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Abstract. Decoherence may be due to the ¯ uctuations of some classical
variable or parameter of a system, and not only to the entanglement with the
environment. Here we derive a model-independent formalism for this non-
dissipative decoherence, which is then applied to describe the decoherence
observed in some recent Rabi oscillation experiments.

1. Introduction
Decoherence is the rapid transformation of a pure linear superposition state

into the corresponding statistical mixture. This process does not preserve the

purity of the state, and therefore it has to be described in terms of a non-unitary

evolution. The most common approach is the so-called environment-induced

decoherence [1] which is based on the consideration that it is extremely diæ cult

to isolate perfectly a system from uncontrollable degrees of freedom (the ` envir-
onment’ ). The non-unitary evolution of the system of interest is obtained by

considering the interaction with these uncontrolled degrees of freedom and tracing

over them. In this approach, decoherence is caused by the entanglement of the two

states of the superposition with two approximately orthogonal states of the

environment; the system energy is usually not conserved and the interaction

with the environment also accounts for the irreversible thermalization of the
system of interest. This approach is inevitably model-dependent, because one has

to assume a model Hamiltonian for the environment and the interaction between

system and environment. This modelization, and therefore any quantitative

prediction, becomes problematic whenever the environmental degrees of freedom

responsible for decoherence are not easily recognizable.
Decoherence is not always necessarily due to the entanglement with an

environment, but it may be due, as well, to the ¯ uctuations of some classical

parameter or internal variable of the system. This kind of decoherence is present

even in isolated systems, where environment-induced decoherence can be ne-

glected. In these cases the system energy is conserved, and one has a diå erent form
of decoherence, which we shall call ` non-dissipative decoherence’ . In such cases,

every single experimental run is characterized by the usual unitary evolution
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generated by the Hamiltonian system. However, de® nite statistical prediction is
obtained only by repeating the experiment many times and this is when decoher-

ence takes place, because each run corresponds to a diå erent random value or

stochastic realization of the ¯ uctuating classical variable. The experimental results

correspond therefore to an average over these ¯ uctuations and they will describe in

general an eå ective non-unitary evolution.

In this paper we shall present a quite general theory of non-dissipative
decoherence for isolated systems which can be applied for two diå erent kinds of

¯ uctuating variables or parameters: the case of a random evolution time and the

case of a ¯ uctuating Rabi frequency yielding a ¯ uctuation of the Hamiltonian. In

both cases one has random phases exp …¡iEnt= -h† in the energy eigenstates basis

that, once averaged over many experimental runs, lead to the decay of oå -diagonal
matrix elements of the density operator, while leaving the diagonal ones un-

changed.

The outline of the paper is as follows. In section 2 we shall derive the theory

under general assumptions, following closely the original derivation presented in

[2, 3]. In section 3 we shall apply this theory in order to describe the decoherence
eå ects observed in a Rabi oscillations experiment based on the resonant interaction

between a Rydberg atom and a microwave cavity mode [4]. In section 4 we shall

apply our approach to a Rabi oscillation experiment performed with a trapped ion

[5] and section 5 gives concluding remarks.

2. The general formalism
The formalism describing non-dissipative decoherence of isolated systems has

been derived in [2, 3] by considering the case of a system with random evolution

time. The evolution time may be random because of the ® nite time needed to

prepare the initial state of the system, because of the randomness of the detection

time, as well as many other reasons. For example, in cavity QED experiments, the

evolution time is the interaction time, which is determined by the time of ¯ ight of
the atoms within the cavity and this time can be random due to atomic velocity

dispersion.

In these cases, the experimental observations are not described by the usual

density matrix of the whole system »…t†, but by its time averaged counterpart [2, 3]

-»…t† ˆ
…1

0

dt 0P…t;t 0†»…t 0†; …1†

where »…t 0† ˆ exp f¡iLt 0g»…0† is the usual unitarily evolved density operator from

the initial state and L . . . ˆ ‰H ; . . .Š= -h. Therefore t 0 denotes the random evolution

time, while t is a parameter describing the usual ` clock’ time. Using equation (1),

one can write

-»…t† ˆ V…t†»…0†; …2†
where

V…t† ˆ
…1

0

dt 0P…t; t 0† exp …¡iLt 0† …3†

is the evolution operator for the averaged state of the system. Following [2, 3], we

determine the function P…t; t 0† by imposing the following plausible conditions: (i)
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-»…t† must be a density operator, i.e. it must be self-adjoint, positive-de® nite, and
with unit-trace. This leads to the condition that P…t;t 0† must be non-negative and

normalized, i.e. a probability density in t 0 so that equation (1) is a completely

positive mapping. (ii) V…t† satis® es the semigroup property V…t1 ‡ t2† ˆ
V…t1†V…t2†, with t1 ;t2 ¶ 0.

The semigroup condition is satis® ed by an exponential dependence on t

V…t† ˆ V1f g¡t=½2 ; …4†

where ½2 naturally appears as a scaling time. A solution satisfying all the conditions

we have imposed can be found by separating V1 in its hermitian and antihermitian

part V1 ˆ A ‡ iB and by considering the Gamma function integral identity [6]

…V1†¡t=½2 ˆ A ‡ iB… †¡t=½2 ˆ 1

G
t

½2
… †

…1

0

d¶¶…t=½2†¡1 exp …¡¶A† exp …¡i¶B†: …5†

Now the right-hand side of equation (5) can be identi® ed with the right-hand side

of equation (3) if we impose the following conditions: ¶ ˆ t 0=½1, where ½1 is another
scaling time, generally diå erent from ½2; B ˆ L½1 in order to make the exponential

terms identical, and A ˆ 1 in order to get a normalized probability distribution

P…t;t 0†. This choice yields the following expressions for the evolution operator for

the averaged density matrix V…t† and for the probability density P…t;t 0 ;½1 ;½2† [2, 3]

V…t† ˆ 1‡ iL½1… †¡t=½2 ; …6†

P…t;t 0 ;½1 ;½2† ˆ exp …¡t 0=½1†
½1

…t 0=½1†…t=½2†¡1

G…t=½2† : …7†

Notice that the ordinary quantum evolution is recovered when ½1 ˆ ½2 ˆ ½ ! 0; in

this limit P…t ;t 0 ;½1 ;½2† ! ¯…t ¡ t 0† so that -»…t† ˆ »…t† and V…t† ˆ exp f¡iLtg is the
usual unitary evolution. The semigroup condition leads to the form of the

probability distribution P…t;t 0 ;½1 ;½2† we use to perform the average on the

¯ uctuating evolution times. However, notice that this probability distribution

depends on both the two scaling times ½1 and ½2 only apparently. In fact, if we

change variable in the time integral, t 00 ˆ …½2=½1†t 0, it is possible to rewrite the
integral expression for V…t† in the following way

V…t† ˆ 1‡ iL½1… †¡t=½2 ˆ
…1

0

dt 00P…t;t 00 ;½2† exp ‰¡iL…½1=½2†t 00Š; …8†

where

P…t ;t 00 ;½2† ˆ exp …¡t 00=½2†
½2

…t 00=½2†…t=½2†¡1

G…t=½2† : …9†

This probability density depends only on ½2. However equation (8) contains an

eå ective rescaled time evolution generator Leff ˆ L…½1=½2†. The physical meaning
of the probability distribution of equation (9), of the rescaled evolution operator,

and of the two scaling times can be understood if we consider the following simple

example. Let us consider a system with Hamiltonian H…t† ˆ f…t†H0, where
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f…t† ˆ
X1

nˆ0

³…t ¡ n½2†³…n½2 ‡ ½1 ¡ t† …10†

(³…t† is the Heaviside step function), that is, a system with Hamiltonian H0 which
is periodically applied for a time ½1, with time period ½2 (½2 ¶ ½1 ) and which is

` turned oå ’ otherwise. The unitary evolution operator for this system is

U…t† ˆ exp ‰¡iF…t†L0Š, where L0 ˆ ‰H0 ; . . .Š and

F…t† ˆ
t‡ n…½1 ¡ ½2†; n½2 µ t µ n½2 ‡ ½1 ;

…n ‡ 1†½1 ; n½2 ‡ ½1 µ t µ …n ‡ 1†½2 ;

(

…11†

which can be however well approximated by the ` rescaled’ evolution operator
Ueff…t† ˆ exp ‰¡iL0t…½1=½2†Š. In fact, the maximum relative error in replacing F…t†
with t…½1=½2† is …½2 ¡ ½1†=t and becomes negligible with large times (see ® gure 1).

This fact suggests interpreting the time average of equation (8) as an average over

unitary evolutions generated by L, taking place randomly in time, with mean time

width ½1, and separated by a mean time interval ½2. This interpretation is

con® rmed by the fact that when t ˆ k½2, for integer k, the probability distribution
P…t;t 00 ;½2† of equation (9) is a known statistical distribution giving the probability

density that the waiting time for k independent events is t 00 when ½2 is the mean

time interval between two events. A particularly clear example of the random

process in time implied by the above equations is provided by the micromaser [7]

in which a microwave cavity is crossed by a beam of resonant atoms with mean
injection rate R ˆ 1=½2, and a mean interaction time within the cavity correspond-

ing to ½1. In micromaser theory, the non-unitary operator M describing the

eå ective dynamics of the microwave mode during each atomic crossing replaces

the evolution operator exp …¡iL½1† [2]. Another example of interrupted evolution

is provided by the experimental scheme proposed in [8] for the quantum non-
demolition (QND) measurement [9] of the photon number in a high-Q cavity. In

this proposal, the photon number is determined by measuring the phase shift

induced on a train of Rydberg atoms sent through the microwave cavity with mean
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Figure 1. The function F…t† de® ned in equation (11) (full line) is plotted as a function
of time (expressed in arbitrary units) and compared with its ` linear approximation’ ,
the rescaled time t½1=½2 (dashed line). The relative error between them is given by
…½2 ¡ ½1†=t and is negligible at large times t.



rate 1=½2, and interacting dispersively with the cavity mode. These two examples
show that the two scaling times ½1 and ½2 have not to be considered as new

universal constants, but as two characteristic times of the system under study.

However, in most cases, one does not have an interrupted evolution as in

micromaser-like situations, but a standard, continuous evolution generated by a

Hamiltonian H. In this case the ` scaled’ eå ective evolution operator has to coincide

with the usual one, L, and this is possible only if ½1 ˆ ½2 ˆ ½ . In this case ½ is
simply the parameter characterizing the strength of the ¯ uctuations of the random

evolution time. This meaning of the parameter ½ in the case of equal scaling times

is con® rmed by the expressions of the mean and the variance of the probability

distribution of equation (7)

ht 0i ˆ ½1

½2
t ; …12†

¼2…t 0† ˆ ht 02i ¡ ht 0i2 ˆ ½2
1

½2
t: …13†

When ½1 ˆ ½2, the mean evolution time coincides with the ` clock’ time t, while the

variance of the evolution time becomes ¼2…t 0† ˆ t½ . In the rest of the paper we shall

always consider the standard situation of an isolated system with Hamiltonian H,

continuously evolving in time, and we shall always assume ½1 ˆ ½2 ˆ ½ .
When ½ ˆ 0, V…t† ˆ exp f¡iLtg is the usual unitary evolution. For ® nite ½ ,

conversely, the evolution equation (6) describes a decay of the oå -diagonal matrix

elements in the energy representation, whereas the diagonal matrix elements

remain constant, i.e. the energy is still a constant of motion. In fact, in the energy

eigenbasis, equations (2) and (6) yield

-»n;m…t† ˆ 1

…1‡ i!n ;m½1†t=½2
»n ;m…0†

ˆ exp …¡i¸n;mt†
…1 ‡ !2

n;m½2
1†t=2½2

ˆ exp…¡®n;mt† exp …¡i¸n;mt†»n ;m…0†; …14†

where !n;m ˆ …En ¡ Em†= -h and

®n;m ˆ 1

2½2
log 1 ‡ !2

n;m½2
1 ; …15†

¸n;m ˆ 1

½2
arctan !n;m½1… : …16†

This means that, in general, the eå ect of the average over the ¯ uctuating evolution

time yields an exponential decay and a frequency shift !n;m ! ¸n;m of every term

oscillating in time with frequency !n ;m.

The phase diå usion aspects of the present approach can also be seen if the
evolution equation of the averaged density matrix -»…t† is considered. In fact, by

diå erentiating with respect to time equation (2) and using (6), one gets the

following master equation for -»…t† (we consider the case ½1 ˆ ½2 ˆ ½ )
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_-»…t† ˆ ¡ 1

½
log 1‡ iL½… † -»…t†; …17†

expanding the logarithm at second order in L½, one obtains

_-»…t† ˆ ¡ i
-h

H ; -»…t†‰ Š ¡ ½

2 -h2
H ; H ; -»…t†‰ Š‰ Š; …18†

which is the well-known phase-destroying master equation [10]. Hence
equation (17) appears as a generalized phase-destroying master equation taking

into account higher order terms in ½ . Notice, however, that the present approach is

diå erent from the usual master equation approach in the sense that it is model-

independent and no perturbative and speci® c statistical assumptions are made.

The solution of equation (18) gives an expression for -»n;m…t† similar to that of

equation (14), but with [10]

®n;m ˆ
!2

n;m½

2
; …19†

¸n;m ˆ !n;m ; …20†
which are nonetheless obtained also as a ® rst-order expansion in ½1 ˆ ½2 ˆ ½ of

equations (15) and (16). The opposite limit !m;n½ ¾ 1 has been discussed in detail

in [2].

Finally a comment concerning the form of the evolution operator for the

averaged density matrix V…t† of equation (6). At ® rst sight it seems that V…t† is in
general a multivalued function of the Liouvillian L, and that V…t† is uniquely

de® ned only when t=½2 ˆ k, k integer. However, this form for V…t† is a conse-

quence of the time average over P…t;t 0 ;½1 ;½2† of equation (7), which is a properly

de® ned, non-negative probability distribution only if the algebraic de® nition of the

power law function …t 0=½1†…t=½2†¡1
is assumed. This means that in equation (6) one

has to take the ® rst determination of the power-law function and in this way V…t† is

univocally de® ned.

3. Rabi oscillations in a high-Q cavity
A ® rst experimental situation in which the above formalism can be applied is

the Rabi oscillation experiment of [4], in which the resonant interaction between a

quantized mode in a high-Q microwave cavity (with annihilation operator a) and

two circular Rydberg states (jei and jgi) of a Rb atom has been studied. This

interaction is well described by the usual Jaynes± Cummings [11] model, which in
the interaction picture reads

H ˆ -hOR jeihgja ‡ jgihejay… ; …21†
where OR is the Rabi frequency.

The Rabi oscillations describing the exchange of excitations between atom and

cavity mode are studied by injecting the velocity-selected Rydberg atom, prepared

in the excited state jei, in the high-Q cavity and measuring the population of the

lower atomic level g, Peg…t†, as a function of the interaction time t, which is varied
by changing the Rydberg atom velocity. Diå erent initial states of the cavity mode

have been considered in [4]. We shall restrict ourselves only to the case of vacuum

state induced Rabi oscillations, where the decoherence eå ect is particularly

2204 R. Bonifacio et al.



evident. The Hamiltonian evolution according to equation (21) predicts in this
case Rabi oscillations of the form

Peg…t† ˆ 1
2 1 ¡ cos 2ORt… †… †: …22†

Experimentally instead, damped oscillations are observed, which are well ® tted by

Pexp
eg …t† ˆ 1

2 1 ¡ exp …¡® t†cos 2ORt… †… †; …23†

where the decay time ® tting the experimental data is ® ¡1 ˆ 40 ms [12] and the

corresponding Rabi frequency is OR=2º ˆ 25 kHz (see ® gure 2). This decay of

quantum coherence cannot be associated with photon leakage out of the cavity
because the cavity relaxation time is larger (220 ms) and also because in this case

one would have an asymptotic limit Pexp
eg …1† ˆ 1. Therefore decoherence in this

case has certainly a non-dissipative origin, and dark counts of the atomic detectors,

dephasing collisions with background gas or stray magnetic ® elds within the cavity

have been suggested as possible sources of the damped oscillations [4, 12].

The damped behaviour of equation (23) can be easily obtained if one applies

the formalism described above. In fact, from the linearity of equation (1), one has
that the time averaging procedure is also valid for mean values and matrix elements

of each subsystem. Therefore one has

-
Peg…t† ˆ

…1

0

dt 0P…t;t 0†Peg…t 0†: …24†

Using equations (2), (6), (7) and (22), equation (24) can be rewritten in the same

form of equation (23)

-
Peg…t† ˆ 1

2
1 ¡ exp …¡® t†cos ¸t… †… †; …25†

where, using equations (15) and (16),

® ˆ 1

2½
log 1‡ 4O2

R½2… ; …26†

¸ ˆ 1

½
arctan 2OR½… †: …27†
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Figure 2. The Rabi oscillations of the transition probability Peg…t† as a function of time,
according to the ® tting function of equation (23).



If the characteristic time ½ is suæ ciently small, i.e. OR½ ½ 1, there is no phase
shift, ¸ ’ 2OR, and

® ˆ 2O2
R½ …28†

(see also equations (19) and (20)). The fact that in [4] the Rabi oscillation

frequency essentially coincides with the theoretically expected one, suggests that

the time ½ characterizing the ¯ uctuations of the interaction time is suæ ciently

small so that it is reasonable to use equation (28). Using the above values for ® and
OR, one can derive an estimate for ½ , thus obtaining ½ ’ 0:5 ms. This estimate is

consistent with the assumption OR½ ½ 1 we have made, but, more importantly, it

turns out to be comparable to the experimental value of the uncertainty in the

interaction time. In fact, the ¯ uctuations of the interaction time are mainly due to

the experimental uncertainty of the atomic velocity v, that is ¯t=t ’ ¯v=v ˆ 1%

(see [4]), and taking an average interaction time
-
t ’ 50 ms, one obtains

½ ’ ¯t ˆ -
t¯v=v ˆ 0:5 ms, which is just the estimate we have derived from the

experimental values. This simple argument supports the interpretation that the

decoherence observed in [4] is essentially due to the randomness of the interaction

time. In fact, in our opinion, the other eå ects proposed as possible sources of

decoherence, such as dark counts of the atomic detectors, dephasing collisions with
background gas or stray magnetic ® elds within the cavity, would give an overall,

time-independent, contrast reduction of the Rabi oscillations, diå erent from the

observed exponential decay.

Results similar to that of [4] have been very recently obtained by H. Walther’ s

group at the Max Planck Institut fuÈ r Quantenoptik, in a Rabi oscillation experi-
ment involving a high-Q microwave cavity mode resonantly interacting with

Rydberg atoms [13]. In this case, three diå erent initial Fock states jni of the

cavity mode, n ˆ 0 ;1 ;2, have been studied, and preliminary results show a good

quantitative agreement of the experimental data with our theoretical approach

based on the dispersion of the interaction times.

4. Rabi oscillation experiments in trapped ions
Another interesting Rabi oscillation experiment, performed on a diå erent

system, that is, a trapped ion [5], has recently observed a decoherence eå ect

which cannot be attributed to dissipation. In the trapped ion experiment of [5], the
interaction between two internal states (j "i and j#i) of a Be ion and the centre-of-

mass vibrations in the z direction, induced by two driving Raman lasers is studied.

In the interaction picture with respect to the free vibrational and internal

Hamiltonian, this interaction is described by the following Hamiltonian [14]

H ˆ -hOj "ih# j exp fi‰²…a exp …¡i!zt†‡ ay exp …i!zt†† ¡ ¯t‡ ¿g ‡ H:C:; …29†
where a denotes the annihiliation operator for the vibrations along the z direction,

!z is the corresponding frequency and ¯ is the detuning between the internal

transition and the frequency diå erence between the two Raman lasers. The Rabi

frequency O is proportional to the two Raman laser intensities and ² is the Lamb±
Dicke parameter [5, 14]. When the two Raman lasers are tuned to the ® rst blue

sideband, i.e. ¯ ˆ !z, Hamiltonian (29) predicts Rabi oscillations between j # ;ni
and j " ;n ‡ 1i (jni is a vibrational Fock state) with a frequency [14]
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On ˆ O
exp …¡²2=2†
…n ‡ 1†1=2

²L1
n…²2†; …30†

where L1
n is the generalized Laguerre polynomial. These Rabi oscillations have

been experimentally veri® ed by preparing the initial state j # ;ni, (with n ranging

from 0 to 16) and measuring the probability P#…t† as a function of the interaction

time t, which is varied by changing the duration of the Raman laser pulses. Again,
as in the cavity QED experiment of [4], the experimental Rabi oscillations are

damped and well ® tted by [5, 14]

P#…n ;t† ˆ 1
2 1 ‡ exp …¡®nt† cos 2Ont… †… †; …31†

where the measured oscillation frequencies On are in very good agreement with the

theoretical prediction (30) corresponding to the measured Lamb± Dicke parameter

² ˆ 0:202 [5]. As concerns the decay rates ®n, the experimental values are ® tted in

[5] by

®n ˆ ®0…n ‡ 1†0:7 ; …32†
where ®0 ˆ 11:9 kHz. This power-law scaling has attracted the interest of a
number of authors and it has been investigated in [15, 16], even if a clear

explanation of this behaviour of the decay rates is still lacking. Conversely, the

scaling law (32) can be simply accounted for in the previous formalism if we

consider the small ½ limit of equation (28), which is again suggested by the fact that

the experimental and theoretical predictions for the frequencies On agree. In fact,

the n-dependence of the theoretical prediction of equation (30) for ² ˆ 0:202 is well

approximated, within 10%, by the power-law dependence (see ® gure 3)

On ’ O0…n ‡ 1†0:35
; …33†

so that, using equation (28), one has immediately the power-law dependence

…n‡ 1†0:7 of equation (32). The value of the parameter ½ can be obtained by

matching the values corresponding to n ˆ 0, and using equation (28), that is
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½ ˆ ®0=2O2
0 ’ 1:5 £ 10¡8 s, where we have used the experimental value

O0=2º ˆ 94 kHz.

However, this value of the parameter ½ cannot be explained in terms of some

interaction time uncertainty, such as the time jitter of the Raman laser pulses,

which is experimentally found to be much smaller [17]. In this case, instead, the

observed decoherence can be attributed, as already suggested in [14± 16], to the

¯ uctuation of the Raman laser intensities, yielding a ¯ uctuating Rabi frequency
parameter O…t† of the Hamiltonian (29). In this case, the evolution is driven by a

¯ uctuating Hamiltonian H…t† ˆ -hO…t† ~H, where ~H ˆ H=O in equation (29), so that

»…t† ˆ exp ¡i ~L

… t

0

d¹O…¹† »…0† ˆ exp ‰¡i ~LA…t†Š»…0†; …34†

where ~L ˆ ‰ ~H ; . . .Š= -h, and we have de® ned the positive dimensionless random
variable A…t† ˆ

„ t

0 d¹O…¹†, which is proportional to the pulse area. It is now easy to

understand that the physical situation is analogous to that characterized by a

random interaction time considered in the preceding sections, with L replaced by
~L and t 0 by A…t†. It is therefore straightforward to adapt the formalism developed

in section 2 to this case, in which the ¯ uctuating quantity is the pulse area A,

yielding again random phases in the energy basis representation. In analogy with

equation (1), one considers an averaged density matrix

-»…t† ˆ
…1

0

dAP…t;A† exp …¡i ~LA†»…0†: …35†

Imposing again that -»…t† must be a density operator and the semigroup property,

one ® nds results analogous to equations (6) and (7)

V…t† ˆ 1 ‡ i ~LO½… ¡t=½
; …36†

P…t;A† ˆ exp …¡A=O½†
O½

…A=O½†…t=½†¡1

G…t=½† : …37†

Here, the parameters O and ½ are introduced as scaling parameters, but they have a

clear meaning, as can be easily seen by considering the mean and the variance of

the probability distribution of equation (37),

hAi ˆ Ot ; …38†

¼2…A† ˆ hA2i ¡ hAi2 ˆ O2t½; …39†
implying that O has now to be considered as a mean Rabi frequency and that ½
quanti® es the strength of A ¯ uctuations. It is interesting to note that these ® rst two

moments of P…t;A† determine the properties of the ¯ uctuating Rabi frequency

O…t†, which can be written as

O…t† ˆ O‡ ¹…t†; …40†
h¹…t†i ˆ 0; h¹…t†¹…t 0†i ˆ O2½¯…t ¡ t 0†; …41†

that is, the Rabi frequency O…t† is a white, non-gaussian (due to the non-gaussian
form of P…t ;A†) stochastic process. In fact, the semigroup assumption we have

made implies a Markovian treatment in which the spectrum of the laser intensity

¯ uctuations is ¯ at in the relevant frequency range. This in particular implies that

2208 R. Bonifacio et al.



we are neglecting the dynamics at small times, of the order of the correlation time
of the laser intensity ¯ uctuations.

The estimated value of ½ gives a reasonable estimate of the pulse area

¯ uctuations, since it corresponds to a fractional error of the pulse area

‰¼2…A†Š1=2=hAi ˆ …½=t†1=2
of 10% for a pulse duration of t ˆ 1 ms, and which is

decreasing for increasing pulse durations.

The present analysis shows many similarities with that of [15] which also tries
to explain the decay of the Rabi oscillations in the ion trap experiments of [5] in

terms of laser intensity ¯ uctuations. The authors of [15] in fact use a phase

destroying master equation coinciding with the second-order expansion (18) of our

generalized master equation of equation (17) (see equation (16) of [15] with the

identi® cations G $ H= -h and G $ ½ ) and moreover derive the same numerical
estimate for the pulse area ¯ uctuation strength G $ ½ . Despite these similarities,

they do not recover the scaling (32) of the decay rates ®n only because they do

not use the general expression of the Rabi frequency (30) (and which is well

approximated by the power law (33)), but its Lamb± Dicke limit On ˆ O0…n‡ 1†0:5,

which is valid only when ² ½ 1. There is however another, more fundamental,
diå erence between our approach and that of [15]. They assume from the beginning

that the laser intensity ¯ uctuations have a white and gaussian character, while we

make no a priori assumption on the statistical properties of the pulse area A. We

derive these properties, i.e. the probability distribution (37), only from the

semigroup condition, and it is interesting to note that this condition yields a

gaussian probability distribution for the pulse area only as a limiting case. In fact,
from equation (37) one can see that P…t ;A† tends to become a gaussian with the

same mean value Ot and the same width O2½t only in the large time limit t=½ ¾ 1

P…t ;A†t¾½ ’ 1

…2ºO2t½†1=2
exp ¡…A ¡ Ot†2

2O2t½

( )

: …42†

The non-gaussian character of P…t;A† can be traced back to the fact that P…t;A†
must be de® nite and normalized in the interval 0 < A < 1 and not in

¡1 < A < ‡1. Notice that at t ˆ ½, equation (37) assumes the exponential

form P…t;A† ˆ exp …¡A=O½†=O½. Only at large times t does the random variable

A become the sum of many independent contributions and assume the gaussian

form.

Due to the non-gaussian nature of the random variable A, we ® nd that the more
generally valid phase-destroying master equation is given by equation (17) (with L
replaced by O ~L). The predictions of equation (17) signi® cantly depart from its

second-order expansion in L½ , equation (18), corresponding to the gaussian limit,

as soon as ½ becomes comparable with the typical time scale of the system under

study, which, in the present case, is the inverse of the Rabi frequency.
The present analysis of the Rabi oscillation experiment of [5] can be repeated

for the very recent experiment with trapped ions performed in Innsbruck [18], in

which Rabi oscillations involving the vibrational levels and an optical quadrupole

transition of a single 40Ca‡ ion have been observed. Damped oscillations corre-

sponding to initial vibrational numbers n ˆ 0 and n ˆ 1 are reported. From the
data with n ˆ 0, O0=2º ˆ 21 kHz and ®0 ˆ 1 kHz, we get ½ ’ ®0=2O2

0 ’ 3 £ 10¡8 s

and this estimate is consistent with attributing again the decoherence to the

¯ uctuations of the Rabi frequency caused by laser intensity ¯ uctuations.
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5. Concluding remarks
Decoherence is not always due to the entanglement with an environment, but it

may be due, as well, to the ¯ uctuations of some classical parameter or internal

variable of a system. This is a diå erent form of decoherence, which is present even

in isolated systems, and that we have called non-dissipative decoherence. In this

paper we have presented a model-independent theory for non-dissipative deco-

herence, which can be applied in the case of a random evolution time or in the case
of a ¯ uctuating Hamiltonian. This approach proves to be a ¯ exible tool, able to

give a quantitative understanding of the decoherence caused by the ¯ uctuations of

classical quantities. In fact, in this paper we have given a simple and uni® ed
description of the decoherence phenomenon observed in recent Rabi oscillation

experiments performed in a cavity QED con® guration [4] and on a trapped ion [5].
In particular, this approach has allowed us to explain for the ® rst time in simple

terms, the power-law scaling of the coherence decay rates of equation (32),

observed in the trapped ion experiment.

The relevant aspect of the approach applied here, and introduced in [2], is its

model independence. The formalism is in fact derived starting from few, very
general assumptions: (i) the average density matrix -»…t† has all the usual properties

of a density matrix; (ii) the semigroup property for the time evolution generator

V…t† for -»…t†. With this respect, this approach seems to provide a very general

description of non-dissipative decoherence, in which the random properties of the

¯ uctuating classical variables are characterized by the two, system-dependent, time

parameters ½1 and ½2. As we have seen in section 2, in the cases where one has a
standard, continuous evolution, the two times coincide ½1 ˆ ½2 ˆ ½ . Under ideal

conditions of no ¯ uctuating classical variable or parameter, one would have ½ ˆ 0,

and the usual unitary evolution of an isolated system in quantum mechanics would

be recovered. However, the generality of the approach suggests in some way the

possibility that the parameter ½ , even though system dependent, might have a
lower non-zero limit, which would be reached just in the case of no ¯ uctuations of

experimental origin. This would mean a completely new description of time in

quantum mechanics. In fact, the evolution time of a system t 0 (and not the ` clock’

time t) would become an intrinsically random variable with a well-de® ned

probability distribution, without the diæ culty of introducing an evolution time
operator. In [2] a relation of the non-zero limit for ½ with the ` energy time’ -h=2 D E,

where D E is the uncertainty in energy, is suggested. This would give a precise

meaning to the time-energy uncertainty relation because now ½ rules the width of

the time distribution function. However, this ` intrinsic assumption’ is not necess-

arily implied by the formalism developed in [2] and applied, with a more pragmatic

attitude, in the present paper.
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