.e., g

jk

m̂ = ∑j,k

s,t=0 εs,t gst
n̂ , where g00

n̂ ≡ 1 and
εs,t depend on the physical parameters of the system under
investigation.

The expected results for correlations should be evaluated
by taking into account all the realistic experimental conditions,
that is, not only imperfect detection and imbalance of the arms
of the bipartite state but also its multimode nature. Thus, we
need to derive a suitable theoretical description of the detection
process involving multimode states, for which all the μ modes
in the field are measured shot by shot.

In order to assess the performance of our scheme, we
consider a multimode TWB |ψμ〉 = ⊗μ

k=1|ψ〉k in which each
of the μ modes is in the same state, i.e., |ψ〉k = ∑

n〈n̂〉n/(1 +
〈n̂〉)n+1|n〉k ⊗ |n〉k , ∀k, and thus is equally populated with
the same average number of photons 〈n̂〉 = 〈n̂k〉, ∀k [1]. By
exploiting the pairwise correlations, we can state that the
overall number of photons in each shot is the same in the
two arms, being the sum of μ equal contributions coming
from the μ modes. We can thus write the multimode TWB
in the following compact form: |ψμ〉 = ∑∞

n=0

√
p

μ
n |n⊗〉 ⊗

|n⊗〉, where |n⊗〉 = δ(n − ∑μ

h=1 nh) ⊗μ

k=1 |n〉k represents the
overall n photons coming from the μ modes that impinge on
the detector and

pμ
n = (n + μ − 1)!

n!(μ − 1)!(〈n̂〉/μ + 1)μ(μ/〈n̂〉 + 1)n
(3)

is the photon-number probability distribution for the multi-
mode TWB. As one may expect, we obtain a final result that
depends only on the number of modes μ, the mean value of the
number of photons 〈n̂〉, and the overall detection efficiencies
of the two detection chains, η1 and η2. In the case of η1 = η2

and considering correlation functions up to fourth order, we
have (we put ghk ≡ ghk

m̂ )

g11 = G1
μ + η

〈m̂〉 , (4a)
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μ
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where 〈m̂〉 is the average number of detected photons and
Gk

μ = ∏k
j=1(j + μ)/μ.

FIG. 1. (Color online) Experimental setup. See the text for details.

III. EXPERIMENT

We generated a multimode TWB by the third harmonics
(349-nm wavelength) of a mode-locked Nd:yttrium lithium
fluoride laser regeneratively amplified at 500 Hz (High-Q
Laser Production, Austria) impinging on a type-I beta barium
borate (BBO) crystal (β-BaB2O4, Castech, China, cut angle
34◦, 4 mm thick). According to the experimental setup
sketched in Fig. 1, we adopted a noncollinear interaction
geometry in order to avoid possible residues of the pump
beam. The nonclassical nature of the generated state can
be proven by evaluating the noise-reduction factor [15]. To
obtain a good balancing of the quantum efficiencies, we
selected two portions of the signal and idler cones close to
frequency degeneracy, namely, at 690 and 706 nm, by using
two interference filters (IF in Fig. 1). The collection of a
single coherence area in the two parties of the TWB state was
obtained by inserting two pinholes (PH, 2 mm diameter) at 107
and 109.5 cm from the BBO, respectively. The light passing the
pinholes was delivered through two multimode optical fibers to
two hybrid photodetectors (HPD, R10467U-40, Hamamatsu,
Japan), which are detectors endowed with a quantum efficiency
of 50% at 500 nm, a partial photon-counting capability, and
a good linear response up to 100 photons. Their outputs
were amplified (preamplifier A250 plus amplifier A275,
Amptek), synchronously integrated (SGI, SR250, Stanford),
and digitized (AT-MIO-16E-1, National Instruments). Each
experimental run was performed on 50 000 subsequent laser
shots at different values of the pump intensity. The self-
consistent procedure to analyze the outputs of each detection
chain is explained in detail in Refs. [14,19]; here we note
only that the procedure allows us to obtain the mean value
of detected photons 〈m̂〉, the number of modes μ, and the
quantum efficiency η directly from the experimental data.

Remarkably, the present detection apparatus can be used
to reconstruct both the detected-photon statistics [20] and
the shot-by-shot second-order correlation in the number of
detected photons [21]. Nevertheless, as our TWB state is
intrinsically multimode (μ > 150) and the effective detection
efficiency is rather low (η < 4%), the experimental charac-
terization of the state in terms of sub-shot-noise correlations
becomes challenging. On the contrary, the measurement of
high-order correlations offers the possibility to better discrim-
inate the nature of the state under investigation also in critical
situations. In Fig. 2 we plot the experimental data (colored
solid symbols) obtained by evaluating the high-order corre-
lation functions up to fourth order in the symmetrized form
[ghk]s = 1

2 (ghk + gkh) to take into account all the unavoidable
asymmetries of the physical system. Also in Fig. 2 we show
the theoretically expected curves (black open symbols) for a
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FIG. 2. (Color online) Log-linear plot of high-order correlation
functions for a multimode TWB state as functions of the mean
value of the number of detected photons. Colored solid symbols,
experimental data; black open symbols, theoretical expectations;
black solid symbols, theoretical predictions for a multimode thermal
state.

multimode TWB calculated according to Eqs. (4) by using the
values of the mean number of detected photons, the number of
modes, and the overall detection efficiency as directly obtained
from the experimental data, exploiting the self-consistency
of our setup [15,18]. In our method, once the calibration is
established, the mean values 〈m〉 are known directly without
any fit. For the data presented here, we evaluated the values of η

from sub-shot-noise measurements starting from shot-by-shot
detected-photon values, while the number of modes μ is
evaluated from the fit of detected-photon-number distributions.
The results for the parameters are summarized in Table I.

The very high agreement of the experimental data with
the theoretical expectation is assessed by the quantity χ2 =∑

(gjk
exp − g

jk

th )2/g
jk

th . In particular, we have 2.15 × 10−5,
1.66 × 10−4, 8.57 × 10−4, and 1.16 × 10−4 for g11, [g12]s,
g22, and [g13]s, respectively. For comparison, in Fig. 2 we
also plot the theoretical predictions for a classically correlated
multimode thermal state having the same mean value and
number of modes (black solid symbols): in this case the
theoretical predictions can be formally obtained from Eqs. (4)

TABLE I. Values of the parameters for the experimental data
obtained with the self-consistent method.

〈m1〉 〈m2〉 μ = √
μ1μ2 η

1.253 ± 0.008 1.207 ± 0.007 202 ± 32 0.031 ± 0.015
1.746 ± 0.010 1.677 ± 0.009 202 ± 34 0.041 ± 0.005
2.129 ± 0.012 2.048 ± 0.011 208 ± 41 0.026 ± 0.008
2.439 ± 0.013 2.356 ± 0.013 187 ± 27 0.037 ± 0.020
2.911 ± 0.015 2.794 ± 0.015 151 ± 14 0.042 ± 0.007
3.376 ± 0.017 3.286 ± 0.017 87 ± 5 0.024 ± 0.007
4.080 ± 0.020 3.967 ± 0.020 101 ± 6 0.057 ± 0.013
5.296 ± 0.026 5.218 ± 0.026 72 ± 4 0.063 ± 0.025

FIG. 3. (Color online) Log-linear plot of high-order correlation
functions for a multimode pseudothermal state as a function of the
number of modes. Solid circles, experimental data; line, theoretical
expectations.

by setting η = 0 [22]. Note that the error bars of the theoretical
curves in Fig. 2 have been obtained by propagating the errors
in Table I. It is apparent that quantum correlations are always
higher than classical ones, even if the absolute value of the
difference is rather low due to the large number of modes
and to the low value of quantum efficiency. Again, the values
of χ2 for experimental data and theoretical predictions for
a multimode thermal state are 2.06 × 10−3, 8.73 × 10−3,
37.71 × 10−3, and 28.99 × 10−3 for g11, [g12]s, g22, and
[g13]s, respectively, indicating that the difference increases
as the order of correlations increases.

In order to explore the capability of our system in different
regimes and at any bipartite multimode input states, we also
measured a coherent state [in this case the expressions of
high-order correlations can be formally obtained from Eqs. (4)
by setting η = 0 and μ → ∞] and single and multimode
pseudothermal states generated by a rotating ground-glass
plate and divided by a beam splitter [21,23]. As an example,
in Fig. 3 we plot the measured high-order correlations (solid
circles) and the corresponding theoretical expectation (line) for
a multimode thermal state at a fixed mean value (〈m̂〉 = 3.88)
as a function of the number of modes. The experimental data
are in very good agreement with theory, as shown by the χ2

values reported in Fig. 3.
The good quality of the experimental results suggests that

high-order correlations can be used to infer the very nature
of bipartite multimode states. A more direct way to establish
nonclassicality is to address a suitable parameter satisfying
boundary conditions [24–26]. Here we consider two of those
conditions in our experimental situation, namely, the Schwarz
inequality,

〈m1m2〉
/√〈

m2
1

〉〈
m2

2

〉
> 1 , (5)

and the noise-reduction factor,

[〈(m1 − m2)2〉 − 〈m1 − m2〉2]/〈m1 + m2〉 < 1 , (6)
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FIG. 4. (Color online) Nonclassicality criteria for a multimode
TWB as a function of the mean value of the number of detected
photons. Solid symbols, experimental data; open symbols, theoretical
predictions. See the text for details.

and we introduce a new inequality,

〈m1〉〈m2〉 g22 − [g13]s

g11
+

√
〈m1〉〈m2〉 [g12]s

g11
> 1 , (7)

in which we have used again the symmetrized quantities
[ghk]s. Indeed, all the above inequalities must be fulfilled
by nonclassical light. Note that inequality (7) is equivalent
to requiring g22

n̂ − g31
n̂ > 0 in the case of perfectly balanced

efficiencies. In Fig. 4 we plot the results for the three
inequalities above for our experimental data on multimode
TWB as functions of the mean intensity. It is worth noting
that, in our setup, changing the mean intensity of the output
corresponds to changing both the size of the coherence areas
and the number of modes. Figure 4 thus actually compares the
experimental results with the theory evaluated at each point in
the very values of the experimental parameters as calculated
from the data. This explains the irregularities in the behavior
of the data from point to point. As expected, the measured state
is nonclassical according to all the three inequalities, but the
amount of nonclassicality that we can quantify with respect to

the boundary unitary value is much larger for the condition in
inequality (7). This indicates that using high-order correlations
can be helpful in all the situations in which the nonclassical
nature is critical to be proven by other criteria, such as the
case of a TWB state endowed with a high number of modes
and/or a low quantum efficiency, for which we expect very
small values of the noise-reduction factor.

IV. CONCLUSIONS

In conclusion, we have investigated the performances of
a direct detection scheme to measure high-order correlations.
Thanks to its compactness, it can be easily embedded for state
characterization in experiments involving multimode pulsed
optical states. We defined correlation functions at any order
by means of quantities that can be experimentally accessed
by direct detection with an experimental apparatus that allows
accessing sizable mean photon values. We have introduced a
nonclassicality criterion based on these high-order correlations
that represents a useful discriminating tool of the nature of
the state in critical cases, in which other criteria are violated
by a limited amount: in some sense this criterion acts as
an “amplifier” of nonclassicality violation. We have tested
our theoretical and experimental procedure on a multimode
TWB state by developing a multimode description that makes
the calculation of high-order correlations straightforward.
For the sake of completeness, we have also presented the
direct comparison with an equally populated multimode
pseudothermal state. The experimental results are in very good
agreement with the theory, thus encouraging the exploitation
of our scheme for reliable experimental characterization of
quantum states to be used for quantum technology up to the
applicative level.
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