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We analyze the dynamics of the quantum Rabi model for two qubits interacting through a
common bosonic ¯eld (resonator), focusing on the generation and detection of maximally

entangled states. We obtain analytical results for the unitary dynamics of this system in the

slow-qubit (or degenerate) regime, considering ultra-strong coupling between qubits and reso-

nator mode, for which the rotating wave approximation (RWA) is no longer applicable. We also
numerically investigate the dynamics beyond the slow-qubit condition in order to study the

validity of the model in the presence of less strict conditions.
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1. Introduction

Light-matter interaction at the fundamental quantum level ¯nds its paradigmatic

description in the quantum Rabi model for a two-level system (12-spin particle)

coupled via dipole-like interaction to a single mode oscillator (bosonic ¯eld).1 An

approximated model2 introduced by Jaynes and Cummings (JC) in 1964 gained great

popularity in the cavity quantum electrodynamics (CQED) context due to its wide

applicability in countless experiments.3–5 The rotating wave approximation (RWA)

is the cornerstone of the JC model, as it allows to neglect counter-rotating terms

in the system Hamiltonian which, otherwise, would produce double excitation

(or de-excitation) processes forbidden by the low values of the spin-boson
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couplings.6,7 Outstanding experiments in CQED, ultracold atoms and optomecha-

nical systems always exploited and validated this model,8 until the advent of

superconducting circuits and devices which mimic a two-level system strongly

interacting with a single bosonic ¯eld mode.9–13 In this recent framework, the 1
2-spin-

like particle (arti¯cial atom) and a microwave ¯eld mode of a transmission line

resonator may achieve such high interaction strengths to invalidate the RWA,

opening new possibilities for the implementation of quantum optics and quantum

information processes.14–17 Many attempts to obtain approximated analytical solu-

tions for the spectrum of the system have been performed,18,19 but the integrability of

the quantum Rabi model has been only recently demonstrated for the whole range of

the involved parameters,20 also for the case involving two qubits.21

Following this front, in this paper we focus on the unitary dynamics of two qubits

ultra-strongly coupled to a single bosonic ¯eld mode of a resonator described by the

two-qubit quantum Rabi model. In particular, we address the so called slow-qubit or

degenerate approximation, considering low qubit transition frequencies and, conse-

quently, large detunings. This range of parameters allows us to describe in an ana-

lytical way the dynamics of the system and to extract the mechanism underlying the

generation of maximally entangled Bell states for the two-qubit subsystem.

The paper is structured as follows. Section 2 introduces the Hamiltonian model for

large detuning and subsequently we study the unitary dynamics (Sec. 3), providing

an explicit analytical solution in a proper time scale. In Sec. 4, we derive the con-

ditions for the generation of maximally entangled states in terms of the system

parameters, showing that the reversibility of the time evolution could be used to

readout the state of the two qubits. Finally, in Sec. 5, we show numerical results

con¯rming the validity of the approximated model in both cases in which the tran-

sition frequencies of the qubits are considered equal and di®erent. Section 6 closes the

paper drawing some concluding remarks.

2. Two-Qubit Rabi Model in Large Detuning

We consider two qubits of transition frequencies !i between the states jeii and jgii,
i ¼ 1; 2, interacting with a common bosonic ¯eld mode, oscillating at the frequency !

and described by the ¯eld operators a and a†, ½a; a†� ¼ 1. This system is described by

the quantum Rabi model with Hamiltonian given by

H ¼ }!a†aþ }

X

i¼1;2

!i

2
� ðiÞ
z þ }

X

i¼1;2

�i�
ðiÞ
x ða† þ aÞ; ð1Þ

�1 and �2 being the coupling constants, �
ðiÞ
z ¼ jeiihej � jgiihgj and � ðiÞ

x ¼ �
ðiÞ
þ þ � ðiÞ� ,

where �
ðiÞ
þ ¼ jeiihgj and � ðiÞ� ¼ jgiihej are the raising and lowering operators,

respectively, of the ith qubit. In many contexts, ranging from cavity to circuit QED

and from trapped ions to micro-mechanical resonators, the quantum Rabi model can

be e®ectively reduced to the well-known JC model applying the RWA, consisting in

dropping the counter-rotating high-frequency terms �
ðiÞ
þ a† and � ðiÞ� a. However, in the
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so-called ultra-strong (�=! & 10�1) or deep-strong (�=! & 1) coupling regime,22 the

RWA is no longer applicable an these terms must be included, recovering to Eq. (1) as

the proper Hamiltonian of the considered system. If in the JC model the total number

of excitationNe ¼ a†aþP
i�

ðiÞ
þ �

ðiÞ� was the conserved quantity, in the quantum Rabi

model the only constant of motion is the parity �2 ¼ �
ð1Þ
z �

ð2Þ
z ð�Þa †a ¼ ei�Ne . The

operator�2 has only two eigenvalues p ¼ �1. The Hilbert space of the whole system is

thus divided in two subspaces spanned by the states jQni � jQi � jni, where jQi 2
fjggi; jgei; jegi; jeeig and n 2 N, with even parity (p ¼ 1 andNe even) and odd parity

(p ¼ �1 and Ne odd), giving rise to two unconnected parity chains of states (see

Fig. 1). The conservation law ½�2;H� ¼ 0 associated with the parity operator ensures

that the dynamics develops in one of these two Hilbert subspaces.22

The integrability and diagonalization of the quantum Rabi model has been largely

investigated,20,23 together with analytical approaches to ¯nd approximated spec-

tra.18 Here, we consider a range of parameters that allows us to analytically describe

the dynamics of the system capturing a peculiar and interesting physical behavior of

the subsystems. In particular, we describe the dynamics in the so called slow-qubit (or

degenerate) regime !i � !, i ¼ 1; 2, for which the transition frequency of the qubits

is much smaller than the frequency of the bosonic mode. The large detuning condition

is equivalent to describe the system dynamics on a proper time scale, as we explore in

the next sections.

From now on, we assume, without loss of generality, equal qubit frequencies

!1 ¼ !2 � !q and introduce the detuning parameter � � !� !q with the bosonic

¯eld mode. By carrying out a common interaction picture transformation and ap-

proximating the oscillating exponential factors at zeroth order for !qt � 1, we obtain

the Hamiltonian

H 0 ¼ }�a†aþ }

X

i¼1;2

�i�
ðiÞ
x ða† þ aÞ; ð2Þ

which describes a displaced harmonic oscillator dependent on the state of the two

qubits. Equation (2) can be rewritten in a more compact way as:

H 0 ¼ }�½D†ð�Þa†aDð�Þ � � 2�; ð3Þ

Fig. 1. (Color online) Schematic view of the two parity chains dividing the whole system Hilbert space.

Arrows show the connections among the states of each parity given by the interaction term in Eq. (1). See

the text for details.
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where we have introduced the two-qubit operator

� ¼ �1

�
� ð1Þ
x þ �2

�
� ð2Þ
x ;

andDð�Þ ¼ expf�a† � � †ag is a displacement operator conditioned by the two-qubit

state expressed in the rotated basis fjþ þi; jþ �i; j� þi; j� �ig, with

j� ii ¼ ðjgii � jeiiÞ=
ffiffiffi
2

p
. The operator � is diagonal in the rotated basis and displays

four eigenvalues f�þ; ��;��þ;���g, with �� ¼ ð�1 � �2Þ=�. It is worth noting that

� 2 in Eq. (3) contains the term �
ð1Þ
x �

ð2Þ
x , which is at the basis of the entangling

mechanism as we will see in the analysis of the subsystem dynamics.

3. Unitary Dynamics

We can describe analytically the unitary dynamics of the considered ultra-strongly

coupled system only for certain values of parameters satisfying !i � !. The time-

evolution operator generated by the Hamiltonian (3) can be written as:

UðtÞ ¼ D†ð�Þe�i t�a †aDð�Þe i t�� 2
; ð4Þ

¼ e i�t�
2
Dð�tÞe�i t�a †a;

with �t ¼ ðe�i t� � 1Þ� and �t ¼ t�� sinðt�Þ, and where we used fðeABe�AÞ ¼
eAfðBÞe�A derived from the Baker–Campbell–Hausdor® formula.30 From Eq. (5) we

can deduce the dynamics of our system, which is a composition of the following

operations: A time- and energy-dependent phase shift, a displacement conditioned by

the two-qubit state at time t and the time-dependent entangler operator of the two

qubits, resulting into an oscillatory behavior with period t ¼ 2�=�. We point out

that in the dynamics described by Eq. (5) the operator � 2 brings a global phase �GðtÞ
and a local phase �LðtÞ, namely:

�GðtÞ ¼ �t
� 2þ þ � 2�

2
¼ �t

�2
1 þ �2

2

�2
; �LðtÞ ¼ �

� 2þ � � 2�
2

¼ �t
2�1�2

�2
: ð5Þ

As we will see, while �GðtÞ is linked to the identity operator, �LðtÞ is linked to the

operator �
ð1Þ
x �

ð2Þ
x , which is responsible for the entangling mechanism.

4. Entangling Two Qubits and Bell State Analyzer

If we assume that the initial state of the system is j ð0Þi ¼ jgg 0i, then the evolved

state of the system j ðtÞi ¼ UðtÞj ð0Þi can be written as:

j ðtÞi ¼ 1

4
expfi ½�GðtÞ þ �LðtÞ�g

�fjggi½jc ðþÞ
E ðtÞi þ e�2i �LðtÞjc ð�Þ

E ðtÞi� þ jgei½jc ðþÞ
O ðtÞi � e�2i �LðtÞjc ð�Þ

O ðtÞi�
þjegi½jc ðþÞ

O ðtÞi þ e�2i �LðtÞjc ð�Þ
O ðtÞi� þ jeei½jc ðþÞ

E ðtÞi � e�2i �LðtÞjc ð�Þ
E ðtÞi�g;

ð6Þ
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and we note that for each two-qubit state jQi, there is a peculiar superposition of

Schr€odinger cat-like states jc ð�Þ
E ðtÞi � j�t;�i þ j � �t;�i (even cat state) and jc ð�Þ

O ðtÞi
� j�t;�i � j � �t;�i (odd cat state), with �t;� ¼ ðe�i t� � 1Þ��. Note that though

jc ð�Þ
E ðtÞi and jc ð�Þ

O ðtÞi are not normalized, the superpositions appearing in Eq. (7) are

normalized states of the resonator.

As our focus is to study the two-qubit entanglement generated by this dynamics,

we point out that for tn ¼ 2�n=�, with n 2 N, the resonator mode bounces back into

the initial state j0i as ��ðtnÞ ¼ 0, and the two-qubit subsystem is left in the super-

position

j ðtnÞi ¼ fcos½�LðtnÞ�jggi þ i sin½�LðtnÞ�jeeig � j0i � j qðtnÞi � j0i: ð7Þ

Now, by imposing the condition

�1�2 ¼
2mþ 1

16n
�2; ð8Þ

on the coupling parameters �1 and �2, with n;m 2 N, and inserting it in Eq. (6) with

tn ¼ 2�n=�, we obtain �LðtnÞ ¼ ð2mþ 1Þ �4 and Eq. (8) reduces to j ðþÞi � j0i, for
even m, or j ð�Þi � j0i, for odd m, where we introduced the Bell states:

j ð�Þi ¼ 1ffiffiffi
2

p ðjggi � i jeeiÞ; j�ð�Þi ¼ 1ffiffiffi
2

p ðjegi � i jgeiÞ: ð9Þ

Therefore, our protocol allows to generate all the four states (10) at the ¯rst peak

time t1 and under the condition (9), by choosing the di®erent initial states jQ0i,
namely:

Uðt1Þjgg 0i ¼ j ðþÞi � j0i; Uðt1Þjee 0i ¼ j ð�Þi � j0i;
Uðt1Þjeg 0i ¼ j�ðþÞi � j0i; Uðt1Þjge 0i ¼ j�ð�Þi � j0i:

ð10Þ

It is worth noting that in the context of circuit QED,24–26 or quantum simulation,27,28

it is possible to suitably tune the parameters to satisfy condition (9), thus imple-

menting the entangling protocol.

Conversely, being the unitary dynamics reversible, it is also possible to use this

gate as an analyzer of Bell states. Indeed, choosing as the initial state one of the Bell

states in Eq. (10), the evolved state of the two qubits at the ¯rst peak time t1 is one of

the factorized bipartite state of the standard basis jQni which can be measured with

standard techniques, obtaining information on the initial Bell state. Furthermore,

this gate for the generation of maximally entangled states is robust against the choice

of the initial state of the bosonic subsystem. Indeed, it can be easily demonstrated

that for every preparation of the resonator mode the oscillatory dynamics is the same

as described above: After every time t ¼ tn the initial state of the resonator is re-

stored and the state of the two qubits is left in the superposition state (8). In fact,

considering a generic initial state of the bosonic subsystem �bð0Þ ¼
P

l;m�l;mjlihmj
expressed on the Fock basis, and jggi as initial preparation of the two qubits, then the
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evolved state at time tn is still a factorized state of the two subsystems, namely,

�ðtnÞ ¼ j qðtnÞih qðtnÞj � �bð0Þ, where j qðtnÞi is given in Eq. (8).

One of the main ¯gure of merit to properly describe the unitary dynamics is the

joint probability distribution for the energy states PQnðtÞ ¼ Tr½�ðtÞjQnihQnj�. In
Fig. 2(a) we plot Pgg 0ðtÞ and Pee 0ðtÞ showing the periodical behavior described above

for which at times t ¼ t1 and t ¼ t3 the two-qubit subsystem exhibits maximally

entangled Bell states (see, e.g. Eq. (8)) and the bosonic mode is in the vacuum state.

We note that, depending on the initial state, only one of the two parity chains of

states introduced before (see Fig. 1) is involved in the dynamics, whereas the other

one is not excited. For instance, in the case presented in Fig. 2, the initial state is

jgg 0i and, thus, the dynamically excited states are those with parity p ¼ 1. More-

over, the plot of the purity �qðtÞ ¼ Tr½�2
qðtÞ� of the two-qubit subsystem �qðtÞ ¼

Trb½�ðtÞ� (see Fig. 2(b)) con¯rms the factorization of the states of the two subsystems

at t ¼ tn [for which �qðtnÞ ¼ 1] since the state of the whole system is always pure (see

Eq. (7)). This dynamics, at t ¼ t2, also predicts a °ip of both qubits, which are found

to be in the state jeei.
Another useful tool for the analysis of the system dynamics is the concurrence,29

which measures the entanglement of two-qubit states and is de¯ned as C �
maxf0; �1 � �2 � �3 � �4g where �i (with i ¼ 1; . . . ; 4) are the eigenvalues of the

operator R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q

p
~�q

ffiffiffiffiffi
�q

pp
, with ~�q ¼ ð�y � �yÞ��

qð�y � �yÞ and ��
q the complex

conjugate of the two-qubit density operator �q. The concurrence is a bounded

quantity 0 	 C 	 1 and in Fig. 2(c) we show that only at the predicted times t ¼ t1
and t ¼ t3 the two qubits get maximally entangled.

All these ¯gures of merit will be used in the next section to fully describe the

dynamics of the system beyond the slow-qubit approximation, in order to investigate

the validity of the analytical model and the behavior of the strongly interacting

system towards resonance conditions.

0

0.2

0.4

0.6

0.8

1.0
( )

π π π π

(a)

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0
( )

π π π π

(b)

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0
( )

π π π π

(c)

Fig. 2. (Color online) Dynamics of the system as a function of t� starting from the state jgg 0i, with
parameters �1 ¼ 2� and �2 ¼ 65

32 � 
 2:03� (deep-strong coupling regime) satisfying Eq. (9). (a) Joint
probability distributions Pgg 0ðtÞ (blue solid line) and Pee 0ðtÞ (red dashed line). Purity �qðtÞ, (b) and

concurrence CðtÞ (c) relatively to the two-qubit subsystem.
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5. Numerical Analysis Beyond the Slow-Qubit Regime

Numerical integration of the system dynamics is needed as the Rabi model, in its full

range of parameters, does not show an explicit analytic solution, though its inte-

grability has been recently demonstrated.20 In this section, we investigate a regime in

which the qubit frequency is no longer negligible, exploring the behavior of the

system close to the resonance condition !q ! !, dropping the slow-qubit approxi-

mation and evolving the system from the Hamiltonian in Eq. (1). In particular we

focus on the generation of maximally entangled qubit states aiming at ¯nding a range

of validity of the slow-qubit approximation, analyzing the ¯gures of merit introduced

in the previous section. In addition, we consider also the ¯delity between the evolved

state and one of the Bell states in Eq. (10), in order to verify the closeness, in the

Hilbert state space, to the targeted entangled state. The numerical simulations of the

system dynamics are performed for two choices of the qubits frequencies, in one case

we consider equal transition frequencies, whereas in a second case we consider only

one qubit in the slow-qubit regime.

We begin our analysis from the ¯rst case. The increase of !q modi¯es the dynamics

in such a way that the perfect oscillatory behavior described analytically before (see

Fig. 2) is distorted by the presence of the qubits, which acts as a dephasing term.

Indeed, in Figs. 3 and 4 we show, for !q ¼ 10�1! and !q ¼ 5� 10�1! respectively,

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
P(t)

π π π π

(a)

0 2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
q(t)

π π π π

(b)

2π 4π 6π 8π t∆

0.2

0.4

0.6

0.8

1.0
F(t)

(c)

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
C (t)

π π π π

(d)

Fig. 3. (Color online) Numerical integration for the system dynamics as a function of t� starting from the
state jgg 0i, with parameters !q ¼ 0:1!, �1 ¼ 2� and �2 ¼ 65

32 � 
 2:03�. (a) Joint probability distribu-

tions Pgg 0ðtÞ (blue solid line) and Pee 0ðtÞ (red dashed line). Purity �qðtÞ (b), ¯delity F(t) (c) with respect to

the target states j ðþÞi (blue solid line) and j ð�Þi (red dashed line) and concurrence CðtÞ (d).
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how the oscillations for the generation of maximally entangled Bell states gets

spoiled, in particular the joint probabilities (a) Pee;0ðtÞ (blue solid line) and Pgg 0ðtÞ
(red dashed line), the purity of the evolved two-qubit state (b), the ¯delities FðtÞ ¼
h ð�Þj�qðtÞj ð�Þi (c) and the corresponding concurrence CðtÞ (d).

In order to study the extension to this scenario of the analytical results of the

previous sections we consider the behavior of the ¯gures of merit, varying the qubit

frequency, at the time peaks at which the Bell states j ðt1ÞiI and j ðt3ÞiI are gen-

erated. In Fig. 5, we report the purity, the ¯delity and the concurrence of the two-

qubit subsystem as a function of the qubit frequency !q for values covering the entire

range up to the resonance condition !q ¼ !. The insets of these plots show the range

of validity of the slow-qubit approximation, say 0 < !q 	 10�1!, according to the

high values of ¯delity to the target Bell states, con¯rmed also by high values of the

concurrence which measures the actual entanglement between the two qubits.31

A further analysis concerns the aforementioned case in which the qubits transition

frequencies !1 and !2 are di®erent, especially when one of the two ful¯lls the slow-

qubit approximation. In particular, we performed numerical simulations ¯xing !2 ¼
10�3! and increasing the ratio !1=!. We show in Fig. 6 the behavior of purity,

¯delity and concurrence for the two-qubit subsystem in the range 0 < !1 < 10�1!.

As one may expect, this choice of the parameters enhances the performances in the
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Fig. 4. (Color online) Numerical integration for the system dynamics as a function of t� starting from the

state jgg 0i, with parameters !q ¼ 0:5!, �1 ¼ 2� and �2 ¼ 65
32� 
 2:03�. (a) Joint probability distribu-

tions Pgg 0ðtÞ (blue solid line) and Pee 0ðtÞ (red dashed line). Purity �qðtÞ (b), ¯delity FðtÞ (c) with respect to
the target states j ðþÞi (blue solid line) and j ð�Þi (red dashed line) and concurrence CðtÞ (d).
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generation of Bell states, as ¯delity and concurrence display higher values than the

previous case (see the insets of Fig. 5).

6. Conclusion

We investigated the quantum Rabi model for two qubits coupled to the same single

mode resonator in the deep-strong coupling regime. Considering low transition fre-

quencies for the two qubits, we performed the slow-qubit (or degenerate) approxi-

mation studying the problem of a quantized oscillator conditionally displaced by the

state of the qubits. The physical dynamics of the system captured by the slow-qubit

approximation in the deep-strong coupling regime is radically di®erent from a JC-like

dynamics, as it involves multi-photon processes and in principle spans the entire Fock

space of the resonator mode. The oscillatory behavior of the dynamics generates Bell

states, depending on a precise relation between the coupling constants. We explored

the range of validity of this approximation by means of numerical integration of the

0.05 0.10

0.992

0.994

0.996

0.998

1

(a)

0.05 0.10

0.998

0.999

1

(b)

0.05 0.10

0.992

0.994
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Fig. 6. (Color online) Plot of purity (a), ¯delity (b) and concurrence (c) at the peak times t ¼ t1 (blue
solid line) and t ¼ t3 (red dashed line) corresponding to the target Bell states j ðt1ÞiI and j ðt3ÞiI, as a
function of the ratio !1=!, with �1 ¼ 2� and �2 ¼ 65

32 � 
 2:03�. The transition frequency of the second

qubit is ¯xed at !2 ¼ 10�3!.
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Fig. 5. (Color online) Plot of purity (a), ¯delity (b) and concurrence (c) at the peak times t ¼ t1 (blue

solid line) and t ¼ t3 (red dashed line) corresponding to the target Bell states j ðt1ÞiI and j ðt3ÞiI, as a
function of the ratio !q=!, with �1 ¼ 2� and �2 ¼ 65

32 � 
 2:03�. The insets show the zoomed range

0 < !q < 10�1! where the analytical model and numerical results are in good agreement (high values of

purity, ¯delity and concurrence).
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Schr€odinger equation ruled by the whole quantum Rabi Hamiltonian, to study at

which extent the qubit frequencies can be increased to obtain a high-¯delity gener-

ation of Bell states. Circuit QED is the most promising scenario for the breakthrough

of the deep-strong coupling regime and the realization of ultrafast quantum gates,32

as the ultra-strong coupling regime has been reached.33,34 Nonetheless, quantum

simulations for e®ective Hamiltonians27,35 mimicking the quantum Rabi model for

two qubits or other experimentally inaccessible models are currently the best strat-

egies to attack these kind of problems.
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