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Intensity correlations from linear interactions
Abstract: We address the generation of intensity correla-
tions arising from the interference between two optical
states interacting through a beam splitter. We consider
both phase insensitive and sensitive states and write the
intensity correlations as functions of the mean number
of photons and �eld quadratures of the input states. In
particular we consider Fock number states and squeezed
states as a paradigm of non-classical states and mixture
of coherent states, which can be experimentally accessi-
ble. We show that, under certain conditions on the input
states, intensity correlations may vanish or turn into anti-
correlations.
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1 Introduction
A beam splitter (BS) is a linear, passive, optical device that
�nds wide applications in quantum optics experiments.
The BS can be used to generate entangled states in con-
tinuous variable regime (see, e.g., [1]) as well as to imple-
ment advanced detection techniques such as homodyne
and heterodyne detection. The interference at a BS of a
probe input state with a local oscillator generates a bipar-
tite state which, in general, displays some kind of corre-
lations, which may be measured by various detectors. In
turn, in the last years photon number resolving detectors
[2, 3] have been successfully employed in quantum optics
experiments both for state characterization [4, 5] and en-
hancement of optimal quantum receivers [6, 7].

Intensity correlations are strictly related to the photon
number statistics of the bipartite states and have funda-
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mental interest for state characterization [8] but also for
practical and technical applications [9–12]. In this paper
we investigate the intensity correlations of a couple of opti-
cal states interfering at aBS focusing ondi�erent classes of
input states: thermal, coherent, Fock and squeezed states.
In particular, we investigate the behavior of the intensity
correlations in the case in which one of the two inputs
is excited in a coherent state (local oscillator). This sce-
nario corresponds to a homodyne-like detection scheme
with low intensity local oscillator [13], however here we
are not interested in the di�erence photocurrent and its
variance, but on the actual intensity correlations between
the detected states. More in details, we derive analytical
results which link the intensity correlation function with
the mean values and variances of the number of photons
and �eld quadratures of the input states. Our results can
be useful not only from the theoretical point of view, but
can be of some interest also for the experimentalist that is
interested in a feasible way to characterize a bipartite state
through a BS starting from a basic description of the input
states.

The paper is structured as follows. In Section 2 we re-
view the dynamics of two optical beams through a BS and
write the general expression of the intensity correlations
as a function of the number and quadrature operators of
the input �elds. In Section 3 we focus on states that dis-
plays a symmetry in the phase space leading, in particu-
lar, to vanishing quadrature �rst moments. In Section 4
we consider the class of phase insensitive states, which
are diagonal in the Fock number basis, such as thermal,
phase-averaged coherent states [14, 15] and Fock states.
Phase sensitive states, as the so-called bracket states [16]
and squeezed vacuum states, are addressed in Section 5.
We close the paper drawing some concluding remarks in
Section 6.

2 Intensity correlations for a
factorized input state

Let us consider a generic factorized state ρin = ρa ⊗ ρb of
the input radiation modes a and b of a BS. The BS acts as
a linear mixer of the two input modes through the unitary
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operator UBS = exp{θ(a† b − a b†)}, with the assumption
θ ∈ R, and the output state is given by ρout = UBS ρinU†BS.
A simple way to compute average values of proper ob-
servables at the output ports of the BS is provided by
the Heisenberg picture, according to which the radiation
modes a and b transforms through UBS as(

c
d

)
= U†BS

(
a
b

)
UBS =

(√
τ a +

√
1 − τ b√

τ b −
√
1 − τ a

)
, (1)

where τ ≡ cos2 θ is the transmittance of the BS.
In typical quantum optical setups, like homodyne or het-
erodyne detections, the accessible observable is the num-
ber of photons Nc = c†c and Nd = d†d at the output ports
of the BS [17].We are interested inmeasuring intensity cor-
relations between the two output radiation modes c and d
and analyzing its dependence on di�erent input states of
optical radiation. A suitable de�nition for an intensity cor-
relation function is given by

Γ =
〈
(
Nc − 〈Nc〉

)(
Nd − 〈Nd〉

)
〉√

Var(Nc) Var(Nd)
= 〈NcNd〉 − 〈Nc〉〈Nd〉√

Var(Nc) Var(Nd)
,

(2)
where the averages 〈 · · · 〉 are performed, in the Heisen-
berg picture, over the input state ρin and with Var(N) =
〈N2〉 − 〈N〉2 being the variance associated with the mean
number of photons. The de�nition in Eq. (2) quanti�es the
amount of intensity correlation (Γ > 0) or anti-correlation
(Γ < 0) between the output light beams whenever the two
statistics are not independent 〈NcNd〉 ≠ 〈Nc〉〈Nd〉.
In order to obtain a very general expression of Γ, we com-
pute the number operators of the output modes Nc and Nd
in the Heisenberg representation:

Nc = τNa + (1 − τ)Nb +
√
τ(1 − τ)(xaxb + papb) (3a)

Nd = τNb + (1 − τ)Na −
√
τ(1 − τ)(xaxb + papb). (3b)

We introduced the quadrature operators of the input
modes k = a, b as

xk(ϕk) =
k e−iϕk + k† eiϕk√

2
(4)

which correspond, respectively, to the position xk and to
momentum pk, for ϕk = 0 and for ϕk = π/2.
Now we have all the ingredients necessary to the compu-
tation of the intensity correlation function (2), but its ex-
pression for a generic input state is somehow complicated
and not insightful. In the following we will consider large
classes of states that give rise to intensity correlations ob-
taining simple forms of Eq. (2).

Figure 1: (Color online) Phase-space representation (Wigner func-
tions) of a Fock state |n〉 (with n = 2) (a), a PHAV state with 〈N〉 = 2
(b) and a thermal state with 〈N〉 = 2 (c).

3 Phase-space symmetric states
In this Section we focus our analysis on the class of phase-
space symmetric states which we de�ne as the symmetric
mixture of a state ρ0 and the π-shifted state ρπ = Πρ0Π:

ρin =
ρ0 + ρπ

2 (5)

where Π = exp(i πNk) is the parity operator. The e�ect of
the operator Π on a bosonic mode k = a, b is to reverse its
parity:

Π k Π =
∑
n

√
n e−iπk

†k|n〉〈n + 1|eiπk
†k = −k (6)

and the same holds for the corresponding Hermitian
Π k† Π = −k†. The corresponding Wigner function is
symmetric with respect to the origin of the phase space
{Re(βk), Im(βk)} as

Wρin (βk) =
Wρ0 (βk) +Wρ0 (−βk)

2 , (7)

from which the name given to this class of states. Due to
Eq. (6) the average value of an observable depending on
an odd number of annihilation and creation operators k
and k† over the state ρπ is 〈fodd(k, k†)〉ρπ = −〈fodd(k, k†)〉ρ0 ,
whereas for an even number of k and k† operators we have
〈feven(k, k†)〉ρπ = 〈feven(k, k†)〉ρ0 . Therefore the average val-
ues of such observables over the phase-space symmetric
state (5) are

〈fodd(k, k†)〉ρ = 0 (8a)
〈feven(k, k†)〉ρ = 〈feven(k, k†)〉ρ0 . (8b)
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Since the average values of observables like 〈xk(ϕk)〉,
〈xk(ϕk)Nk〉 and 〈Nkxk(ϕk)〉 (with k = a, b) are null, we can
simplify the expression of Eq. (2). As a consequence, it is
su�cient to have just one of the two input states ρa or ρb in
the form (5) to obtain a simpli�ed expression of the quan-
tities appearing in Eq. (2):

〈NcNd〉 − 〈Nc〉〈Nd〉
τ(1 − τ) = Var(Na) + Var(Nb) − 〈Xa,b〉 (9a)

Var(Nc)
τ(1 − τ) =

τ
1 − τ Var(Na) +

1 − τ
τ Var(Nb) + 〈Xa,b〉 (9b)

Var(Nd)
τ(1 − τ) =

τ
1 − τ Var(Nb) +

1 − τ
τ Var(Na) + 〈Xa,b〉 (9c)

where

〈Xa,b〉 ≡ 2〈Na〉〈Nb〉 + 〈Na〉 + 〈Nb〉 + 〈a2〉〈b†2〉 + 〈a†2〉〈b2〉.
(10)

In the following we consider of phase-symmetric states,
that are the phase-insensitive and phase-sensitive states.

4 Phase-insensitive states
Diagonal states in the Fock basis, namely ρPI =∑

n pn|n〉〈n|, are phase-insensitive as their representation
in phase-space, through the Wigner function, has only a
radial dependence (see Fig. 1):

WρPI (β) =
2
π e

−2|β|2
∞∑
n=0

(−1)npn Ln(4|β|2) (11)

with Ln(x) Laguerre polynomials. Fock states |nb〉 with
pn = δn,nb , thermal states with pn = 1

1+〈N(th)〉

(
〈N(th)〉

1+〈N(th)〉

)n
and phase-averaged (PHAV) states [14] with pn = e−|α|

2 |α|2n
n!

belong to this family of states and their corresponding
Wigner functions are shown in Fig. 1.
With just one of the input modes a or b prepared in
a phase-insensitive state, Eq. (10) reduces to 〈Xa,b〉 ≡
2〈Na〉〈Nb〉 + 〈Na〉 + 〈Nb〉, given the diagonal form of these
kind of states. We thus obtain simpli�ed expressions of
Eqs. (9) in terms of the Mandel-Q parameter, de�ned as
Qk = Var(Nk)/〈Nk〉 − 1 (with k = a, b). For example Eq.
(9a) becomes:

〈NcNd〉 − 〈Nc〉〈Nd〉
τ(1 − τ) = 〈Na〉Qa + 〈Nb〉Qb − 2〈Na〉〈Nb〉 (12)

and similar expressions can be obtained for the other
quantities. In this way the intensity correlations of the
output modes are related to the statistics of the input
states, via simple observable quantitieswhich can bemea-
sured by standard photon detectors commonly employed

� �� ��
〈��〉

-���

-���

-���

�
Γ

〈��〉= ���

〈��〉= ���

〈��〉= ���
〈��〉= ���
〈��〉= ���

Figure 2: (Color online) Plot of the intensity correlation function Γ
for a PHAV state on mode b and a coherent state (or a PHAV state
with the same statistics) on mode a, as a function of the average
photon number Na, for di�erent �xed energy Nb of the coherent
state.

in quantum optical experiments. Interesting features arise
considering just one input mode (say, mode b) in a phase-
insensitive state.
As a �rst example, we address the case of the vacuum state
|0〉b interacting at the BSwith a generic state ρa. The inten-
sity correlation function has a very simple expression and
uniquely depends on the Mandel-Q parameter associated
to the input state:

Γ =
√
τ(1 − τ)Qa√[

1 + τQa
][
1 + (1 − τ)Qa

] . (13)

A non-zero correlation arises whenever the state ρa dis-
plays super- or sub-Poissonian statistics, bringing to, re-
spectively, correlation (Qa > 0, e.g. for a thermal state) or
anti-correlation (Qa < 0, e.g. for a Fock state).
As a second signi�cative example we consider the case in
which a PHAV state (on themode b) is mixed with a coher-
ent state or another PHAV state (on themode a), given that
the two possess the same features from the point of view of
the statistics (samemeanphotonnumber andvariance). In
this case the two outgoing light beams are anti-correlated,
independently on the transmittance τ of the BS, as Eq. (12)
becomes negative −2〈Na〉〈Nb〉 < 0, provided that the cor-
responding Mandel-Q parameters are Qa = Qb = 0. In Fig.
2we show that the amount of anti-correlation between two
PHAV states increases with the average photon number of
the two input modes Na and Nb.
Another interesting case is provided by a thermal state
mixed at the BS with a local oscillator in a coherent state.
In particular, the Mandel-Q parameter of a thermal state is
Qb = 〈N(th)

b 〉and, therefore Eq. (12) becomes 〈N(th)
b 〉
(
〈N(th)

b 〉−
2〈Na〉

)
. As one may expect, the strongest correlation is

achieved when a thermal state is mixed at the BS with the
vacuum. The presence of a local oscillator of energy 〈Na〉
drives down the correlations, up to a condition of zero cor-
relation achieved for 2〈Na〉 = 〈N(th)

b 〉 (see Fig. 3). If the en-
ergy of the coherent state is increased the outgoing light
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Figure 3: (Color online) Plot of the intensity correlation function Γ
for a thermal state on mode b and a coherent state on mode a, as
a function of the coherent state (a) and thermal state (b) average
photon numbers. The dashed black curve represent anti-correlation
for equally increasing energy of the two input states 〈Na〉 = 〈N(th)

b 〉.
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Figure 4: (Color online) Plot of the intensity correlation function Γ
for a Fock state |nb〉 and a coherent state (or a PHAV state with the
same statistics) on mode a, as a function of the average photon
number 〈Na〉, for di�erent number of photons nb of the Fock state.

beams become anti-correlated. The condition for complete
anti-correlation is ful�lledwhen 〈N(th)

b 〉 < 2〈Na〉. In Fig. 3 is
highlighted (dashed-dotted black curve) the case in which
the average photon number of the thermal and the coher-
ent states are equal 〈Na〉 = 〈N(th)

b 〉.
As last example of phase-insensitive state, we consider a
Fock number state |nb〉 on mode b with Qb = −1, mixed
at the BS with a local oscillator in a coherent state |α〉 on
mode a with Qa = 0. Now the two outgoing light beams
show anti-correlation, as Eq. (12) becomes −nb(1 + 〈Na〉) <
0, as shown in the plot of Fig. 4. In the limit 〈Na〉 � 1 the
correlation function becomes Γ = −nb/(1 + nb) for a bal-
anced BS (τ = 1/2).

Figure 5: (Color online) Phase-space representation (Wigner func-
tion) of a bracket state with 〈N〉 = |α|2 = 2 and γ = π/2.

5 Phase-sensitive states
The �rst phase-sensitive state we consider is the classical
bracket state, de�ned as [16]

ρ =
γ/2∫

−γ/2

dψ
γ

||α|eiψ〉〈|α|eiψ| + | − |α|eiψ〉〈−|α|eiψ|
2 (14)

which is a phase-space symmetric state (Fig. 5) with ρ0 =∫ γ/2
−γ/2

dψ
γ ||α|e

iψ〉〈|α|eiψ|. In the limiting cases of γ = π and
γ → 0 it corresponds, respectively, to a PHAV state and to
a mixture of coherent states | ± |α|〉〈±|α||.
According to the rules (8) derived for a generic phase-space
symmetric state, the only average values di�erent from
zero are the following

〈N〉ρ0 = Var(N)ρ0 = |α|2 (15a)

〈x2(ϕ)〉ρ0 =
1
2 + |α|2

[
1 + sinc(γ) cos(2ϕ)

]
. (15b)

The correlation function (2) for two bracket states at the
inputs of a balanced BS with τ = 1/2, is:

Γ = − 〈Na〉〈Nb〉[1 + sinc(γa)sinc(γb)]
〈Na〉 + 〈Nb〉 + 〈Na〉〈Nb〉[1 + sinc(γa)sinc(γb)]

(16)

which displays anti-correlation for every value of the pa-
rameters characterizing the two bracket states, as shown
in Fig. 6.We note that anti-correlation ismore pronounced
whenboth phase noise in the bracket state is reduced (γ →
0) and its average intensity 〈N〉 increases.

As a second representative example of phase-sensitive
states onmode a,we consider a quantumstate, namely the
squeezed vacuum state:

|r〉 = 1√µ

∞∑
n=0

(
ν
2µ

)n √(2n)!
n! |2n〉 (17)
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Figure 6: (Color online) (a) Input states: two bracket states with
〈Nb〉 = 1, at the limiting cases of a mixture of symmetric coherent
states (γ = 0) and PHAV states (γ = π). (b) Input states: two bracket
states with 〈Nb〉 = 1, 10 at a �xed range of phases of integration
γ = π/4.

where µ = cosh r and ν = sinh r (with r ∈ R). The squeezed
state is characterized by its average intensity and variance
as follows

〈Na〉 = sinh2 r (18a)
Var(Na) = 2〈Na〉

(
〈Na〉 + 1

)
. (18b)

In order to investigate the intensity correlations after the
BS, we consider two relevant cases for the input state
on mode b: a Fock state |nb〉 and a coherent state |β〉 =
|
√
〈Nb〉 eiϕ〉. In the �rst case, since we have a phase-

insensitive state on mode b, Eq. (10) reduces to

〈Xa,b〉 = 2〈Na〉〈Nb〉 + 〈Na〉 + 〈Nb〉,

whereas in the presence of a coherent state we have

〈Xa,b〉 =2〈Na〉〈Nb〉 + 〈Na〉 + 〈Nb〉

+ 2
√
〈Na〉

(
〈Na〉 + 1

)
〈Nb〉 cos(2ϕ).

In Fig. 7 and Fig. 8 we plot the behavior of the intensity
correlation function Γ as a function of the involved pa-
rameters. We note that, also in these cases, the outgoing
beamsmaydisplay correlation or anti-correlation. The cor-
responding thresholds for vanishing correlations can be
easily computed. In the case in which a squeezed state is
mixed with a Fock state, the intensity correlations vanish
when 〈Nb〉 = 〈Na〉. When the squeezed state is mixed with
the coherent state the threshold is:

〈Nb〉 =
〈Na〉

(
1 + 2〈Na〉

)
2
[
〈Na〉 +

√
〈Na〉(1 + 〈Na〉) cos(2ϕ)

] .

� � � �
〈��〉

-���

-���

���

Γ

Figure 7: (Color online) Plot of the intensity correlation function
Γ for a squeezed state |r〉 on mode a and a Fock state |nb〉, as a
function of the average photon number 〈Na〉, for τ = 1/2. From top
to bottom nb = 1, 2, 3, 4.
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Figure 8: (Color online) (a) Plot of the intensity correlation function
Γ for a squeezed state |r〉 on mode a and a coherent state |β〉 on
mode b, as a function of the corresponding average photon num-
bers 〈Na〉 and 〈Nb〉, with �xed ϕ = 0 and τ = 1/2. The horizontal
green plane corresponds to Γ = 0. (b) Plot of the intensity corre-
lation function Γ as a function of the coherent state phase ϕ, for
〈Na〉 = 1 and, from bottom to top, 〈Nb〉 = 0.1, 1, 10.

Wenote that in the last case the threshold exists onlywhen
the coherent state phase satis�es the condition cos(2ϕ) >
−
√
〈Na〉/

(
1 + 〈Na〉

)
.

6 Concluding remarks
In this paper we investigated the generation of intensity
correlations by mixing two optical states at a BS. More
in details, we found analytical expressions for intensity
correlation functions in the case of one or both the in-
puts prepared in phase-space symmetric states. We have
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shown that there are conditions leading to correlation or
anti-correlation at the outputs and, where possible, we
obtained the analytical expression of the threshold corre-
sponding to vanishing correlations as a function of the in-
put energies. Our work can be interesting for further inves-
tigations of intensity correlations also related to the birth
of quantum correlations, both from the theoretical and ex-
perimental points of view.
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