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Dipartimento di Fisica, Università degli Studi di Milano, INFM and INFN Sezione di Milano,
via Celoria 16, I-20133 Milano, Italy

Received 1 January 2002
Published 29 July 2002
Online at stacks.iop.org/JOptB/4/S253

Abstract
We discuss the single-particle Young interference experiment in position
space, showing its close relation with the time-dependent Schrödinger
spread. In the two-slit case there is always a maximum at the centre of the
screen. Here we demonstrate that, with three slits, one can have zero
intensity (at the centre) for discrete values of the spacing between the slits
and of the distance of the screen. Finally, we show the possibility that
spontaneous intrinsic decoherence destroys the interference pattern and that
decoherence becomes stronger at the macroscopic limit.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Feynman [1] said that interference is the only mystery of
the quantum mechanical world. In a previous work [2]
we analysed quantum interference focusing our attention
on a single-particle Young experiment: there we described
interference pattern in position space, while in standard
textbooks it is usually described solving the Schrödinger
equation in momentum space, so that a time-independent
angular distribution is obtained. We were able, in contrast, to
explicitly see the time dependence of the interference pattern.
In particular, Young interference is closely related to the free-
particle time-dependent Schrödinger spread, a feature that does
not appear in the momentum representation. Moreover, one
can give an optical analogy by putting the evolution time
t = L/v at the end of the calculation, where L is the distance
from the screen and v is the mean particle velocity [2]. In
such a case, the usual Young interference pattern appears only
for a time long enough to have complete overlap of the two
wavepackets coming from the slits. What happens if one adds
a third slit between the first two? The central peak vanishes
and becomes a zero-intensity point for discrete values of the
spacings between the slits and of the distance of the screen!

Moreover, since the interference pattern is time dependent,
fluctuations of the evolution time t = L/v induced by velocity
spread give rise to decoherence [3, 4], i.e. to the reduction
of fringe visibility. This is spontaneous decoherence because
it is not induced by the interaction with the environment [5].

In [4] we have described spontaneous decoherence in cavity
QED. Here velocity fluctuations can have experimental reasons
due to thermal fluctuations or intrinsic ones due to the
Heisenberg uncertainty principle (HUP). In the last case one
has spontaneous intrinsic decoherence (SID). Furthermore,
in [3], using the Tam Mandelstam inequality [6], it has been
suggested that in SID these time fluctuations have an intrinsic
inferior limit given by the energy–time

τE ≡ h̄

2�H (1)

where �H is the variance of the system Hamiltonian H. In
this paper we describe spontaneous decoherence in two- and
three-slit Young interference experiments. The conditions to
observe spontaneous decoherence due to classical (thermal)
fluctuations of the particles velocity and SID, coming from the
velocity spread due to HUP, are specified.

2. Three-slit Young interference

We consider a particle beam moving along the ẑ axis with
velocity V (see figure 1). Using the one-dimensional time-
dependent Schrödinger equation and assuming that at time
t = 0, when particles pass through the slits, the state is a
superposition of three Gaussian wavepackets, at time t one
has

�(x, t) ∝ �0(x, t) + �1(x, t) + �2(x, t) (2)
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Figure 1. Setup of the three-slit Young experiment described in the
text.

where � j(x, t), j = 0, 1, 2, is given by [7]

� j(x, t) ∝ exp

{
− (x − x j )

2

4σ(t)2

(
1 − i

σv

σx
t

)}
, j = 0, 1, 2

(3)
with x1 = −x2 = d, x0 = 0 and σ(t) = √

σ 2
x + σ 2

v t2, where
σxσv = h̄/2m. From now on, it is useful to introduce the
dimensionless quantities

x = x

σx
, d = d

σx
, t = σvt

σx
= h̄

2mσ 2
x

t. (4)

If we close the holes 1 and 3, the system is simply
described by �0(x , t), which spreads because of the free
evolution ruled by the Schrödinger equation. This effect is
known as free-particle Schrödinger spread. On the other hand,
one can consider closing only the central slit, thus obtaining
the usual two-slit Young interference experiment, as we shall
show. In this case the initial wavefunction becomes

�(x, t) ∝ �1(x, t) + �2(x, t). (5)

and the probability density P(x, t) of finding a particle in x at
time t is

P(x, t) ≡ |�(x, t)|2 = |c(t)|2(G+ + G− + 2
√

G+G− cos ωt
)

(6)
where |c(t)|2 is a normalization factor and

G± = exp

{
− (x ± d)2

2(1 + t2
)

}
, ω = xd

1 + t2 . (7)

The time-dependent interference term, cos ωt , is modulated by

√
G+G− = exp

{
− x2

2(1 + t2
)

}
exp

{
− d

2

2(1 + t2
)

}
(8)

and, under the condition

t � d � 1, (9)

equation (8) can be approximated by

√
G+G− ≈ exp

{
− x2

2t2

}
, (10)

i.e. one has a Gaussian modulation and so the interference
term is relevant only for x � t (x � σvt). Furthermore, to
see the leading role of Schrödinger spread, one must rewrite
equation (9) using the scaling (4):

σvt � d � σx (11)

which is the condition to have the complete overlap of
the wavepackets: the interference pattern provides a direct
evidence of the Schrödinger spread. Notice that the time
dependence we obtained is a consequence of the time-
dependent solution of the Schrödinger equation in position
space: in standard textbooks, in contrast, such a solution is
given in momentum space, obtaining only a time-independent
angular distribution. The maxima occur at ωt = 2nπ (see
equation (6)) so that by equations (7) and (4) we can write (in
the limit of equation (9))

xn = 2nπ t

d
. (12)

Moreover, since the maxima are modulated by (see
equation (10))

exp
{
− x2

n

2t2

}
= exp

{
−1

2

(
2nπ

d

)2}
(13)

the number of visible fringes is proportional to d = d/σx as
in the optical case. In figure 2 we show the time evolution of
the two-slit interference pattern.

Finally, when all the slits are opened, the wavefunction is
given by equation (2) and the probability density of finding a
particle on the screen S at position x is

P(x, t) ≡ |�(x, t)|2
= |ĉ(t)|2(G+ + G− + G0 + 2

√
G+G− cos ω1t

+ 2
√

G0G− cos ω2t + 2
√

G+G0 cos ω3t
)

(14)

where |ĉ(t)|2 is a suitable normalization factor and

G± = exp

{
− (x ± d)2

2(1 + t2
)

}
, G0 = exp

{
− x2

2(1 + t2
)

}
,

(15)

ω1 = xd

1 + t2
, ω2 = (x − d/2)(d/2)

1 + t2
,

ω2 = (x + d/2)(d/2)

1 + t2 .

(16)

Specializing equation (14) for x = 0, one has

|�(0, t)|2 = |ĉ(t)|2
{

1 + 4G + 4
√

G cos

(
d

2

4(1 + t2
)
t

)}
(17)

with

G = exp

{
− d

2

2(1 + t2
)

}
. (18)
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Figure 2. Time evolution of the two-slit interference pattern with d/σx = 10 for different values of the dimensionless time t : (a) 0; (b) 4;
(c) 10; (d) 20. Here t = σv t/σx = L/R, where R = 2σ 2

x /λ is the Rayleigh range.

Maxima and minima in x = 0 are obtained imposing

d
2

4(1 + t2
)
t = nπ, (19)

so one has maxima or minima for even or odd n, respectively.
Moreover, the minimum of intensity is exactly equal to zero
if we require

√
G = 1/2 (the physical meaning of this choice

will be clarified in the next section), i.e.

d
2

2(1 + t2
)

= 2 ln(2). (20)

Equations (19) and (20) bring us to the final conditions:

tn = π

ln(2)
n ≈ 4.5n, (21)

dn = 2

√
(ln(2))2 + π2n2

ln(2)
≈ 7.7n. (22)

In figure 3 we plot the comparison between the two- and
three-slit cases for n = 1–3. This figure, for n = 1 and
3, explicitly shows that a new slit between the two slits of a
Young experiment can inhibit particles from reaching a place
where they had high probability to go, so no particle arrives
at that point! The corresponding physical optical values of L
and d directly come from relations t = L/R and d = d/σx ,
i.e.

Ln ≈ 4.5Rn (23)

dn ≈ 7.7σx n (24)

where we recall that λ = h̄/mV and R = 2σ 2
x /λ.

3. Optical analogy

Let us now consider the distribution P(x, t) (coming from (6)
using (4)) as the probability density of finding a particle on a
screen S at distance L , such that t = L/V , where V is the mean
velocity perpendicular to the plane x̂ of the slits (see figure 1).
Equation (12) gives

xn

L
= λ

2d
n

(
λ = h

mV
= 2πλ

)
(25)

which is the usual optical condition for constructive
interference assuming λ � d � L . All the equations of the
previous section can be translated in optical terms identifying
t = L/V and λ = h̄/mV . In particular, the conditions d � t
and x � t become

d

L
� ϑdi f f , ϑ = x

L
� ϑdi f f(

ϑdi f f ≡ λ

2σx
� 1

)
,

(26)

i.e. the angle d/L and the observation angle ϑ = x/L must
be smaller than the diffraction angle ϑdi f f . Furthermore, the
relation t � d � 1 is equivalent to

L

R
� d

σx
� 1 (27)

where R = 2σ 2
x /λ is the Rayleigh range, which is a measure of

the divergence of a Gaussian beam, whose transverse width is
σx . The first of conditions (26) guarantees that particles arrive
at the centre of the screen S and, from an optical point of view,
equation (27) says that

L
λ

σx
� d (28)
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Figure 3. Comparison between three slits (solid curve) and two slits (dashed curve) interference pattern for different values of n, t n = Ln/R
and dn (see the text): (a) n = 1, t1 ≈ 4.5 and d1 ≈ 7.7; (b) n = 2, t2 ≈ 9.1 and d2 ≈ 15.2; (c) n = 3, t 3 ≈ 13.6 and d3 ≈ 22.7. Notice that,
with three slits, for odd n there is zero intensity at the centre, whereas for even n there is a maximum.

i.e. the spread due to diffraction is greater than the spacing
between the slits. Finally, notice that equation (10), using the
previous definitions, can be written in the form of the well
known diffraction envelope:

√
G+G− ≈ exp

{
− x2(2σx )

2

2L2λ2

}
= exp

{
− ϑ2

2ϑ2
di f f

}
. (29)

Let us now consider the three-slit case and, in particular,
what happens at the centre of the screen. Equation (17) can be
rewritten as

|�(0, t)|2 ∝ |1 + 2
√

Gei	|2,

	 ≡ d
2

4(1 + t2
)

t ≈ d
2

4t
.

(30)

Here
√

G is due to diffraction from silts 1 and 3 (figure 1). The
conditions to see zero intensity in x = 0 are obtained imposing
that the sum of the amplitudes coming from slits 1 and 3
(i.e. 2

√
G) is equal to the amplitude coming from slit 2 (here

normalized to 1) and imposing also that the phase difference
is nπ , with odd n (destructive interference). This leads to
equations (19) and (20) in the limit t � 1. Now, using the
definitions of t and d , the condition 	 = nπ (with odd n) can
be rewritten as

� ≡ d2

2L
= (2n + 1)

λ

2
(31)

where � is the path difference between slits 1 (or 3) and 2. In
fact, for d � L , one has (see figure 1)

� ≡ √
L2 + d2 − L ≈ d2

2L
, (32)
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hence the disappearance of the central peak has a very clear
optical interpretation.

4. Decoherence and spontaneous intrinsic
decoherence in interference experiments

First, we briefly summarize the model-independent formalism
introduced in previous papers [4, 8, 9] to describe decoherence
due to fluctuations in the evolution time. The density operator
which takes into account these fluctuations is the time average
of the usual density operator, i.e.

ρ(t) =
∫ ∞

0
dt ′ P(t, t ′, τ)ρ(t ′) (33)

where the weight function is given by the �-distribution
function

P(t, t ′, τ) = exp(−t ′/τ)

τ

(t ′/τ)t/τ−1

�(t/τ)
. (34)

Here τ is a characteristic time which rules time fluctuations and
can also be a function of t [4, 8, 9], and can have experimental
or intrinsic origin. In general, if τ is limited by τE , one always
has a contribution given by intrinsic decoherence.

In the interference case, since t = L/v, time fluctuations
are induced by velocity spread, as in the case of cavity QED
described in [4, 9]. If the system is initially in a pure state, as
assumed above, from equation (33) one obtains

P(x, t) ≡ 〈x |ρ(t)|x〉 =
∫ ∞

0
dt ′ P(t, t ′

, τ )P(x , t ′
) (35)

where the expression of P(x, t ′
) is given by (6) and (14) in the

case of two and three slits, respectively, and τ is given by

τ ≡ σv

σx
τ, (36)

where the scaling (4) has been used for all variables.
We assume τ to be the uncertainty in arrival time of

particles at the screen, so that [9, 10]

τ = �z(t)

V where �z(t) =
√

σ 2
z + σ 2

V
t2 + �2

V t2, t = L

V .

(37)

Here �z(t) is the total uncertainty in position along the ẑ
axis [2], which is obtained summing up the square of two
errors: an intrinsic one, σ 2

z +σ 2
V

t2 (with σzσV = h̄/2m), i.e. the
quantum Schrödinger free-particle spread along the ẑ axis,
and an ‘extrinsic’ one, �2

V t2, i.e. the spread due to classical
uncertainty of velocity distribution, e.g. thermal distribution.
A more rigorous derivation of equation (37) is given in [9].
Note that τ is always greater than τE = σz/V = h̄/2σ(Hz),
where Hz is the kinetic energy along the ẑ axis and σ(Hz) its
standard deviation, in agreement with equation (1). Assuming
t such that (σ 2

V
+ �2

V)t2 � σ 2
z , from equations (36) and (37)

one directly obtains

τ = at with a =
√

σ 2
V

+ �2
V

V . (38)

If we take τ/t = τ/t = a � 1, P(t , t ′
, τ ) can be

approximated with the Gaussian

P(t, t ′
, τ ) ≈ 1√

2π tτ
exp

{
− (t − t ′

)2

2tτ

}
. (39)

In this limit we can perform the average (35) obtaining the
analytical expression for the two-slit case:

P(x, t) = b(t)
{
G+ + G− + 2

√
G+G−e−D cos ωt

}
(40)

where b(t) is a normalization factor and

D ≈ x2d
2

2

τ

t3 = 1

2

x2(2d)2

L2λ2
a (41)

where we used equations (4) and (38). The behaviour of
P(x, t), as a function of x at a given t = L/R, is shown in
figure 5 for different values d = d/σx and a. The term e−D is
another Gaussian decoherence envelope not due to diffraction,
as the one of equation (29), but due to velocity spread. It is
very important to note that it goes as (2d)2, i.e. the square of
the distance between slits, as this is typical of decoherence
phenomena [5]. In general, the diffraction envelope and the
decoherence one are both present in experiments, but the latter
becomes visible as soon as D � 1 and it dominates diffraction
when

a >

(
σx

d

)2

(42)

which gives a lower limit to the relative velocity spread a.
We can also write equation (41) as

D = 1

2

(
ϑ

ϑint

)2

a (43)

where ϑint = λ/2d (see equation (25)) and ϑ ≈ x/L . If
one evaluates D in the interference pattern maxima (25), one
obtains

D = 2π2n2a. (44)

Hence decoherence becomes more and more efficient as n and
a increase (see figure 4).

Now, thanks to equation (38) we are able to study the
classical and the quantum limit:

(1) in the classical limit�2
V � σ 2

V
, then equation (43) is ruled

by the ratio a = �V/V, so that decoherence has a classical
origin;

(2) in the quantum limit, defined as �2
V � σ 2

V
, one has SID

due to the quantum velocity spread σV � h̄/2mσz .

In this limit a = σV /V and decoherence has an intrinsic,
quantum mechanical origin related to HUP.

Moreover, at the macroscopic limit λ becomes very
small. However, if one also decreases σx , so that λ/σx

remains constant, the diffraction envelope does not suppress
the interference pattern; on the contrary, the decoherence
envelope kills interference keeping the distance between slits
constant (see equation (41)).
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Figure 4. Behaviour of the two-slit interference pattern with decoherence (solid curves) and without decoherence (dotted curves) at time
t = L/R = 20 for different values of d/σx and a: (a) d/σx = 10, a = 0.01; (b) d/σx = 10, a = 0.1; (c) d/σx = 4, a = 0.01; (d) d/σx = 4,
a = 0.1.

Finally, when one applies our theory of spontaneous
decoherence to the three-slit setup, one proceeds as in the two-
slit case, performing the time average of equation (14) and
obtaining

P(x, t) = |c̃(t)|2(G+ + G− + G0 + 2
√

G+G−e−(D+,−) cos ω1t

+ 2
√

G0G−e−(D0,−) cos ω2t + 2
√

G+G0e−(D0,+) cos ω3t)

(45)

where |c̃(t)|2 is a normalization factor and

D+,− ≈ 1

2

x2(2d)2

L2λ2 a, (46)

D0,± ≈ 1

2

(x ± d/2)2d2

L2λ2 a, (47)

with a given by equation (38). Notice that decoherence still
goes as the square of the distance between slits as in the
previous case. Therefore, decoherence becomes more efficient
with increasing a, and SID becomes observable when the
longitudinal quantum velocity spread is dominant, as discussed
in the two-slit case. In figure 5 we plotted the comparison of
the three-slit interference pattern with and without decoherence
for different values of the velocity spread a: fringe visibility
is sensibly reduced as soon as a ∼ 10−1 or greater.

One might think that our results can be easily reproduced
just by performing an average with the classical velocity
distribution along the ẑ axis. However, this would give
an expression of the decoherence exponent D similar to
equations (43), (46) and (47), but with two basic differences:

a2 instead of a, and a being only a function of the classical
contribution �V . Furthermore, if a � 1, one will obtain a
much smaller decoherence than the one of our approach.

5. Conclusions

We have discussed the single-particle Young interference
experiment in position space and we have shown that the
interference pattern of a two- and three-slit experiment
provides direct evidence of the free-particle Schrödinger
spread. Furthermore, in the case of three slits, we demonstrated
that for discrete values of the distances between the slits and of
the distance of the screen it is possible to inhibit particles from
reaching the centre of the screen itself, while in the two-slit case
there is a maximum of the probability density. Furthermore,
we have shown that fringe visibility can be reduced for two
different reasons: the usual diffraction contribution and a new
decoherence contribution, which decreases the visibility as the
square of the distance between the slits. The decoherence
arises from fluctuations in the evolution time t = L/v and, in
this paper, such fluctuations are induced by the particle velocity
spread as described in cavity QED [4, 9]. The spread can
have a classical origin (thermal spread and so on) which can
be made arbitrarily small with a very monochromatic beam,
but it always has a finite quantum origin due to the HUP.
When this contribution is dominant, one should observe SID,
i.e. decoherence not due to interaction with the environment
or to experimental fluctuation of some parameter. In general,
we find that decoherence is proportional to the square of the
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Figure 5. Behaviour of the three-slit interference pattern with decoherence (dashed curve) and without decoherence (solid curve) at time
t = L/R ≈ 4.5 and d/σx ≈ 7.7 for different values of a (from the top: a = 10−2, 10−1and 2 × 10−1).

distance of the slits and to the velocity spread parameter a, and
becomes very ‘efficient’ at the macroscopic limit.
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