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Quantum-enhanced metrology is boosting interferometer sensitivities to extraordinary levels,

up to the point where table-top experiments have been proposed to measure Planck-scale e®ects
predicted by quantum gravity theories. In setups involving multiple photon interferometers, as

those for measuring the so-called holographic °uctuations, entanglement provides substantial

improvements in sensitivity. Entanglement is however a fragile resource and may be endangered

by decoherence phenomena. We analyze how noisy e®ects arising either from the weak coupling
to an external environment or from the modi¯cation of the canonical commutation relations in

photon propagation may a®ect this entanglement-enhanced gain in sensitivity.

Keywords: Quantum interferometry; decoherence phenomena; quantum gravity e®ects.

1. Introduction

Most approaches to quantum gravity, either e®ective or fundamental, generally

predict the appearance of non-standard phenomena at the Planck scale, due to the

\foamy" structure of spacetime.a It is however di±cult in general to estimate how

||
Corresponding author.

aThe original idea that at Planck scale quantum °uctuations of the space geometry could destroy the
smoothness of the spacetime manifold has been introduced in Ref. 1 and, since then, further discussed by

many authors (e.g. see Refs. 2–9); for recent reviews and further details, see Refs. 10 and 11 and references

therein.
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these necessarily tiny disturbances could become visible in an actual experimental

setup.

Interferometric apparata have emerged as the most suitable setups for such kinds

of analysis, in particular, those made of two identical photon interferometers: it has

been shown that using a couple of correlated interferometers in speci¯c con¯gurations

may allow to e±ciently distinguish quantum gravity e®ects from other spurious

signals.12–14 The extreme sensitivities that these apparata need to reach in order to

actually measure these minuscule e®ects is nevertheless challenging.15–17

As in gravitational wave detectors,18–20 quantum metrological methods may be

employed to enhance the sensitivity of such quantum gravity detectors.21 On the one

hand, the use of nonclassical states, such as single- and two-mode squeezed states, can

be a resource to enhance the sensitivity of optical interferometers,22 allowing, at least

in principle, to reach the so-called Heisenberg limit.23,24 On the other hand, it has

been shown that in the particular setup using two photon interferometers, by feeding

them with quantum correlated (entangled) initial photons, the overall sensitivity of

the device may be dramatically enlarged, at least in an ideal situation.25,26

Quantum entanglement is however a fragile resource that can be endangered by

various decohering phenomena: therefore, it is of utmost importance to investigate to

what extent the entanglement enhanced sensitivity of the apparatus is robust against

external noise. Indeed, an interferometer is never completely isolated from the

external environment, which is in general a source of decohering phenomena.

Furthermore, many fundamental theories predict various kinds of spacetime non-

commutativity at the undermost, basic level27–31; these phenomena can a®ect

the propagation of the photons inside the interferometers through a modi¯cation of

the canonical commutation relation, leading to further noisy phenomena. All these

unwanted e®ects may reduce the enhancement in sensitivity obtained by feeding the

apparatus with highly nonclassical, entangled light.

The general theory of open quantum systems 32–38, i.e. systems in weak interac-

tions with external baths, can be used to estimate the e®ects produced by the ex-

ternal environment in the double interferometer apparatus. In this framework, the

propagation of the photons inside the experimental setup is described by a quantum

dynamical semigroup, generalizing the familiar unitary dynamics. On the other hand,

the existence of a minimum length, as predicted by most theories based on non-

commutative geometry,29–31 may lead to a generalized uncertainty principle and as a

consequence to a modi¯cation of the bosonic canonical commutation relations, the

photon mode operators obey.

In the following, we shall discuss in detail how the sensitivity enhancements

provided by the use of entangled photons is a®ected by the presence of both sources

of \noise". In particular, we shall estimate how large the e®ects of these

decohering phenomena should be in order to spoil the enhancement in sensitivity

when detecting quantum gravity e®ects obtained through the use of quantum met-

rological methods.
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2. Detecting Holographic Fluctuations with Entangled Photons

Photon interferometers are among the most accurate devices for detecting tiny e®ects

induced inside the apparatus by external perturbations. In the speci¯c case of

quantum gravity, it has been predicted that the \foamy" structure of spacetime at

the Planck scale may result in a noncommutativity of spatial coordinates, leading in

turn to optical path-length di®erences between the two arms of the interferometer;

the resulting phase shifts have been named holographic °uctuations.12

As mentioned above, this new kind of °uctuations cannot be detected by a single

interferometer: it is nearly impossible to isolate holographic °uctuations from other

spurious signals, even using extremely sensitive setups as gravitational antennas.

Therefore, speci¯c con¯gurations have been actually designed and built in order to

measure the accumulated phases coming from holographic noise.15–17

If two slightly displaced parallel interferometers occupy overlapping spacetime

volumes, then they display correlated holographic °uctuations (see the left panel

of Fig. 1, \parallel con¯guration"); on the other hand, by rotating one of the inter-

ferometers by 90�, so that one arm of the ¯rst interferometer becomes anti-parallel to

the one of the other, spacetime overlapping is precluded and, as a consequence, the

correlation in holographic °uctuations vanishes (see the right panel of Fig. 1,

\orthogonal con¯guration"). The second con¯guration can thus be taken as a ref-

erence measurement for the background signal, that, once subtracted from the

outcome of the ¯rst con¯guration, should allow detecting the quantum gravity-

induced holographic °uctuations, provided su±cient sensitivity and statistics are

achieved.

The principal intrinsic limitation in achieving high accuracies in phase determi-

nation in such double interferometric devices is due to the shot noise limit. This

limitation can be in part circumvented by feeding the apparatus with nonclassical

light. Indeed, as in the case of more standard gravitational wave interferometry,18–20

also in the case of holographic °uctuation measurements, the use of squeezed light

instead of classical coherent one would allow reaching higher sensitivities in phase

estimation.

I1

I2
I1

I2

Fig. 1. Left: When two interferometers I 1 and I 2 are in the parallel con¯guration, they display correlated

holographic °uctuations. Right: In the orthogonal con¯guration, the correlation in holographic °uctua-

tions vanishes. More details about the interferometers are given in Fig. 2.
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However, the major breakthrough in sensitivity enhancement for the measure-

ment of holographic °uctuations was shown to be brought in by feeding the double

interferometer with suitable quantum correlated photons.25 The considered setup is

made of two identical Michelson-like interferometers, labeled Ik; k ¼ 1; 2 (see Fig. 2).

The input ¯elds of the interferometers are described by the creation and annihilation

mode operators a†
k; ak and b†k; bk; k ¼ 1; 2, obeying the standard bosonic commutation

relations, ½a†
j ; ak� ¼ �jk; ½b†j ; bk� ¼ �jk; they are combined into a beamsplitter giving

rise to the output mode operators c†k; ck and d†
k; dk, respectively. The number of

photons in the output ports, Nck ¼ c†kck and Ndk ¼ d†
kdk, are measured by means of

two photodetectors. As previously mentioned, quantum gravity e®ects induce an

optical path length di®erence in the interferometers and therefore, a phase shift �k,

so that the relation between input and output modes is given by

ckð�kÞ ¼ ak cosð�k=2Þ þ bk sinð�k=2Þ; ð1Þ
dkð�kÞ ¼ bk cosð�k=2Þ � ak sinð�k=2Þ: ð2Þ

The con¯guration in which the two interferometers essentially overlap, having

the corresponding arms aligned, will be named parallel (jj), while the second con-

¯guration in which one interferometer is rotated with respect to the other, leading to

two parallel and two antiparallel arms, will be called orthogonal (?).

Let us now feed the b-ports of the two interferometers with photons in the same

coherent state, i.e. Db1ð�ÞDb2ð�Þj0i ¼ j�ij�i, where Dbkð�Þ ¼ expð�b†k � ��bkÞ is the
displacement operator of mode bk, k ¼ 1; 2, and � 2 C, while the a-ports with pho-

tons in an entangled squeezed state; in other terms, the light entering the a-ports is

quantum correlated between the two interferometers, while the one entering the

b-ports is not. The entangled state is obtained by acting on the vacuum state with the

Mirrors

Nck
= c†

kck

Ndk
= d†

kdk

ak

bk

ck

dk

φk

Ik

Fig. 2. Schematic con¯guration of the kth interferometer, k ¼ 1; 2, with input a; b and output c; d port

modes; BS represents the beam splitter, while the detectors at the output ports measure the photon number

Nc and Nd.
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two-mode squeezing operator

Sð�Þ ¼ expð�a†
1a

†
2 � � �a1a2Þ; � ¼ rei�; r; � 2 R; ð3Þ

giving rise to the two-mode squeezed vacuum state (the so-called twin-beam state):

jTWBi ¼ 1

coshðrÞ
X1
n¼0

½tanhðrÞ�nein�jn;ni; ð4Þ

where jn;mi;n;m 2 N, are standard two-mode Fock states. This state consists of a

superposition of paired states with equal number of photons in each mode; as a result,

it is a null eigenstate of any moment of the photon number di®erence operator,

namely,

ða†
1a1 � a†

2a2ÞpjTWBi ¼ 0; 8 p 2 N: ð5Þ
In order to observe correlated phase-dependent °uctuations, one needs to study the

behavior of an observable which depends on both phases �k; k ¼ 1; 2; a convenient

choice is given by the photon number di®erence at the output ck ports of the inter-

ferometers, namely,25,26

�Nð�1; �2Þ ¼ ½Nc1ð�1Þ �Nc2ð�2Þ�2: ð6Þ
In addition, the holographic °uctuations are expected to be a stochastic process and

therefore, in order to obtain averages to be compared with experimental outcomes,

the expectation of �N over the output photon states, hereafter indicated by h�Ni,
needs to be further averaged over an appropriate probability distribution f�ð�1; �2Þ:

E�½�Nð�1; �2Þ� ¼
Z

d�1d�2f�ð�1; �2Þh�Nð�1; �2Þi; � ¼ jj;? : ð7Þ

One can show25 that the holographic °uctuations are actually described by the

following phase-shift correlations:

Ejj½��1��2� ¼
Z

d�1d�2��1��2fjjð�1; �2Þ; ð8Þ

where ��k ¼ �k � �k;0; k ¼ 1; 2 are phase shift deviations from their corresponding

mean central value �k;0. By making the reasonable assumptions that the distributions

f�ð�1; �2Þ have identical marginals and uncorrelated phase noise in the ? con¯gu-

ration, one can relate this quantity to the di®erences of the two averages Ejj½�Nð�1;

�2Þ� and E?j½�Nð�1; �2Þ�. By expanding the explicit expressions of these expectations

in series of ��k about the central values �k;0, one ¯nds, for small ��k,
25

Ejj½��1��2� ¼
Ejj½�Nð�1; �2Þ� � E?½�Nð�1; �2Þ�

h@�1
@�2

�Nð�1; �2Þij�k¼�k;0

; ð9Þ

which holds when the denominator is nonvanishing. We are interested in evaluating

the uncertainty �E with which this quantity can be determined using the double

Noisy e®ects in interferometric quantum gravity tests
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interferometer apparatus, i.e.

�E ¼ Varjj½�Nð�1; �2Þ� þ Var?½�Nð�1; �2Þ�
h@�1

@�2
�Nð�1; �2Þi2j�k¼�k;0

" #
1=2

; ð10Þ

where Var�½�Nð�1; �2Þ� are the variances of �Nð�1; �2Þ, in the two con¯gurations

� ¼ jj;?. Within the same approximation used above, one ¯nds that, to lowest order

in ��k,

�E ’ 2Varjj½�Nð�1; �2Þ�
h@�1

@�2
�Nð�1; �2Þi2

�����
�k¼�k;0

2
4

3
51=2

: ð11Þ

This result was used in Ref. 25 to show that, by feeding the apparatus with the two-

mode squeezed vacuum state (4), one can obtain a substantial increase in sensitivity

for holographic °uctuations detection with respect to an analogous device using

classical light. In particular, in the special case �1;0 ¼ �2;0 ¼ 0, the interferometers act

like two completely transparent media, as one can see from (1) and (2) by setting

�k � �k;0 ¼ 0. Therefore, recalling, property (5), the uncertainty �E vanishes, while

with coherent photon input states, the shot noise limits the uncertainty to

�E � �Ecl �
ffiffiffi
2

p
=j�j2.25

This striking result holds only in an ideal setting with interferometers working

with perfect e±ciency. The robustness of these results against possible setup ine±-

ciencies was also studied in Refs. 25 and 26 by modeling them in terms of photon

losses inside the apparatus.

In the following, we shall study how the evaluation of �E may be a®ected by the

presence of a weakly coupled external environment and by a gravity-induced modi-

¯cation of the bosonic commutation relations obeyed by the photon modes.

3. Noise Induced by an External Environment

In a realistic scenario, the photons traveling inside the two interferometers inevitably

feel the presence of the surrounding, external environment, leading to noisy e®ects

that might endanger the accuracy in phase determination. In general, it is hard to

estimate the form and magnitude of these unwanted e®ects due to the complexity of

the photon dynamics inside the apparatus; however, in the speci¯c situation at hand,

the coupling between the photons and the environment can be assumed to be very

weak and in such a case, their behavior can be e®ectively described using the well

established theory of quantum open systems.32–38

Quite in general, the environment, which is made of an in¯nite number of mi-

croscopic degrees of freedom, can be modeled as a free bosonic bath in equilibrium at

a given inverse temperature �. The total system, photons plus bath, can be initially

prepared in a separable state of the form �� ��, where � is the density matrix

describing the photon initial state, while �� is the Gibbs density matrix describing the

F. Benatti et al.
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equilibrium state of the environment. For rather generic (bilinear) interactions be-

tween photons and environment, in the limit of weak coupling, the reduced photon

dynamics of the photons inside the interferometric setup, obtained by tracing over

the bath degrees of freedom, can be described by a master equation in Kossakowski–

Lindblad form.32

The relevant equation describing the time evolution of the a1 and a2-mode photon

states can then be cast in the following form:

@�ðtÞ
@t

¼ �i½H; �� þ
X4
i;j¼1

Cij Vj�V
†
i � 1

2
fV †

i Vj; �g
� �

; ð12Þ

where Vi; i ¼ 1; 2; 3; 4 represent the components of the four-vector ða1; a†
1; a2; a

†
2Þ,

while H ¼ !	

P
ka

†
kak is the free photon Hamiltonian, with !	 the photon energy; in

addition, f ; g signi¯es anticommutation. The coe±cient matrix Cij, known as

Kossakowski matrix, contains the information about the environment. In the case of

a free bath of bosons at energy ! and temperature T ¼ 1=�, it can be taken as the

following simple form39,40:

Cij ¼ 


1þM 0 0 0

0 M 0 0

0 0 1þM 0

0 0 0 M

0
BB@

1
CCA; ð13Þ

where M ¼ ðe�! � 1Þ�1 is the usual Boltzmann factor, while 
 is the photon-

environment coupling constant.

In the master equation (12), one can distinguish two contributions: the ¯rst one is

the standard Hamiltonian term leading to a unitary evolution, while the other is

responsible for noisy e®ects due to the presence of the environment: the part con-

taining the anticommutator produces dissipation, while the remaining term leads to

decohering e®ects. Due to these e®ects, the ¯nite-time dynamics generated by (12) is

no longer unitary, but of semigroup type, with composition holding only forward

in time.

As described in the previous section, the states of the photons at the ak ports are

prepared in an entangled twin-beam state. In order to evaluate the environmental

disturbances on phase estimation, one now has to propagate in time this state

according to the evolution equation (12) up to the time � ¼ 4L=c, where L is the

length of the interferometer arms and c is the speed of light.

This can be more easily obtained by passing to a phase-space description,

i.e. by introducing the two-mode Wigner function corresponding to the photon

state �:

Wðz1; z2Þ ¼
1

�2

Z
d21d

22e
z1 

�
1
�z �

1
1þz2 

�
2
�z �

2
2Tr½�D1ð1ÞD2ð2Þ�; z1; z2 2 C;

ð14Þ

Noisy e®ects in interferometric quantum gravity tests
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where DkðkÞ ¼ expðka†
k �  �kakÞ; k ¼ 1; 2 are the so-called displacement operators.

This description is completely equivalent to the one in terms of density matrices; in

particular, it allows computing expectation values of monomials in the mode

operators a1; a2 by means of the following general formula41:

Tr½�ða†
1Þn1am1

1 ða†
2Þn2am2

2 �

¼ n1!n2! � 1

2

� �
n1þn2

ZZ
d2z1d

2z2

� zm1�n1

1 zm2�n2

2 L ðm1�n1Þ
n1

ð2jz1j2ÞL ðm2�n2Þ
n2

ð2jz2j2ÞWðz1; z2Þ; ð15Þ
where L�

nðxÞ are the generalized Laguerre polynomials.

The master equation (12) generating the dissipative time evolution of the photon

density matrix �ðtÞ becomes a Fokker–Planck equation for the corresponding Wigner

function; explicitly, one ¯nds

@tWtðz1; z2Þ ¼



2

X
j

ð@xj
xj þ @yj yjÞ þ ð2M þ 1Þ

X
j

ð@ 2
xj þ @ 2

yjÞ
" #

Wtð�1; �2Þ; ð16Þ

where xj and yj are the real and imaginary parts of zj; j ¼ 1; 2.

The initial a-port photon state is the entangled twin-beam state (4), and its

corresponding Wigner function is of Gaussian form. Since Eq. (16) contains at most

second-order derivative, it preserves its Gaussian form; indeed, the time evolved

Wigner function takes the explicit form42:

Wtðz1; z2Þ ¼
1

4�2� 2þ�2�
exp � ðx1 þ x2Þ2

4�2þ
� ðy1 þ y2Þ2

4� 2�
� ðx1 � x2Þ2

4�2�
� ðy1 � y2Þ2

4�2þ

� �
;

ð17Þ
where the functions,

�	 ¼ 1

2
M þ 1

2

� �
ð1� e�
tÞ þ �	e�
t; ð18Þ

give the explicit time dependence, while the coe±cients �	 ¼ e	2jrj contain the

dependence on the initial squeezing parameter r (cf. (3)).

Using this result with t ¼ � , the photon °ight time inside the interferometers,

and the general formula (15), one can now evaluate how the uncertainty �E in the

determination of the holographic °uctuations in (11) is altered by the presence of the

environment. As at the end of the previous section, we shall consider the case in

which the central values of the phase shifts vanish, �1;0 ¼ �2;0 ¼ 0, so that any

deviation from the ideal result �E ¼ 0 there obtained is due to the noisy e®ects

induced by the environment. In this situation, recalling (6) and (11), the expression of

the uncertainty �E reduces to

�E=�Ecl ¼ 2
ðh�N 4i � h�N 2i2Þ1=2
hða†

1 þ a1Þða†
2 þ a2Þi

; �N ¼ a†
1a1 � a†

2a2; ð19Þ

F. Benatti et al.
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where �Ecl is the uncertainty obtained by feeding the apparatus with classical

coherent light.

The explicit evaluation of this ratio is cumbersome but straightforward, and it

amounts to the computation of integrals of the form (15) with monomials up to order

four.43 In lowest order situated in the small parameter 
� , one ¯nds:

�E=�Ecl ’
8

ffiffiffiffiffiffi

�

p

sinhð2rÞ ½ð2M þ 1Þ coshð2rÞ � 1�1=2: ð20Þ

In general, also the coherent states j�i entering the other two ports of the apparatus

are a®ected by damping, so that they are modi¯ed by additional terms of order 
� or

smaller. However, their contribution to the uncertainty involves in practice only the

denominator of (19); since the numerator turns out to be proportional to
ffiffiffiffiffiffi

�

p
, one

can compute the denominator in the zeroth order approximation, i.e. with ordinary

coherent states.

The behavior of the ratio �E=�Ecl as a function of the dimensionless parameter


� is reported in Fig. 3, for di®erent values of the parameter M . As discussed before,

this parameter describes the bath properties, and in particular, it contains the de-

pendence on the bath temperature. However, imperfections in the preparation of the

initial twin-beam state could result in additional, e®ective \thermal" noise that can

further contribute to M .44 It is thus preferable to study the behavior of the ratio in

(20) for di®erent values of M instead of directly the bath temperature, treating M as

an e®ective thermal parameter.

Although the presence of the bath now makes the uncertainty nonvanishing, the

advantage of feeding the apparatus with entangled photon state is still apparent,

provided the couplings with the external environment is kept small. Note that the

uncertainty indeed approaches zero in the case of vanishingly small coupling 
� .

λτ

M = 1

M = 10−1

M = 10−2

Fig. 3. Behavior of the uncertainty, normalized to its classical value, in the presence of an external
bath, as a function of the coupling parameter 
� , for di®erent values of the parameter M , with squeezing

r ¼ 2.
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The behavior of the uncertainty as a function of the squeezing parameter is instead

reported in Fig. 4: one realizes that by increasing r, one can e®ectively contrast the

noisy action of the bath. According to these plots, the ratio �E=�Ecl appears to

become in¯nitely large for vanishing squeezing: this is due to the approximation used

in deriving the formula in (9) which ceases to be reliable for vanishingly small r, as its

denominator becomes zero.b

The setup design proposed in Ref. 25 that uses entangled photons therefore

appears rather robust against environmental noise: the apparatus still retains a

better sensitivity in holographic °uctuations determination than the one attainable

using classical coherent light.

As a ¯nal remark, note that the \foamy" structure of spacetime at the Planck

scale can itself e®ectively act as a noisy environment for the propagating photons.45,46

In this case, on rough dimensional grounds, one can estimate the dimensionless

coupling parameter 
� to be suppressed by at least an inverse power of the Planck

mass MP , i.e. 
� ’ !	=MP , with !	 the mean photon energy (see Refs. 45 and 46 for

further discussions). For typical photon energy used in experiments (!	 ’ 1 eV) and

squeezing parameter r ’ 1, the normalized uncertainty �E=�Ecl is found to be as

small as 10�15. Therefore, the decohering e®ects generated by quantum gravity-

induced environments can be safely ignored. However, as discussed in the following

section, other Planck scale phenomena can still in°uence the behavior of the traveling

photons inside the interferometers and therefore a®ect the estimation of the uncer-

tainty �E.

bOnly for a zero temperature bath (M ¼ 0), the expression in (20) is still valid even for vanishing

squeezing: in this case, no advantage in sensitivity should be gained with respect to a \classical" apparatus,

as the light entering all ports of the double interferometer is coherent, and indeed, one ¯nds �E ’ �Ecl.

∆E/∆Ecl

r

M = 1

M = 10−1

M = 10−2

Fig. 4. Behavior of the uncertainty, normalized to its classical value, in the presence of an external bath as

a function of the squeezing parameter r, for di®erent values of the parameter M , in a regime of weak

coupling, 
� ¼ 10�3.
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4. Noise Induced by Modi¯ed Commutation Relations

As mentioned in the introductory remarks, many approaches to fundamental physics

predict the existence of a minimum length, leading in turn to a modi¯cation of the

usual canonical commutation relations. Taking an e®ective approach, the most

general extension of the coordinate-momentum commutation relations involves

additional terms27–31:

½xi; pj� ¼ i�ij þ gij; ½xi;xj� ¼ ‘ij; ½pi; pj� ¼ hij: ð21Þ
As a result of this modi¯cation, also the behavior of the photons inside the inter-

ferometers, especially those that are prepared in a highly nonclassical, entangled

state, may be altered as well. Although in general the quantities gij; ‘ij and hij may

themselves be functions of the coordinates xi and momenta pi, we shall hereafter

consider a simpli¯ed model where only the x-p commutation relations are modi¯ed by

a constant contribution, i.e.

½xi; pi� ¼ ið1þ "Þ; ð22Þ

while ½x1;x2� ¼ ½p1; p2� ¼ 0, and ½xi; pj� ¼ 0 for i 6¼ j. By passing from the phase space

to mode operators, one easily sees that the standard canonical commutation relations

can be altered as follows:

½a1; a2� ¼ "; ½a1; a†
2� ¼ "; ½ai; a †

i � ¼ 1þ "; ð23Þ

by the introduction of a real, adimensional, phenomenological parameter ", assumed

to be small " 
 1.c

The above modi¯ed commutation relations can be expressed in terms of standard

mode oscillators Ai;A
†
i ; i ¼ 1; 2,

½Ai;A
†
i � ¼ 1; ½Ai;Aj� ¼ 0; ½Ai;A

†
j � ¼ 0 i 6¼ j;

Aij0i ¼ 0 i ¼ 1; 2;
ð24Þ

through the following relations:

a1 ¼ A1

ffiffiffiffiffiffiffiffiffiffiffi
1þ "

p þ "

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ "

p ðA2 �A†
2Þ;

a2 ¼ A2

ffiffiffiffiffiffiffiffiffiffiffi
1þ "

p þ "

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ "

p ðA1 þA†
1Þ;

ð25Þ

cAssuming that the noncommutative e®ects originate at a fundamental energy scale MF , one can express

this parameter as " ¼ �ð!	=MF Þ�, with � an adimensional constant and � ¼ 1; 2; the value � ¼ 2 is favored

by string theory models and black hole physics, while � ¼ 1 can be motivated by more abstract group and

algebraic considerations.47 Experimental e®orts try to set bounds on the parameter � in both these sce-

narios, using both astrophysical systems and table-top experiments (e.g. see Refs. 47–53), assuming for
simplicity MF of order of the Planck mass. A safe upper bound on the possible value of " that can be

deduced from these studies is of the order 10�1 � 10�2.
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which indeed reproduce (23). It should be stressed that Ai;A
†
i are just auxiliary

operators, useful for performing actual computations as they obey standard canonical

commutation relations; instead, photon states must now be constructed and

described through the commutators in (23).

Note that the algebra generated by (23) does not admit a Fock representation, i.e.

a representation based on a lowest weight state, as de¯ned by the condition aij0i ¼ 0.

In such cases, one de¯nes the vacuum state through the auxiliary A-modes as in (24).

As a consequence, the two-mode squeezing operator Sð�Þ, constructed with the

a-modes as in (3), no longer generates the twin-beam state (4) when acting on

the vacuum, rather a modi¯ed one jTWB 0i ¼ Sð�Þj0i. Since the parameter " is

assumed to be very small, it will be su±cient to compute the new state to ¯rst

order in ".

The new input state for the a-ports of the apparatus can then be obtained by

¯rst expanding

�a†
1a

†
2 � � �a1a2 ¼ Aþ "B; ð26Þ

with

A ¼ �A†
1A

†
2 � � �A1A2;

B ¼ �
1

2
½ðA†

1 þ A†
2Þ2 þ A†

1A1 � A2A
†
2�

� �
� h:c:;

and then using

eAþ"B ¼ eA 1þ
Z 1

0

du
d

du
½e�uAeuðAþ"BÞ�

� �
; ð27Þ

� eA 1þ "

Z 1

0

du e�uAB euA
� �

; ð28Þ

to compute to ¯rst order in " the action of the squeezing operator Sð�Þ on the

vacuum. Assuming for simplicity a real squeezing parameter � � r 2 R, and recalling

that

e�uAA1;2 e
uA ¼ coshðruÞA1;2 þ sinhðruÞA†

2;1;

one ¯nally gets that the modi¯ed input state becomes

jTWB 0i ¼ jTWBi þ "r erA
1

2
ðA†

1 þA†
2Þ2 � 1

� �
j0i; ð29Þ

where, now, jTWBi ¼ erðA
†
1
A †

2
�A1A2Þj0i; the state jTWB 0i is a combination of

entangled states.

Using similar techniques and approximations, one can now evaluate the uncertainty

�E in holographic °uctuations estimation modi¯ed by the presence of the parameter

". As in the case of environmental noise discussed in the previous section, we shall

assume zero central values of the phase shifts, �1;0 ¼ �2;0 ¼ 0, so that the result (19)

F. Benatti et al.
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still holds, since as mentioned before, in this condition, the interferometers work as

completely transparent media. Indeed, (19) is the result of algebraic manipulations

and does not depend on speci¯c properties of the states. As a result, also in this case, a

non vanishing �E can only be ascribable to the Planck scale modi¯ed commutation

relations (23).

The explicit calculation gives, to ¯rst order in ",

�E=�Ecl ¼
8r "

sinhð2rÞ : ð30Þ

Note that also the coherent states entering the other two ports of the apparatus

should be de¯ned using the modi¯ed mode operators in (23), so that, to ¯rst order in

", similar to (29), one can write: j� 0i ¼ j�i þ "� correction. However, since they

contribute only to the denominator of (19) and the numerator is proportional to ",

one can compute the denominator in the zeroth order approximation, i.e. with

ordinary coherent states.

The behavior of this ratio as a function of the squeezing parameter r is plotted in

Fig. 5. One can clearly see that the enhancement in sensitivity for the detection of

holographic noise due to the presence of entangled initial photons is still present, even

for relatively large values of ".

5. Concluding Remarks and Outlooks

The spacetime noncommutativity at the Planck scale that most quantum gravity

theory predicts can in principle be detected using suitable photon interferometric

apparata. The idea is that the noncommutativity in space position can induce

quantum °uctuations on the optical components of an interferometer: these dis-

turbances modify the length of the optical path of the photons traveling inside the

∆E/∆Ecl

r

ε = 0.1
ε = 0.05
ε = 0.01

Fig. 5. Behavior of the uncertainty, normalized to its classical value, in the presence of modi¯ed photon-

mode commutation relations, as a function of the squeezing parameter r, for various values of the defor-

mation parameter ".
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setup, causing a measurable change in the overall optical phase shift. This signal,

dubbed holographic °uctuation, is predicted to be extremely small, but might be in

the reach of setups using two interferometers, especially if fed with highly nonclas-

sical, entangled light.

These conclusions hold for an ideal apparatus, perfectly isolated from its envi-

ronment. Instead, we have here analyzed to what extent the entanglement enhanced

sensitivity in detecting holographic °uctuations proves to be robust against deco-

hering e®ects. In fact, the photons travelling inside the interferometers inevitably

interact with their environment, and this leads to noise and dissipation; furthermore,

Planck scale noncommutativity, whose e®ects we want to detect, may itself act as a

decohering mechanism via a modi¯cation of the canonical commutation relations

obeyed by the photon mode creation and annihilation operators.

We ¯nd that, if the coupling of the photons with the external environment is

weak, a constraint in general very well satis¯ed in common experimental conditions

and the violations of the standard photon mode commutation relations are small,

a phenomenologically sensible assumption, the examined decohering e®ects will

not be able to completely nullify the advantages brought in by the use of entangled

light. In other terms, our results seem to con¯rm the validity of the approach

employing quantum-enhanced metrology for detecting quantum gravity Planck scale

e®ects.
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