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Drawbacks of the use of fidelity to assess quantum resources
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Fidelity is a figure of merit widely employed in quantum technology in order to quantify similarity between
quantum states and, in turn, to assess quantum resources or reconstruction techniques. Fidelities higher than, say,
0.9 or 0.99, are usually considered as a piece of evidence to say that two states are very close in the Hilbert space.
On the other hand, on the basis of several examples for qubits and continuous variable systems, we show that
such high fidelities may be achieved by pairs of states with considerably different physical properties, including
separable and entangled states or classical and nonclassical ones. We conclude that fidelity as a tool to assess
quantum resources should be employed with caution, possibly combined with additional constraints restricting
the pool of achievable states, or only as a mere summary of a full tomographic reconstruction.
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I. INTRODUCTION

In the past two decades several quantum-enhanced com-
munication protocols and measurement schemes have been
suggested and demonstrated. The effective implementation of
these schemes crucially relies on the generation and char-
acterization of nonclassical states and operations (including
measurements), which represent the two pillars of quantum
technology. The assessment of quantum resources amounts
to make quantitative statements about the similarity of a
quantum state to a target one, or to measure the effectiveness
of a reconstruction technique. For these purposes one needs a
figure of merit to compare quantum states. Among the possible
distancelike quantities that can be defined in the Hilbert space
a widely adopted measure of closeness of two quantum states
is the Uhlmann Fidelity [1], defined as

F (ρ1,ρ2) = (Tr
√√

ρ1ρ2
√

ρ1)2, (1)

which is linked to the Bures distance DB(ρ1,ρ2) =√
2[1 − √

F ] between the two states ρ1 and ρ2, and provides
bounds to the trace distance [2],

1 −
√

F (ρ1,ρ2) � 1
2 ||ρ1 − ρ2||1 �

√
1 − F (ρ1,ρ2).

Fidelity is bounded to the interval [0,1], and values above
a given threshold close to unit, say, 0.9 or 0.99, are usually
considered very high. Indeed, this implies that the two states
are very close in the Hilbert space, as it follows from the
above relations between the fidelity and the Bures and trace
distances. On the other hand, neighboring states may not
share nearly identical physical properties [3,4] as one may be
tempted to conclude. The main purpose of this paper is to show,
on the basis of several examples for qubits and continuous
variable (CV) systems, that very high values of fidelity may
be achieved by pairs of states with considerably different
physical properties, including separable and entangled states
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or classical and nonclassical ones. Furthermore, we provide a
quantitative analysis of this discrepancy.

In order to illustrate the point let us start with a very
simple example. Suppose you are given a qubit, aimed at
being prepared in the basis state |0〉, and guaranteed to have
either a fidelity to the target state larger than a threshold, say
F > 0.9, or a given fidelity within a confidence interval, say
F = 0.925 ± 0.025. The situation is depicted in Fig. 1 where
we show the corresponding regions on the Bloch sphere. As it is
apparent from the plots, neighboring states in terms of fidelity
are compatible with a relatively large portion of the sphere
that includes those states with different physical properties,
e.g., the spin component in the z direction.

The rest of the paper is devoted to illustrating few relevant,
and “more dramatic” examples, for two-qubit states and for
continuous variable ones, where fidelity should be employed
with caution to assess quantum resources. Indeed, our exam-
ples show that high values of fidelity may be achieved by pairs
of states with considerably different physical properties, e.g.,
states containing quantum resources and states of no value for
quantum technology. Our examples are thus especially relevant
for certification of quantumness in the presence of noise.

The paper is structured as follows. In the next section we
address two-qubit systems, focusing on both entanglement
and discord of nearby Pauli diagonal states. The subse-
quent sections are devoted to continuous variable systems:
Sec. III addresses certification of quantumness for single-mode
squeezed thermal states and their displaced versions, whereas
in Sec. IV we focus on entanglement and discord of two-mode
squeezed thermal states. Section V closes the paper with some
concluding remarks.

II. TWO-QUBIT SYSTEMS

Let us consider the subset of Pauli diagonal (PD) two-qubit
states,

ρ = 1

4

⎛
⎝I ⊗ I +

3∑
j=1

cjσj ⊗ σj

⎞
⎠ , (2)
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FIG. 1. (Color online) Green volumes represent single-qubit
states having fidelity larger than the threshold F > 0.9 (left) or a
fidelity F = 0.925 ± 0.025 (right) to the target state |0〉.

where cj are real constants, I is the identity operator, and σj

are Pauli matrices. The corresponding eigenvalues are

λ0 = 1
4 (1 − c1 − c2 − c3) ,

λ1 = 1
4 (1 − c1 + c2 + c3) ,

λ2 = 1
4 (1 + c1 − c2 + c3) ,

λ3 = 1
4 (1 + c1 + c2 − c3) ,

(3)

whose positivity implies constraints on coefficients cj for ρ to
describe a physical state. PD states in Eq. (2) have maximally
mixed marginals (partial traces) ρA = ρB = I/2, with A and
B denoting the two subsystems. The choice of this subset stems
from the fact that an analytic expression of the quantum discord
is available [5], so we can compare quantum discord and
entanglement of states within the PD class for fixed values of
fidelity. The fidelity between two PD states may be expressed
in terms of the eigenvalues in Eq. (3) as follows:

F (ρ1,ρ2) =
(

3∑
k=0

√
λk,1λk2

)2

, (4)

whereas entanglement, quantified by negativity, is given by

N (ρ) = −2
∑

i

ηi(ρ
τA ), (5)

where ηi(ρτA) are the negative eigenvalues of the partial
transpose ρτA with respect to the subsystem A [6]. The
quantum discord for PD states has been evaluated in [5], and
it is given by

D(ρ) = I (ρ) − 1
2 (1 − c) log2(1 − c) − 1

2 (1 + c) log2(1 + c),

(6)

where I (ρ) = 2 + ∑3
i=0 λi log2 λi is the mutual information

and the other terms are the result of the maximization of the
classical information. The quantity c denotes the maximum
c ≡ max{|c1|,|c2|,|c3|}.

Let us now consider a situation where the target state of,
say, a preparation scheme, is a Werner state,

ρW = 1 − c

4
I ⊗ I + c|�−〉〈�−|,

i.e., a PD state with c1 = c2 = c3 = −c and c ∈ [0,1] and
where |�−〉 = (|01〉 − |10〉)/√2 is one of the Bell states.
The Werner state ρW is entangled for c > 1

3 and separable
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FIG. 2. (Color online) Left panel: the tetrahedron represents the
region of all physical PD states, whereas the inner octahedron contains
the separable ones. The balloons centered in c1 = c2 = c3 = −0.45
(on the right of the panel) contain PD states having fidelity F > 0.95
and F > 0.99 to the target Werner (entangled) state. The balloons on
the left of the panel describe states having fidelity F > 0.95 and F >

0.99 to the separable PD state with c1 = 0.3, c2 = −0.3, and c3 = 0.1.
Right panel: the plot describes PD states with fixed c3 = −0.45 and
varying {c1,c2}. We show the ovoidal slice containing states having
fidelity F > 0.95 to the target Werner state with c1 = c2 = c3 =
−0.45 and the corresponding rectangular region of entangled states.
Contour lines refer to entanglement negativity (gray) and quantum
discord (red).

otherwise. In particular, let us choose a target state with
c = 0.45 and address the properties of PD states having fidelity
larger than a threshold, say F > 0.95 or F > 0.99 to this
target. Results are reported in the left panel of Fig. 2, where
the tetrahedral region is the region of physical two-qubit
PD states and the separable states are confined to the inner
octahedron. The ovoidal regions (from now on the balloons)
contain the PD states with fidelity F > 0.95 and F > 0.99
to our target Werner state. As it is apparent from the plot,
both the balloons cross the separability border, thus showing
that a “high” value of fidelity to the target should not be used
as a benchmark for creation of entanglement, even assuming
that the generated state belongs to the class of PD states. The
same phenomenon may lead one to waste entanglement, i.e.,
to erroneously recognize an entangled state as separable on
the basis of a high fidelity to a separable state, as it may
happen to an initially maximally entangled state driven towards
the separability threshold by the environmental noise. As an
example, we show in the left panel of Fig. 2 the balloons of
states with fidelity F > 0.95 and F > 0.99 to a separable PD
state with c1 = 0.3, c2 = −0.3, and c3 = 0.1.

In the right panel of Fig. 2 we show the “slice” of PD
states with c3 = −0.45 and fidelity F > 0.95 to the Werner
target, together with the corresponding region of entangled
states, and the contour lines of entanglement negativity and
quantum discord. This plot clearly shows that high values of
fidelity are compatible with a large range of variation for both
entanglement and discord.

The fact that neighboring states may have quite different
physical properties has been recently investigated for quantum
optical polarization qubits [3]. In particular, the discord of
several two-qubit states has been experimentally determined
using partial and full polarization tomography. Despite the fact
that the reconstructed states have high fidelity to depolarized
or phase-damped states, their discord has been found to
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be largely different from the values predicted for these
classes of states, such that no reliable estimation procedure
beyond tomography may be effectively implemented, and
thus questioning the use of fidelity as a figure of merit to
assess quantum correlations. Indeed, when full tomography
is performed, fidelity is used only to summarize the overall
quality of the reconstruction [7–10] and thus correctly convey
also the information obtained about quantum resources.

III. SINGLE-MODE GAUSSIAN STATES

Here we address the use of fidelity to assess quantumness
of single-mode CV states. In particular, in Sec. III A we
address nonclassicality of squeezed thermal states, whereas
Sec. III B is devoted to the sub-Poissonian character of their
displaced version.

A. Squeezed thermal states

Let us now consider single-mode CV systems and start with
Gaussian state preparations of the form

ρsμ = S(r)ν(N )S†(r), (7)

i.e., single-mode squeezed thermal states (STS1) with real
squeezing, S(r) = exp{ 1

2 r(a†2 − a2)}, and N thermal photons,

ν(N ) = Na†a/(1 + N )a
†a+1. This class of states have zero

mean and covariance matrix (CM) given by

σ = 1

2μ

(
1/s 0
0 s

)
, (8)

where μ = (2
√

det σ )−1 = (2N + 1)−1 is the purity of ρsμ

and s = e−2r is the squeezing factor. STS1 are nonclassical,
i.e., they show a singular Glauber P function, when s < μ or
s > 1/μ [11]. Fidelity between two STS1 is given by [12,13]

Fsμ = 1√
	 + δ − √

δ
, (9)

where

	 = det[σ1 + σ2], δ = 4
2∏

k=1

[
det[σk] − 1

4

]
,

with σ1 and σ2 being the CM of the two states. In Fig. 3 we
report the region of classicality together with the balloons
of STS1 having fidelity larger than Fsμ > 0.99 to three
STS1 chosen as targets (one classical thermal state and two
nonclassical thermal squeezed states).

As it is apparent from the plot, the balloons have large
overlaps with both the classical and the nonclassical region,
such that fidelity cannot be used, for this class of states, to
certify the creation of quantum resources. This feature is only
partially cured by imposing additional constraints to the set
of states under examination [4]. As, for example, in the left
panel of Fig. 3 we show the “stripes” of states that have both
a fidelity Fsμ > 0.99 and mean photon numbers 〈n〉 (i.e., the
mean energy of state) which differ at most 10% from that of
the target. In the right panel we show the regions of states
satisfying also the additional constraints of having photon
number fluctuations 〈	n2〉 within a 10% interval from that
of the targets. Overall, we have strong evidence that fidelity
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FIG. 3. (Color online) Plots show the region of classicality (the
triangularlike green regions) together with the balloons of STS1

having fidelity larger than Fsμ > 0.99 to three STS1 chosen as targets:
a classical thermal state with s = 1 and μ = 0.9 and two nonclassical
STS1 with μ = 0.7 and s = 0.6 and s = 1.6, respectively. In the left
panel the stripes of states close to the targets contain states having
Fsμ > 0.99 and mean photon numbers which differ at most 10% from
that of the target. In the right panel the states close to the targets satisfy
the additional constraints of having number fluctuations within a 10%
interval from that of the targets.

should not be used to certify the presence of quantumness, and
that this behavior persists even when we add quite stringent
constraints to delimit the class of states under investigations. In
fact, only by performing the full tomographic reconstruction of
the state does one impose a suitable set of constraints to make
fidelity a fully meaningful figure of merit [14]. In this case, as
already mentioned for qubits, fidelity represents a summary of
the precision achieved by the full tomographic reconstruction.

B. Displaced squeezed thermal states

When only intensity measurements may be performed,
nonclassicality of a single-mode state may be assessed by
the Fano factor [15], which is defined as the ratio of the
photon number fluctuations over the mean photon number R =
〈	n2〉/〈n〉. One has R = 1 for coherent states, while a smaller
value is a signature of nonclassicality since sub-Poissonian
statistics cannot be described in classical terms. In order to
illustrate the possible drawbacks of fidelity in certifying this
form of quantumness, let us consider a displaced version of
STS1,

ρG = D(x)ρsμD†(x), (10)

where D(α) = exp{αa† − ᾱa} is the displacement operator
and we chose real displacement α = x ∈ R. The CM is
determined by ρsμ, whereas the displacement changes only the
mean values of the canonical operators. The fidelity between
two Gaussian states of the form ρG is given by [13]

FG = exp{−(X1 − X2)T (σ1 + σ2)−1(X1 − X2)}Fsμ, (11)

where X = (x,0). In the left panel of Fig. 4 we show the region
of sub-Poissonianity as a function of the purity, the squeezing
factor, and the displacement of states ρG. We also show the
balloons of states with fidelity larger than FG > 0.97 to two ρG

target states: a sub-Poissonian state corresponding to μ = 0.9,
s = 1.4, and x = 0.5 and a super-Poissonian one with μ = 0.7,
s = 1.2, and x = 1.5. Despite the high value of fidelity (notice
that fidelity decreases exponentially with the displacement
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FIG. 4. (Color online) Left: sub-Poissonian region for ρG states
as a function of the purity μ, the squeezing s, and the displacement
x, together with the balloons of states having fidelity larger than
FG > 0.97 to a nonclassical target with μ = 0.9, s = 1.4, and x =
0.5 and a classical one with μ = 0.7, s = 1.2, and x = 1.5. Right:
the sub-Poissonian region for a fixed value of purity μ = 0.8 as a
function of squeezing and displacement, together with the balloons
of states having fidelity larger than FG > 0.97 to the target states
having x = 1.5 and s = 1.5 (sub-Poissonian) or x = 0.8 and s = 1.0
(super-Poissonian). We also show the subregions of states having
mean photon number and number fluctuations which differ at most
10% from those of the target.

amplitude) both the balloons cross the Poissonian border, and
the parameters of the states may differ considerably from
the targeted ones. In the right panel of Fig. 4 we show the
sub-Poissonian region for a fixed value of purity μ = 0.8 as
a function of squeezing and displacement, together with the
balloons of states having fidelity larger than FG > 0.97 to a
pair of target states: a sub-Poissonian state with parameters
x = 1.5 and s = 1.5 and a super-Poissonian one with x = 0.8
and s = 1.0. We also show the subregions of states having
mean photon number and number fluctuations which differ
at most 10% from those of the target. We notice that even
when restricting attention to states with comparable energy and
fluctuations, fidelity is not able to discriminate states having
quantum resources or not.

IV. TWO-MODE GAUSSIAN STATES

Here we focus on a relevant subclass of two-mode Gaussian
states: the so-called two-mode squeezed thermal states (STS2)
described by density operators of the form

ρNβγ = S2(r)ν(n1) ⊗ ν(n2)S†
2(r), (12)

where S2(r) = exp{r(a†b† − ab)} is the two-mode squeezing
operator with real parameter r and ν(nk), k = 1,2 are thermal
states with nk photon number on average. The class of states
ρNβγ is fully described by three parameters: the total mean
photon number N , the two-mode squeezing fraction β, and
the single-mode fraction of thermal photons γ ,

N = 〈a†a + b†b〉,

β = 2 sinh2 r

N
,

γ = n1

n1 + n2
.

(13)

The CM of STS2 may be written in the block form

σ = 1

2

(
A I Cσz

C σz BI

)
, (14)

with the coefficients parametrized according to (13):

A = 1 + 2γ (1 − β)N + βN (1 + N )

1 + βN
,

B = 1 + 2(1 − γ )(1 − β)N + βN (1 + N )

1 + βN
,

C = (1 + N )
√

βN (2 + βN )

1 + βN
.

(15)

A squeezed thermal state is separable if d̃− � 1
2 , where

√
2d̃± =

√
A2 + B2 + 2C2 ± (A + B)

√
(A − B)2 + 4C2 are

the symplectic eigenvalues. Gaussian B discord, i.e., the
difference between the mutual information and the maximum
amount of classical information obtainable by local Gaussian
measurements on system B, may be analytically evaluated for
STS2 [16], leading to

D(ρNβγ ) = h(B) − h(d−) − h(d+) + h

(
A − C2

B + 1
2

)
, (16)

where h(x) = (x + 1
2 ) ln(x + 1

2 ) − (x − 1
2 ) ln(x + 1

2 ). Finally,
fidelity between two STS2 is given by [17–19]

FNβγ = (
√

X + √
X − 1)2

√
det[σ1 + σ2]

, (17)

where

X = 2
√

E1 + 2
√

E2 + 1

2
,

E1 = det[�σ1�σ2] − 1
4

det[σ1 + σ2]
,

E2 = det
[
σ1 + i

2�
]

det
[
σ2 + i

2�
]

det[σ1 + σ2]
,

FIG. 5. (Color online) Left: separability region of STS2 in terms
of the three parameters N , β, and γ together with the balloons of
states having FNβγ > 0.99 with two target states: an entangled STS2

with parameters N = 2.5, β = 0.2, and γ = 0.5 and a separable
one with N = 1, β = 0.13, and γ = 0.5. Right: the region of states
having a fidelity in the range 0.95 < FNβγ < 0.99 to a two-mode
squeezed vacuum, N = 1 and β = 1. The vertical highlighted stripe
corresponds to states with energy that differs at most 10% from
N = 2.
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FIG. 6. (Color online) Left: contour lines of Gaussian B discord
in the region of STS2 having fidelity FNβγ > 0.95 to an entangled
target state with N = 2, β = 0.2, and γ = 0.5. The relative discord,
rescaled to that of the target state [D(ρ2,0.2,0.5) = 0.22], ranges
from 0.38 to 1.88. Right: variations of the relative Gaussian B

discord in a region of STS2 with fidelity 0.95 < FNβγ < 0.99 to a
two-mode squeezed vacuum state (N = 2 and β = 1). In evidence,
the constrained region of states has the 10% of energy fluctuations
around N = 2.

with � being the two-mode symplectic form [19]

� = ω ⊕ ω, ω =
(

0 1
−1 0

)
.

In the left panel of Fig. 5 we show the separability region
in terms of the three parameters N , β, and γ , together
with the balloons of states having FNβγ > 0.99 with two
target states: an entangled STS2 with parameters N = 2.5,
β = 0.2, γ = 0.5 and a separable one with N = 1, β = 0.13,
and γ = 0.5. As it is apparent from the plot, both balloons
cross the separability border and have a considerable overlap
to both regions, thus making fidelity of little use to assess
entanglement in these kinds of systems.

Another phenomenon arising from benchmarking with
fidelity is illustrated in the right panel of Fig. 5, where we
report the region of states having a fidelity in the range
0.95 < FNβγ < 0.99 to a two-mode squeezed vacuum, i.e.,
a maximally entangled state with N = 1 and β = 1. The
emphasized sector corresponds to states that also have a mean
photon number not differing more than 10% from the target,
i.e., in the range 0.9 < N < 1.1. As a matter of fact, the total

photon number N and the squeezing fraction β in this region
may be considerably different from the targeted one and,
in addition, the states with comparable energy are the least
entangled in the region. Finally, in Fig. 6 we show the range of
variation of Gaussian B discord compatible with high values of
fidelity. In the left panel we consider a nonseparable target state
with discord D(ρ2,0.2,0.5) = 0.22 and a region of STS2 states
with fidelity FNβγ > 0.95. The region of separability (green)
is crossed by a non-negligible set of states and the relative
variations of the discord are considerably large, ranging from
0.38 to 1.88. In the right panel of Fig. 6 we show again
the wide range of variation of Gaussian B discord for a
set of STS2 states with fidelity 0.95 < F (ρNβγ ) < 0.99 to a
target two-mode squeezed vacuum state with N = 2. The high
discrepancy in the relative discord can be only partially limited
by constraining the mean photon number N with fluctuations
of 10%. Notice that also in the case of two modes, full Gaussian
tomography [20,21] is imposing a suitable set of constraints
to make fidelity a meaningful figure of merit to summarize the
overall quality of the reconstruction.

V. CONCLUSIONS

In conclusion, we have shown by example that being
close in the Hilbert space may not imply being close in
terms of quantum resources. In particular, we have provided
quantitative examples for qubits and CV systems showing that
pairs of states with high fidelity may include separable and
entangled states, classical and nonclassical ones, and states
with very different values of quantum and Gaussian discord.

Our results make apparent that in view of its wide use
in quantum technology, fidelity is a quantity that should be
employed with caution to assess quantum resources. In some
cases it may be used in conjunction with additional constraints,
whereas in the general situation it should be mostly used as
an overall figure of merit, summarizing the findings of a full
tomographic reconstruction.
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