Non-divisibility and non-Markovianity in a Gaussian dissipative dynamics

Fabio Benatti ${ }^{\text {a,b,* }}$, Roberto Floreanini ${ }^{\text {b }}$, Stefano Olivares ${ }^{\text {c }}$
${ }^{\text {a }}$ Dipartimento di Fisica, Università degli Studi di Trieste, I-34151 Trieste, Italy
${ }^{\mathrm{b}}$ Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34151 Trieste, Italy
${ }^{\text {c }}$ Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy

A R T I C L E IN F O

Article history:

Received 26 July 2012
Accepted 28 August 2012
Available online 30 August 2012
Communicated by P.R. Holland

Abstract

We study a stochastic Schrödinger equation that generates a family of Gaussian dynamical maps in one dimension permitting a detailed exam of two different definitions of non-Markovianity: one related to the explicit dependence of the generator on the starting time, the other to the non-divisibility of the time-evolution maps. The model shows instances where one has non-Markovianity in both senses and cases when one has Markovianity in the second sense but not in the first one.

© 2012 Elsevier B.V. All rights reserved.

Recent theoretical and experimental advances have aroused a lot of interest in non-Markovian effects when quantum systems interact with an environment which cannot be considered at equilibrium [1-15]. More specifically, consider a system S embedded in an environment E, under the hypothesis of an initial factorized state, i.e., a density matrix of the form $\rho \otimes \rho_{E}$; tracing away the environment degrees of freedom obtains an exact completely positive (CP) reduced dynamics for S that sends an initial state ρ at time $t_{0} \geqslant 0$ into a state $\rho_{t, t_{0}}$ at time $t \geqslant t_{0}$. This irreversible timeevolution is generated by an integro-differential equation of the form
$\partial_{t} \rho_{t, t_{0}}=\int_{t_{0}}^{t} \mathrm{~d} u K_{t, u}\left[\rho_{u, t_{0}}\right], \quad \rho_{t_{0}, t_{0}}=\rho$,
where the operator kernel embodies the dependence on the past history of the system. The previous equation can be cast in the convolution-less form [10]
$\partial_{t} \rho_{t, t_{0}}=\mathbb{L}_{t, t_{0}}\left[\rho_{t, t_{0}}\right]$,
where the presence of memory effects is now incorporated in the dependence of the generator on the initial time t_{0}. Because of this, the CP maps which solve (2),
$\Gamma_{t, t_{0}}=\mathcal{T} \exp \left(\int_{t_{0}}^{t_{1}} \mathrm{~d} u \mathbb{L}_{u, t_{0}}\right)$,
with \mathcal{T} time-ordering, violate, in general, the (two-parameter) semigroup composition law, namely

[^0]$\Gamma_{t, t_{1}} \circ \Gamma_{t_{1}, t_{0}} \neq \Gamma_{t, t_{0}}, \quad 0 \leqslant t_{0} \leqslant t_{1} \leqslant t$.
Indeed, if $\mathbb{L}_{u, t_{0}}=\mathbb{L}_{u}$ then (3) yields the equality in (4); vice versa, if in (4) the equality holds, by taking the time derivative of both sides with respect to t one obtains $\mathbb{L}_{t, t_{1}}=\mathbb{L}_{t, t_{0}}$ for all $t_{1} \geqslant t_{0} \geqslant 0$. In [10], the dependence of the generator $\mathbb{L}_{t, t_{0}}$ on t_{0} and thus (4) is taken as a criterion of non-Markovianity.

On the other hand, in [12-14] a different approach is considered whereby, given a one-parameter family of CP maps γ_{t}, $t \geqslant 0$, their non-Markovianity is related to non-divisibility, namely to the fact that no CP map $\Lambda_{t, u}, t \geqslant u \geqslant 0$, exists that connects the maps γ_{t}. In other words, the criterion of non-Markovianity becomes
$\gamma_{t}=\Lambda_{t, u} \circ \gamma_{u} \Longrightarrow \Lambda_{t, t_{0}}$ not CP.
If a CP $\Lambda_{t, u}$ existed, it would follow that certain CP monotone like the trace distance, the fidelity or the relative entropy should be decreasing: then, non-Markovianity is identified by the increase in time of such quantities which can also be taken as a measure of non-Markovianity.

In order to study the two criteria of non-Markovianity, we consider a stochastic Schrödinger equation originally proposed as a non-Markovian mechanism for the wave function collapse [16]. Specifically, we take a particle in one dimension subjected to a time-dependent random Hamiltonian of the form (for sake of simplicity, in the following, vector and matrix multiplication will be understood)
$\hat{H}_{t}^{\boldsymbol{w}}=\hat{H}-\boldsymbol{w}^{T}(t) \hat{\boldsymbol{r}}$,
where the Hamiltonian \hat{H} is at most quadratic in position and momentum operators $\hat{\boldsymbol{r}}^{T}=\left(\hat{r}_{1}, \hat{r}_{2}\right)=(\hat{q}, \hat{p})$, while $\boldsymbol{w}^{T}(t)=\left(w_{1}(t)\right.$, $\left.w_{2}(t)\right)$ is a Gaussian noise vector with zero mean and 2×2 correlation matrix $\boldsymbol{D}(t, s)$:
$\left.[\boldsymbol{D}(t, s)]_{i j}=\| w_{i}(t) w_{j}(s)\right\rangle$,
where $\langle\langle\cdot\rangle$ denotes the average over the noise. This latter matrix is real symmetric, $D_{i j}(t, s)=D_{j i}(s, t)$, and of positive-definite type, that is
$\sum_{i, j ; t_{a}, t_{b}} \xi_{i}\left(t_{a}\right) \xi_{j}\left(t_{b}\right) D_{i j}\left(t_{a}, t_{b}\right) \geqslant 0, \quad \forall \xi\left(t_{a}\right) \in \mathbb{R}^{2}$,
for any choice of times $\left\{t_{a}\right\}_{a=1}^{n}$. For each realization of the noise, the Schrödinger equation ($\hbar=1$)
$i \frac{\mathrm{~d}\left|\psi_{t}^{\boldsymbol{w}}\right\rangle}{\mathrm{d} t}=\left[\hat{H}-\boldsymbol{w}^{T}(t) \hat{\boldsymbol{r}}\right]\left|\psi_{t}^{\boldsymbol{w}}\right\rangle$,
generates unitary maps $\hat{U}_{t, t_{0}}^{w}$ on the system Hilbert space that send an initial vector state $|\psi\rangle$ at time $t=t_{0}$ into $\left|\psi_{t, t_{0}}^{w}\right\rangle$ at time t. Averaging the projector $\left|\psi_{t, t_{0}}^{\boldsymbol{w}}\right\rangle\left\langle\psi_{t, t_{0}}^{\boldsymbol{w}}\right|$ over the noise yields a density matrix
$\rho_{t, t_{0}}=\left\langle\left\langle\mid \psi_{t, t_{0}}^{\boldsymbol{w}}\right\rangle\left\langle\psi_{t, t_{0}}^{\boldsymbol{w}} \mid\right\rangle\right\rangle$.
In order to find $\hat{U}_{t, t_{0}}^{w}$, one first goes to the interaction representation and sets:
$\left|\widetilde{\psi}_{t, t_{0}}^{\boldsymbol{w}}\right\rangle=\hat{U}_{t-t_{0}}^{\dagger}\left|\psi_{t, t_{0}}^{\boldsymbol{w}}\right\rangle$,
$i \frac{\mathrm{~d}\left|\widetilde{\psi}_{t, t_{0}}^{\boldsymbol{w}}\right\rangle}{\mathrm{d} t}=\boldsymbol{w}^{T}(t) \hat{\boldsymbol{r}}\left(t-t_{0}\right)\left|\widetilde{\psi}_{t, t_{0}}^{\boldsymbol{w}}\right\rangle$,
where $\hat{U}_{t}=\exp (-i \hat{H} t)$ and:
$\hat{\boldsymbol{r}}(t)=\hat{U}_{t}^{\dagger} \hat{\boldsymbol{r}}_{t} \equiv \boldsymbol{S}_{t} \hat{\boldsymbol{r}}$,
\boldsymbol{S}_{t} being a suitable symplectic matrix. For a given realization of the noise $\boldsymbol{w}(t)$, the solution is of the form $\left|\widetilde{\psi}_{t, t_{0}}^{w}\right\rangle=\widetilde{U}_{t, t_{0}}^{w}|\psi\rangle$ where, a part for a pure phase,
$\widetilde{U}_{t, t_{0}}^{w}=\exp \left\{-i \int_{t_{0}}^{t} \mathrm{~d} u \hat{\boldsymbol{w}}^{T}(u) \hat{\boldsymbol{r}}\left(u-t_{0}\right)\right\}$,
$\left|\psi_{t, t_{0}}^{\boldsymbol{w}}\right\rangle=\hat{U}_{t-t_{0}} \hat{U}_{t, t_{0}}^{\boldsymbol{w}}|\psi\rangle$.
By averaging over the noise, the corresponding density matrix (10) satisfies:
$i \partial_{t} \rho_{t, t_{0}}=\left[\hat{H}, \rho_{t, t_{0}}\right]-\sum_{j=1}^{2}\left[\hat{r}_{j},\left\langle\left\langle w_{j}(t) \mid \psi_{t, t_{0}}^{\boldsymbol{w}}\right\rangle\left\langle\psi_{t, t_{0}}^{\boldsymbol{w}} \mid\right\rangle\right]\right.$.
This stochastic Liouville equation can be turned into a standard master equation by means of the Furutsu-Novikov-Donsker relation [17]:
$\left.\| \boldsymbol{w}(s) \boldsymbol{X}[\boldsymbol{w}]\rangle=\int_{-\infty}^{+\infty} \mathrm{d} u \| \boldsymbol{w}(s) \boldsymbol{w}(u)\right\rangle\left\langle\left\langle\left\langle\frac{\delta R[\boldsymbol{w}]}{\delta \boldsymbol{w}(u)}\right\rangle\right\rangle\right.$,
where $\boldsymbol{X}[\boldsymbol{w}]$ is a functional of the noise, $\delta / \delta \boldsymbol{w}(u)$ denotes the functional derivative with respect to the noise and $R[\boldsymbol{w}]$ is the density operator of the system. With $R[\boldsymbol{w}]=\left|\psi_{t, t_{0}}^{\boldsymbol{w}}\right\rangle\left\langle\psi_{t, t_{0}}^{\boldsymbol{w}}\right|$, one gets:
$\partial_{t} \rho_{t, t_{0}}=\mathbb{L}_{t, t_{0}}\left[\rho_{t, t_{0}}\right]=-i\left[\hat{H}, \rho_{t, t_{0}}\right]+\mathbb{N}_{t, t_{0}}\left[\rho_{t, t_{0}}\right]$
with:
$\mathbb{N}_{t, t_{0}}[\rho]=\sum_{i, j=1}^{2} C_{i j}\left(t, t_{0}\right)\left(\hat{r}_{i} \rho \hat{r}_{j}-\frac{1}{2}\left\{\hat{r}_{j} \hat{r}_{i}, \rho\right\}\right)$,
$\boldsymbol{C}\left(t, t_{0}\right)=\int_{t_{0}}^{t} \mathrm{~d} u\left[\boldsymbol{D}(t, u) \boldsymbol{S}_{u-t}+\boldsymbol{S}_{u-t}^{T} \boldsymbol{D}^{T}(t, u)\right]$.

If $\boldsymbol{D}(t, u)=\delta(t-u) \boldsymbol{D}$ (i.e., white noise) then one reduces to the Markovian Lindblad type dynamics with a time-independent positive Kossakowski matrix, namely $\boldsymbol{C}\left(t, t_{0}\right)=\boldsymbol{D}[18,19]$. In the timedependent case, in order that the maps $\Gamma_{t, t_{0}}$ generated by $\mathbb{L}_{t, t_{0}}$ be CP , the Kossakowski matrix $\boldsymbol{C}\left(t, t_{0}\right)$ need not to be positive, as we explicitly show in the following. We shall seek a solution of (16) in the form
$\rho_{t, t_{0}}=\Gamma_{t, t_{0}}[\rho]=\int \frac{\mathrm{d}^{2} \boldsymbol{r}}{2 \pi} G_{t, t_{0}}(\boldsymbol{r}) R(\boldsymbol{r}) \hat{W}\left(\boldsymbol{S}_{t-t_{0}} \boldsymbol{r}\right)$,
where we have introduced the Weyl operators:
$\hat{W}(\boldsymbol{r})=\mathrm{e}^{i \boldsymbol{r}^{T} \boldsymbol{\Omega} \hat{\boldsymbol{r}}}=\mathrm{e}^{i(q \hat{p}-p \hat{q})}$,
with $\boldsymbol{r}^{T}=(q, p) \in \mathbb{R}^{2}$ and $\boldsymbol{\Omega}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, and $R(\boldsymbol{r})=\operatorname{Tr}[\rho \hat{W}(-\boldsymbol{r})]$ is related to the initial condition by:
$\rho_{t_{0}, t_{0}}=\rho=\int \frac{\mathrm{d}^{2} \boldsymbol{r}}{2 \pi} R(\boldsymbol{r}) \hat{W}(\boldsymbol{r})$.
Because the Hamiltonian \hat{H} is at most quadratic and the matrix S_{t} in (12) is symplectic, one finds:
$\hat{U}_{t} \hat{W}(\boldsymbol{r}) \hat{U}_{t}^{\dagger}=\hat{W}\left(\boldsymbol{S}_{t} \boldsymbol{r}\right)$.
Direct insertion of (19) into (16) yields
$\partial_{t} G_{t, t_{0}}(\boldsymbol{r})=-\left[\boldsymbol{r}^{T} \boldsymbol{S}_{t-t_{0}}^{T} \mathbf{C}\left(t, t_{0}\right) \boldsymbol{S}_{t-t_{0}} \boldsymbol{r}\right] G_{t, t_{0}}(\boldsymbol{r})$,
whence $G_{t, t_{0}}(\boldsymbol{r})=\exp \left[-\frac{1}{2} \boldsymbol{r}^{T} \mathbf{g}\left(t, t_{0}\right) \boldsymbol{r}\right]$ with

$$
\begin{align*}
\boldsymbol{g}\left(t, t_{0}\right) & =2 \int_{t_{0}}^{t} \mathrm{~d} u \boldsymbol{S}_{u-t_{0}}^{T} \boldsymbol{C}\left(u, t_{0}\right) \boldsymbol{S}_{u-t_{0}} \tag{21}\\
& =\int_{t_{0}}^{t} \mathrm{~d} u \int_{t_{0}}^{t} \mathrm{~d} v \boldsymbol{S}_{u-t_{0}}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v-t_{0}} \tag{22}
\end{align*}
$$

Furthermore, since $\boldsymbol{D}(u, v)$ is of positive type, the matrix $\boldsymbol{g}\left(t, t_{0}\right)$ is positive definite and $G_{t, t_{0}}(\boldsymbol{r})$ a real Gaussian function; the solution $\Gamma_{t, t_{0}}[\rho]$ can then be cast in a continuous Kraus-Stinespring decomposition which guarantees the complete positivity of the maps $\Gamma_{t, t_{0}}$. Let $G_{t, t_{0}}(\boldsymbol{r})=\int_{\mathbb{R}^{2}} \mathrm{~d}^{2} \boldsymbol{x} \delta(\boldsymbol{x}-\boldsymbol{r}) G_{t, t_{0}}(\boldsymbol{x})$ with
$\delta(\boldsymbol{x}-\boldsymbol{r})=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \mathrm{~d}^{2} \boldsymbol{y} \mathrm{e}^{i \boldsymbol{y}^{\mathrm{T}} \boldsymbol{\Omega}(\boldsymbol{x}-\boldsymbol{r})}$.
By inserting it into (19) and using $\hat{W}(\boldsymbol{x}) \hat{W}(\boldsymbol{r}) \hat{W}^{\dagger}(\boldsymbol{x})=\mathrm{e}^{-i \boldsymbol{x}^{T} \boldsymbol{\Omega} \boldsymbol{r}} \times$ $\hat{W}(\boldsymbol{r})$, one rewrites

$$
\begin{equation*}
\Gamma_{t, t_{0}}[\rho]=\int_{\mathbb{R}^{2}} \frac{\mathrm{~d}^{2} \boldsymbol{y}}{2 \pi} F_{t, t_{0}}(\boldsymbol{y}) \hat{U}_{t-t_{0}} \hat{W}(\boldsymbol{x}) \rho \hat{W}^{\dagger}(\boldsymbol{x}) \hat{U}_{t-t_{0}}^{\dagger} \tag{23}
\end{equation*}
$$

with the Fourier transform
$F_{t, t_{0}}(\boldsymbol{y})=\int_{\mathbb{R}^{2}} \frac{\mathrm{~d}^{2} \boldsymbol{x}}{2 \pi} \mathrm{e}^{i \boldsymbol{y}^{T} \boldsymbol{\Omega} \boldsymbol{x}} G_{t, t_{0}}(\boldsymbol{x})$,
also a real Gaussian, hence a positive function.
Using (19) one can study the composition properties of the maps $\Gamma_{t, t_{0}}$; since:
$\Gamma_{t_{2}, t_{1}} \circ \Gamma_{t_{1}, t_{0}}[\rho]$
$=\int \frac{\mathrm{d}^{2} \boldsymbol{r}}{2 \pi} G_{t_{2}, t_{1}}\left(\boldsymbol{S}_{t_{1}-t_{0}} \boldsymbol{r}\right) G_{t_{1}, t_{0}}(\boldsymbol{r}) R(\boldsymbol{r}) \hat{W}\left(\boldsymbol{S}_{t_{2}-t_{0}} \boldsymbol{r}\right)$,
in order to satisfy the semigroup composition law $\Gamma_{t_{2}, t_{1}} \circ \Gamma_{t_{1}, t_{0}}=$ $\Gamma_{t_{1}, t_{0}}$ one should have
$G_{t_{2}, t_{1}}\left(\boldsymbol{S}_{t_{1}-t_{0}} \boldsymbol{r}\right) G_{t_{1}, t_{0}}(\boldsymbol{r})=G_{t_{2}, t_{0}}(\boldsymbol{r})$.
Using (22), one instead finds that

$$
\begin{align*}
& \left(\int_{t_{1}}^{t_{2}} \int_{t_{1}}^{t_{2}}+\int_{t_{0}}^{t_{1}} \int_{t_{0}}^{t_{1}} \mathrm{~d} u \mathrm{~d} v\right)\left(\boldsymbol{S}_{u-t_{0}}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v-t_{0}}\right) \\
& \quad \neq \int_{t_{0}}^{t_{2}} \mathrm{~d} u \int_{t_{0}}^{t_{2}} \mathrm{~d} v \boldsymbol{S}_{u-t_{0}}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v-t_{0}} . \tag{25}
\end{align*}
$$

This fact remains true even when $\boldsymbol{D}(s, u)=\boldsymbol{D}(|s-u|)$ in which case from (22) we have
$\boldsymbol{g}\left(t, t_{0}\right)=\int_{0}^{t-t_{0}} \mathrm{~d} u \int_{0}^{t-t_{0}} \mathrm{~d} v \boldsymbol{S}_{u}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v}$
and $\Gamma_{t, t_{0}}=\Gamma_{t-t_{0}, 0}$.
Consider the master equation (16); if $t_{0}=0$ its solutions $\rho_{t, 0}=$ $\Gamma_{t, 0}[\rho]$ propagate the initial state ρ from $t_{0}=0$ to $t \geqslant 0$. Because of the above result, $\Gamma_{t, 0} \neq \Gamma_{t, t_{0}} \circ \Gamma_{t_{0}, 0}$. However, setting $t_{0}=0$ in (16) and searching a solution $\Lambda_{t, t_{0}}[\rho]$ in the form (19), one gets
$\Lambda_{t, t_{0}}[\rho]=\int \frac{\mathrm{d}^{2} \boldsymbol{r}}{2 \pi} L_{t, t_{0}}(\boldsymbol{r}) R(\boldsymbol{r}) \hat{W}\left(\boldsymbol{S}_{t-t_{0}} \boldsymbol{r}\right)$
where $L_{t, t_{0}}(\boldsymbol{r})=\exp \left\{-\frac{1}{2} \boldsymbol{r}^{T} \boldsymbol{\ell}\left(t, t_{0}\right) \boldsymbol{r}\right\}$ with:

$$
\begin{align*}
\ell\left(t, t_{0}\right) & =\int_{t_{0}}^{t} \mathrm{~d} u \boldsymbol{S}_{u-t_{0}}^{T} \boldsymbol{C}(u, 0) \boldsymbol{S}_{u-t_{0}} \tag{27}\\
& =\int_{t_{0}}^{t} \mathrm{~d} u \int_{0}^{u} \mathrm{~d} v \boldsymbol{S}_{u-t_{0}}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v-t_{0}} \tag{28}
\end{align*}
$$

The function $L_{t, t_{0}}(r)$ plays the role of $G_{t, t_{0}}(\boldsymbol{r})$ in (19) to which it reduces when $t_{0}=0$; that is $\Lambda_{t, 0}=\Gamma_{t, 0}$. Note however that, in contrast to $\boldsymbol{g}\left(t, t_{0}\right)$ in (21), in $\ell\left(t, t_{0}\right)$ one integrates $\boldsymbol{C}(u, 0)$, not $\boldsymbol{C}\left(u, t_{0}\right)$, from t_{0} to t. As a consequence, $\Gamma_{t, 0}=\Lambda_{t, t_{0}} \circ \Gamma_{t_{0}, 0}$; indeed,
$\Lambda_{t, t_{0}} \circ \Gamma_{t_{0}, 0}[\rho]=\int_{\mathbb{R}^{2}} \frac{\mathrm{~d}^{2} \boldsymbol{r}}{2 \pi} L_{t, t_{0}}\left(\boldsymbol{S}_{t_{0}} \boldsymbol{r}\right) L_{t_{0}, 0}(\boldsymbol{r}) R(\boldsymbol{r}) \hat{W}\left(\boldsymbol{S}_{t} \boldsymbol{r}\right)$,
where now, unlike in (25),

$$
\begin{aligned}
\boldsymbol{S}_{t_{0}}^{T} \ell\left(t, t_{0}\right) \boldsymbol{S}_{t_{0}}+\ell\left(t_{0}, 0\right) & =\left(\int_{t_{0}}^{t} \int_{0}^{u}+\int_{0}^{t_{0}} \int_{0}^{u}\right) \mathrm{d} u \mathrm{~d} v \boldsymbol{S}_{u}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v} \\
& =\int_{0}^{t} \mathrm{~d} u \int_{0}^{u} \mathrm{~d} v \boldsymbol{S}_{u}^{T} \boldsymbol{D}(u, v) \boldsymbol{S}_{v}=\ell(t, 0) .
\end{aligned}
$$

However, contrary to the maps $\Lambda_{t, 0}=\Gamma_{t, 0}$ which, as we have seen, are CP, the maps $\Lambda_{t, t_{0}}$ cannot be CP as this would imply [9] the positive definiteness of the matrix $\mathbf{C}\left(t, t_{0}\right)$ in (17). In fact, the maps $\Lambda_{t, t_{0}}$ are in general not even positive.

All these various possibilities can be seen in a concrete example; consider a free particle of unit mass, $\hat{H}=\hat{p}^{2} / 2$, so that $\boldsymbol{S}_{t}=\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$, and a diagonal noise with correlation matrix given by
$\boldsymbol{D}(t, u)=\frac{\gamma \mathrm{e}^{-\gamma|t-u|}}{2}\left(\begin{array}{cc}d_{q} & 0 \\ 0 & d_{p}\end{array}\right)$.

First suppose the noise couples only to the position operator: $d_{q}=1, d_{p}=0$; then, from (18),
$\boldsymbol{C}\left(t, t_{0}\right)=\left(\begin{array}{cc}1-\mathrm{e}^{-\gamma\left(t-t_{0}\right)} & \frac{\mathrm{e}^{-\gamma\left(t-t_{0}\right)}\left[1+\gamma\left(t-t_{0}\right)\right]-1}{2 \gamma} \\ \frac{\mathrm{e}^{-\gamma\left(t-t_{0}\right)}\left[1+\gamma\left(t-t_{0}\right)\right]-1}{2 \gamma} & 0\end{array}\right)$
has a negative eigenvalue for all $t>t_{0} \geqslant 0$. In spite of the nonpositivity of the Kossakowski matrix in (18), the maps $\Gamma_{t, t_{0}}$ in (23) are nevertheless $C P$ for all $0 \leqslant t_{0} \leqslant t$.

We consider, as initial condition at t_{0}, a Gaussian state ρ_{σ} with covariance matrix (CM) σ and zero first moments, $\operatorname{Tr}\left[\rho_{\sigma} \hat{W}(-\boldsymbol{r})\right]=$ $\exp \left\{-\frac{1}{2} \boldsymbol{r}^{T}\left(\boldsymbol{\Omega} \boldsymbol{\sigma} \boldsymbol{\Omega}^{T}\right) \boldsymbol{r}\right\}$. Using (19), $\Gamma_{t, t_{0}}$ maps $\rho_{\boldsymbol{\sigma}}$ to the Gaussian state $\operatorname{Tr}\left[\Gamma_{t, t_{0}}\left[\rho_{\boldsymbol{\sigma}}\right] \hat{W}(\boldsymbol{r})\right]=\exp \left\{-\frac{1}{2} \boldsymbol{r}^{T} \boldsymbol{\Omega}^{T} \boldsymbol{\sigma}_{t, t_{0}} \boldsymbol{\Omega} \boldsymbol{r}\right\}$, where $\boldsymbol{\sigma}_{t, t_{0}}=$ $\boldsymbol{S}_{t-t_{0}} \boldsymbol{\sigma} \boldsymbol{S}_{t-t_{0}}^{T}+\widetilde{\boldsymbol{g}}\left(t, t_{0}\right)$ with
$\widetilde{\boldsymbol{g}}\left(t, t_{0}\right)=\int_{t_{0}}^{t} \mathrm{~d} u \boldsymbol{\Omega}^{T} \boldsymbol{S}_{u-t}^{T} \boldsymbol{C}\left(u, t_{0}\right) \boldsymbol{S}_{u-t} \boldsymbol{\Omega}$.
Instead, if the same initial condition is taken for the maps $\Lambda_{t, t_{0}}$, the matrix $\widetilde{\mathbf{g}}\left(t, t_{0}\right)$ is to be substituted by
$\tilde{\boldsymbol{\ell}}\left(t, t_{0}\right)=\int_{t_{0}}^{t} \mathrm{~d} u \boldsymbol{\Omega}^{T} \boldsymbol{S}_{u-t}^{T} \boldsymbol{C}(u, 0) \boldsymbol{S}_{u-t} \boldsymbol{\Omega}$.
If we choose $\boldsymbol{\sigma}=\boldsymbol{S}_{t_{0}-t} \boldsymbol{\sigma}_{0} \boldsymbol{S}_{t_{0}-t}^{T}$ and expand $\boldsymbol{\sigma}_{t, t_{0}}=\boldsymbol{\sigma}_{0}+\widetilde{\boldsymbol{\ell}}\left(t, t_{0}\right)$ to first order about t_{0}, we have:
$\boldsymbol{\sigma}_{t, t_{0}} \simeq \boldsymbol{\sigma}_{0}+\left(t-t_{0}\right) \boldsymbol{\Omega}^{T} \boldsymbol{C}\left(t_{0}, 0\right) \boldsymbol{\Omega}$,
where $\boldsymbol{C}\left(t_{0}, 0\right)$ is calculated from Eq. (30). Now, the second matrix at the l.h.s. is real symmetric and has one positive and one negative eigenvalue, $\lambda \geqslant 0$ and $-\mu<0$; let \boldsymbol{V} be the symplectic, orthogonal matrix which diagonalizes it. Then, choosing an initial state with CM diagonal in the same basis, i.e., $\sigma_{0}=\operatorname{Diag}\left[\sigma_{q q}, \sigma_{p p}\right]$, such that $\sigma_{0}+\frac{i}{2} \boldsymbol{\Omega} \geq 0$ (positivity of the initial state), one gets:
$\boldsymbol{\sigma}_{t, t_{0}} \simeq \boldsymbol{V}^{T}\left(\begin{array}{cc}\sigma_{q q}+\lambda\left(t-t_{0}\right) & 0 \\ 0 & \sigma_{p p}-\mu\left(t-t_{0}\right)\end{array}\right) \boldsymbol{V}$,
and a sufficiently small $\sigma_{p p}$ would yield a non-positive-definite CM $\sigma_{t, t_{0}}$, thus exhibiting the non-positivity of the map $\Lambda_{t, t_{0}}$. The nonpositive preserving character of $\Lambda_{t, t_{0}}$ is exposed by very specific states; on other states as, for instance, on all those of the form $\Gamma_{t_{0}, 0}[\rho]$ it acts perfectly well for $\Lambda_{t, t_{0}} \circ \Gamma_{t_{0}, 0}=\Gamma_{t, 0}$. In addition, starting from $t_{0}=0, \Lambda_{t, 0}=\Gamma_{t, 0}$ is CP .

Therefore, in this case the master equation (16) generates a non-Markovian dynamics both according to the criterion (4), since the generator $\mathbb{L}_{t, t_{0}}$ depends on the initial time t_{0} and also according to the other criterion (5). In fact, the family of maps $\Gamma_{t, 0}$ is non-divisible for $\Lambda_{t, t_{0}}$ is uniquely defined and non-positive.

Since $\Lambda_{t, t_{0}}$ is not (completely) positive, certain quantities that exhibit monotonic behavior under CP maps fail to do so when evolving the system from time t_{0} to time t. One of such quantities is the fidelity [15] $\mathcal{F}(t)=\mathcal{F}\left(\Gamma_{t, 0}\left[\rho_{1}\right], \Gamma_{t, 0}\left[\rho_{2}\right]\right)$ of two states ρ_{1} and ρ_{2} evolving in time according to $\Gamma_{t, 0}$. While $\mathcal{F}(t) \geqslant \mathcal{F}(0)$ for all $t \geqslant 0, \mathcal{F}\left(t_{0}+t\right)$ may become smaller than $\mathcal{F}\left(t_{0}\right)$ for some $t, t_{0}>0$. This is showed in Fig. 1 for two Gaussian states with zero first moments and "squeezed" CM. As one may expect, the effect disappears when γ increases towards the Markovian limit.

On the other hand, if in (9), the noise affects the particle momentum only, namely if $d_{q}=0, d_{p}=1$, then, from (29),
$C\left(t, t_{0}\right)=\left(1-\mathrm{e}^{-\gamma\left(t-t_{0}\right)}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$

Fig. 1. Plot of the time evolution of the fidelity \mathcal{F} between two Gaussian states ρ_{k}, $k=1,2$, with zero first moments and CMs $\sigma_{k}=\frac{1}{2} \operatorname{Diag}\left[\exp \left(2 r_{k}\right), \exp \left(-2 r_{k}\right)\right]$, with $r_{1}=-r_{2}=1.5$, evolving under the map $\Gamma_{t, 0}$ for different values of γ. The inset refers to the time derivative of the fidelity. The non-monotonic behavior denotes non-Markovian evolution [15]; note that as γ increases, \mathcal{F} becomes monotonic.
is positive definite. It follows that the intertwining map $\Lambda_{t, t_{0}}$ is CP , whence the family of maps $\Gamma_{t, 0}$ is divisible and Markovian according to the criterion (5). However, it is non-Markovian according to the other criterion (4). Indeed, the generator resulting from (9) depends on the starting time t_{0}.

In conclusion, the analysis of above examples indicates that the criterion identifying non-Markovianity with the explicit dependence of the generator $\mathbb{L}_{t, t_{0}}$ on the starting time t_{0} appears stronger than the criterion based on the non-divisibility of the maps $\Gamma_{t, 0}$. Indeed, on one hand, we have provided a case where the map $\Gamma_{t, 0}$ is divisible, yet the generator of $\Gamma_{t, t_{0}}$ explicitly depends on the initial time t_{0}; on the other hand, a Markovian evolution according to the first criterion readily implies the semigroup composition law, i.e., (4) with the equality sign, hence divisibility
of $\Gamma_{t, 0}$. Nevertheless, the non-divisibility criterion is the only one at disposal when one is presented just with the family of maps $\Gamma_{t, 0}$: in such a case, one may reconstruct the generator $\mathbb{L}_{t, 0}$ starting from $t_{0}=0$, but, in general, no information is available on the full generator $\mathbb{L}_{t, t_{0}}$ at $t_{0}>0$.

Acknowledgements

FB and RF thank A. Bassi and L. Ferialdi for useful discussions. SO acknowledges useful discussions with M.G.A. Paris and R. Vasile and financial support from MIUR (FIRB "LiCHIS" - RBFR10YQ3H) and from the University of Trieste ("FRA 2009").

References

[1] J. Wilkie, Phys. Rev. E 62 (2000) 8808.
[2] A.A. Budini, Phys. Rev. A 69 (2004) 042107.
[3] S. Maniscalco, Phys. Rev. A 72 (2005) 024103.
[4] S. Maniscalco, F. Petruccione, Phys. Rev. A 73 (2006) 012111.
[5] T. Yu, J.H. Eberly, Phys. Rev. Lett. 97 (2006) 140403.
[6] J. Piilo, et al., Phys. Rev. Lett. 100 (2008) 180402.
[7] H.-P. Breuer, B. Vacchini, Phys. Rev. Lett. 101 (2008) 140402.
[8] J. Wilkie, Yin Mei Wong, J. Phys. A 42 (2009) 015006.
[9] E.-M. Laine, et al., Phys. Rev. A 81 (2010) 062115.
[10] D. Chruściński, A. Kossakowski, Phys. Rev. Lett. 104 (2011) 070406.
[11] D. Chruściński, A. Kossakowski, Eur. Phys. Lett. 97 (2012) 20005.
[12] M.M. Wolf, et al., Phys. Rev. Lett. 101 (2008) 150402.
[13] A. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105 (2010) 050403.
[14] Xiao-Ming Lu, Xiaoguang Wang, C.P. Sun, Phys. Rev. A 82 (2010) 042103.
[15] R. Vasile, et al., Phys. Rev. A 84 (2011) 052118.
[16] A. Bassi, L. Ferialdi, Phys. Rev. Lett. 103 (2009) 050403.
[17] V.V. Konotop, L. Vàsquez, Non-Linear Random Waves, World Scientific, Singapore, 1994.
[18] V. Gorini, et al., J. Math. Phys. 17 (1976) 821.
[19] G. Lindblad, Comm. Math. Phys. 48 (1976) 119.

[^0]: * Corresponding author at: Dipartimento di Fisica, Università degli Studi di Trieste, Strada Costiera 11, I-34151 Trieste, Italy. Fax: +39 0402240601.

 E-mail address: benatti@ts.infn.it (F. Benatti).

