
Journal of Modern Optics
Vol. 56, Nos. 2–3, 20 January–10 February 2009, 196–200

Constrained MaxLik reconstruction of multimode photon distributions
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We address the reconstruction of the full photon distribution of multimode fields generated by seeded parametric
down-conversion. Our scheme is based on on/off avalanche photodetection assisted by maximum-likelihood
(MaxLik) estimation and does not involve photon counting. We present a novel constrained MaxLik method that
incorporates the request of finite energy to improve the rate of convergence and, in turn, the overall accuracy of
the reconstruction.
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1. Introduction

The reconstruction of photon statistics of quantum
optical fields is of the utmost relevance for several
applications, ranging from quantum information [1] to
the foundations of quantum mechanics [2] and
quantum optics [3–7]. Despite this fact, the realization
of photodetectors well suited for this purpose still
represents an experimental challenge. The few existing
examples [8–13] show severe limitations. On the other
hand, reconstruction schemes based on quantum
tomography [14–16] require phase-matching with
a suitable local oscillator and do not represent
a technique suited for a diffuse use. This situation
has prompted various theoretical studies [17–20]
addressed to achieve the reconstruction of the (diag-
onal) elements of the density matrix exploiting the
information achievable with realistic detectors.

In a recent series of papers [21–25], we have
demonstrated how a very satisfactory reconstruction
of the statistics of mono-partite and bi-partite quan-
tum optical states may be obtained using the simplest
kind of detectors, namely on/off detectors [19,20]
operating in the Geiger mode, whose outcomes are
either ‘off’ (no photons detected) or ‘on’, i.e. a ‘click’
indicating the detection of one or more photons. Our
method recovers the full photon statistics using
maximum-likelihood (MaxLik) reconstruction on
on/off data obtained using variable detection efficiency
(by inserting calibrated neutral filters).

In this paper we present a modified version of our
method, which improves both convergence and accu-
racy upon incorporating the obvious a priori constraint
of finite signal energy. In particular, we address the

reconstruction of the full photon distribution of
multimode fields generated by seeded parametric
down-conversion (PDC). The novel method allows us
to overcome the increased complexity of the recon-
struction problem and represents an important step in
view of the widespread application of MaxLik
reconstruction.

The paper is structured as follows. In the next
section we explain the constrained MaxLik algorithm
in some details, whereas in Section 3 we describe the
experimental apparatus and illustrate the application
of the method to the reconstruction of the photon
distribution of multimode fields generated by seeded
PDC. Finally, Section 4 closes the paper with some
concluding remarks.

2. Constrained MaxLik algorithm

The probability p0(!) that a photodetector with
quantum efficiency ! does not click when an input
quantum state %¼

P
n,m %nmjnihmj impinges on it reads

as follows:

p0ð!Þ ¼
X

n

ð1$ !Þn%n, ð1Þ

where %n¼ %nn is the nth entry of the photon
distribution of the input state. Now, if we consider
a set of N detectors with different quantum efficiencies
!", "¼ 1, . . . ,N, then we can write the ‘off’ probabilities
as

P" % p0ð!"Þ ¼
X

n

A"n%n, ð2Þ
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where A"n¼ (1$ !")
n. Looking at Equation (2) as

a statistical model for the parameters %n, we can
solve it by MaxLik estimation. We proceed as
follows: first of all, we assume there exists a value
ñ such that %n is negligible for n4ñ; then we
assign the loglikelihood function (with mutually
normalized P"), that is the global probability of the
sample:

L ¼ 1

Nx
log

Y

"

P"P
# P#

! "N "

¼
X

"

f" log
P"P
# P#

, ð3Þ

where f"¼N "/Nx is the experimental frequency of ‘off’
events, N " being the number of ‘off’ events for a fixed
quantum efficiency !" and Nx the total number of
events. The MaxLik estimated %n values are the ones
maximizing L. Since the model is linear and the
unknowns %n are positive, we can find the expecta-
tion-maximization solution of the MaxLik problem by
means of an iterative procedure as described in [17,21,
26–28], i.e.

%ðhþ1Þ
n ¼ %ðhÞnP

m %ðhÞm

X

"

A"n

ð
P

# A#nÞ
f"

P
ðhÞ
"

, ð4Þ

where %ðhÞn is the value of %n evaluated at the hth
iteration, and PðhÞ" ¼

P
n A"n %ðhÞn . The algorithm (4),

known to converge unbiasedly to the MaxLik solution,
provides a solution once the initial distribution %ð0Þn is
chosen. On the other hand, the initial distribution
slightly affects only the convergence rate and not the
precision at convergence [19].

As a matter of fact, the solution obtained above
corresponds to the best photon distribution fitting
the experimental data, i.e. the measured ‘off’
probabilities. However, it is possible that different
photon distributions fit the same experimental
data, giving rise to a family of suitable distributions.
In these cases it could happen that the MaxLik
solution, even if in good agreement with the
available experimental knowledge, may be different
from the actual (unknown) one. Indeed, this is the
case of multimode fields when the number of modes
grows. In order to overcome this limitation, we have
developed a modified version of the MaxLik algo-
rithm, which incorporates the constraint of finite
energy for the incoming signal, i.e. the quantityP

n n%n. In practice, we maximize the loglikelihood
(3) with a constraint on the energy. Now the
function to be maximized with respect to %n is

L$ ¼ L$ $
X

n

n%n, ð5Þ

with L being given in (3) and $ being a Lagrange
multiplier. The equations @L$

@%n
¼ 0 lead to

P
% P%P
& f&

 !
X

"

A"n

P
# A#n þ $ n

P
%0 P%0P
&0
f&0

! "# $ f"
P"

¼ 1, ð6Þ

and, then, by multiplying both sides of Equation (6) by
%n, we get a map T %n¼ %n, whose fixed point can be
obtained by the following iterative solution:

%ðhþ1Þ
n ¼ %ðhÞnP

m %ðhÞm

X

"

A"n

P
# A#n þ $ n

P
%0 P

ðhÞ
%0P

&0 f&0

! "# $ f"

P
ðhÞ
"

:

ð7Þ

The parameter $ can be tuned in order to control the
energy of the reconstructed state and improve both the
convergence rate and the overall accuracy. Of course,
if we take $¼ 0, then Equations (7) and (4) become
the same.

Indeed, in order to use Equation (7) we need to
know the input state energy which, in general, cannot
be directly accessible from experimental data.
However, in cases when a model of the photon
distribution of the input state is available, we can
estimate indirectly this energy by a simple fit of the ‘off’
probabilities.

Since the mean of the reconstructed statistics can be
assessed only at convergence, it is impossible to choose
a prior value of $. Our algorithm overcomes this
problem in two steps: at first the unconstrained
solution ($¼ 0) and the corresponding energy are
evaluated; then, if necessary, the value of $ is
incrementally tuned and those solutions whose energies
do not match the constraint are discarded. Usually, the
energy of the unconstrained solution is not far away
from the actual one (see the analysis of the experi-
mental data given below), so the incremental search for
the suitable $ is not so time-expensive and, overall, one
has an improvement of both the convergence rate and
the accuracy.

In the following, we consider the multimode field
obtained by seeded PDC. In this case, the photon
distribution is expected to have the form

%n ¼
ðnthÞn

ð1þ nthÞnþM exp $ j'j2

1þ nth

! "
LM$1
n $ j'j2

nthð1þ nthÞ

! "
,

ð8Þ

where %n% %n(nth,',M) and La
nðzÞ are the generalized

Laguerre polynomials. Equation (8) represents the
convolution of M thermal states, all with the same
average number of thermal photons nth40 except for
the stimulated ones, displaced by a collective amount
'. This model will be justified by the experimental
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setup described in Section 3. From Equations (1) and
(8) we can calculate the ‘off’ probability
p0% p0(nth,',M, !), that is

p0 ¼
X1

n¼0

ð1$ !Þn %nðnth,',MÞ

¼ 1

ð1þ !nthÞM
exp $ !j'j2

1þ !nth

! "
, ð9Þ

with ! being the quantum efficiency of the on/off
photodetector. Notice that, from Equation (9), one can
obtain the relevant cases for a Poissonian input photon
distribution (nth! 0) and for a multithermal one
('! 0). Thanks to Equation (9), one can evaluate
the input state energy Nave¼Nthþ j'j2 (with
Nth¼Mnth), which to be used as a constraint in the
algorithm.

Before the end of this section, it is worth pointing
out that if each spatial mode consists of M0 temporal
modes, then the input photon distribution and the
‘off’ probability are still given by Equations (8)
and (9), respectively, but with M!M'M0 in place
of M.

3. Experimental test

In order to test the reliability of the algorithm
reported in Equation (7), we applied it to the
reconstruction of a stimulated type-I PDC branch,
at different stimulation regimes. In our experiment,
whose setup is shown in Figure 1, a continuous wave
(CW) argon laser (#pump¼ 351.1 nm) pumps
a 5' 5' 5mm type-I $-barium borate (BBO) crystal,
generating PDC. Together with the pump beam,
a CW Nd:Yag laser (#seed¼ 1064 nm) is injected into
the crystal in the proper way to generate stimulated

PDC, and we look at the emission in the kstimul

direction (#stimul¼ 524 nm).
Different values of quantum efficiency have been

obtained by inserting properly calibrated Schott
neutral filters (NF), starting from !max¼ 28.4%;
after them, on the optical path of the stimulated
branch we put an anti-infrared (IR) filter (to cut off
the noise due to the Nd:Yag laser dispersion),
a variable pinhole (to control the number M of
spatial propagation modes collected) and a fiber
coupler connected by a multimode fiber with the
detector (avalanche photodiode, Perkin Elmer
SPCM-AQR-15). We set the pulse generator so
that it opens in the avalanche photodiode (APD)
2' 105 detection windows per second, each one of
20 ns; the pinhole diameter is regulated in order to
collect only a few spatial modes (more precisely
M¼ 7), of which four are stimulated, as deduced by
considering that the stimulated beam generated by
our single-mode seed beam concerns four coherence
areas of PDC. Moreover, each spatial mode consists
of many temporal modes: to evaluate them, we
simply divide our acquisition time (20 ns) by the
typical coherence time of type-I PDC, obtaining an
estimate of the order of magnitude of the total
number of modes, i.e. M¼ 7' 105. It is worth
mentioning that, when the number of modes exceeds
a few tens, the dependence on this parameter is
rather small and a rough estimate of the order of
magnitude suffices.

We have performed three separate data collections,
each one corresponding to a different stimulation
regime: by indicating with x the percentage of stimu-
lated emission on the whole PDC amount collected,
our acquisitions were, respectively, characterized by
x¼ 51.4%, x¼ 78.1% and x¼ 90.7%. The x parameter
was estimated by means of the formula Ntot¼
Nspþ xNtot, with Nsp and Ntot being the counts given
by the ungated detectors with seed off (spontaneous
PDC only) and on, respectively. The evaluation of the
background photons was performed through an acqui-
sition step without PDC emission (argon pump off,
Nd:Yag seed on), followed by a proper subtraction
from data.

The obtained results are shown in Figure 2: for
the reconstruction we used the MaxLik estimation
with a constraint on the energy, as described in the
previous section. The plots on the left show the f0
non-click frequencies given by the stimulated PDC
with different stimulation regimes vs. the quantum
efficiency !, and the fit obtained by means of the
MaxLik estimation and Equation (9). The (2 quan-
tity reported has been defined as the sum of the
square differences between the ‘off’ probabilities
given by the reconstructed photon statistics and the

Figure 1. Experimental setup: the stimulated emission at
#stimul¼ 524 nm is addressed to the neutral filter (NF) and
then collected by the APD. The number and temporal width
of the acquisition windows is set by the pulse generator used
for the detector’s gating. (The color version of this figure is
included in the online version of the journal.)
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measured f0. To quantify the similarity between the
MaxLik reconstructed photon distribution %ðMLÞ

n and
the %n’s obtained from Equation (8), we used the
fidelity

F ¼
X

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%ðMLÞ
n %n

q
: ð10Þ

In Figure 3 we consider the same scenario giving the
bottom plots of Figure 2, but now we try to perform
the reconstruction without any constraint on the
energy ($¼ 0). We can see that, even if the MaxLik
fit of the f0 frequencies (left-hand side) is good, the
fidelity between the MaxLik reconstructed photon
distribution and the one given by Equation (8) is
quite low (right-hand side): a result that confirms

the advantage of using the constrained MaxLik
method.

4. Concluding remarks

In this paper we have shown how an important
improvement on the convergence of the photon
statistics reconstruction code, based on MaxLik esti-
mation applied to on/off detection data, can be
achieved by increasing the number of Lagrange multi-
pliers when some a priori knowledge of the state is
available. In particular, we have addressed the recon-
struction of the full photon distribution of multimode
fields generated by seeded PDC, demonstrating
the advantages of the constrained MaxLik method.
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Figure 2. On the left: f0 non-click frequencies (gray disks) given by the stimulated PDC with different stimulation regimes as
functions of the quantum efficiency !. The black disks are the ‘off’ probabilities obtained by means of the MaxLik
reconstructed photon distribution; the solid line corresponds to Equation (9) with Nth¼ (1$ x)Nave, j'j2¼ xNave and
M¼ 7' 105. In each plot we report also the average number of photons (Nave) obtained by the fit of the experimental f0, the
percentage of stimulated emission x and the (2 of the MaxLik fit. On the right: MaxLik reconstructed photon distribution
(gray bars) and photon distribution given by Equation (8) with the same values of the parameters given in the respective left
plots. In each plot we report also the fidelity F between the two photon distributions. Note the different ranges of n.
The corresponding values of the Lagrange multiplier $ are (from top to bottom) $¼ 1.95' 10$2, 1.23' 10$2, and
7.40' 10$3.

Journal of Modern Optics 199

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
i
l
a
n
]
 
A
t
:
 
1
3
:
0
4
 
1
9
 
M
a
r
c
h
 
2
0
0
9



This achievement represents an important step in view
of widespread application of this scheme.
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