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We address the estimation of purity for a quantum oscillator initially prepared in a displaced
thermal state and probed by a suitably prepared qubit interacting with the oscillator via Jay-

nes�Cummings Hamiltonian without the rotating-wave approximation. We evaluate the

quantum Fisher information (QFI) and show that optimal estimation of purity can be achieved

by measuring the population of the qubit after a properly chosen interaction time. We also
address the estimation of purity at ¯xed total energy and show that the corresponding precision

is independent of the presence of a coherent amplitude.
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1. Introduction

The development of quantum technology requires accurate characterization and

control of quantum systems and operations. As a matter of fact, however, it is often

the case that the signals and devices that we want to design and characterize are not

fully or easily addressable. System interrogation can only be performed, in such cases,

in an indirect way through the use of probes of an appropriate nature.1,2

In many situations, a key parameter is represented by the purity of the state of the

system under scrutiny, given that unwanted e®ects related to decoherence typically

spoil the quantum features involved in coherent evolutions and quantum enhance-

ment. In turn, having a precise quantitative estimate of the system purity is crucial

not only for prediction purposes but also to design, in the best possible way, a

quantum-enforcing protocol that accounts for such undesired e®ects ab initio.

In this paper we consider a paradigmatic example within this framework. We

address the estimation of purity for a quantum oscillator probed by a suitably

prepared qubit coupled to it via the Jaynes�Cummings Hamiltonian,3 beyond the

rotating-wave approximation. We assume the oscillator initially prepared in a par-

tially coherent state and investigate how well the purity of such initial state may be

inferred from measurements performed on the qubit after a suitably tailored inter-

action time. We ¯rst evaluate the quantum Fisher information to obtain the ultimate

quantum benchmark on the precision of the purity estimation, and then show that

the optimal estimation may be achieved by measuring the population of the qubit.

We also address the estimation of purity at ¯xed total energy and show that the

corresponding precision is independent of the presence of a coherent amplitude.

Our analysis may be useful for several system of interest in quantum technology

and information processing, e.g. hybrid devices4,5 consisting of a mechanical mode

such as a microscopic cantilever (a nanoscopic beam) coupled to a two-level system

embodied by an atom6 or a quantum dot7 (a superconducting qubit8). In such con-

texts, it is important to have information on the purity of the mechanical state,

modeled as a quantum harmonic oscillator, which undergoes a nontrivial open-sys-

tem dynamics that typically spoils any enforced mechanical quantumness.9,10

The paper is structured as follows. In the next section, we introduce the relevant

notation and describe the interaction model, as well as the probe state after the

interaction. In Sec. 3, we brie°y describe the basic tools of estimation theory,

introducing both the Fisher information and its quantum analogue. In Sec. 4, we

report the evaluation of the quantum Fisher information and its comparison with the

Fisher information of population measurement. We also discuss estimation of purity

at ¯xed total energy and the joint estimation of purity and coherent amplitude. In

Sec. 5, we present some concluding remarks.

2. The Qubit-Oscillator Model

Let us consider a single-mode bosonic ¯eld prepared in the displaced thermal state

% ¼ Dð�Þ�D†ð�Þ, where Dð�Þ ¼ expf�a† � ��ag is the displacement operator, � is a
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complex amplitude and

� ¼ 2�

1þ �

1� �

1þ �

� �
a†a

; ð1Þ

is a thermal equilibrium state. The quantity � ¼ Tr½%2� ¼ ð2N þ 1Þ�1 is the purity of

the state and is related to the e®ective temperature of the oscillator via the average

number of thermal excitations N ¼ ðe� � 1Þ�1, � ¼ �
kBT

being the inverse tempera-

ture, which embodies the oscillator's frequency � (throughout the paper we use units

such that } ¼ 1).

Purity is a quadratic functional of the density operator and thus cannot be as-

sociated with any observable. We thus address the problem of its estimation by

exploiting the interaction with a qubit and investigate whether the partial coherence

of the initial state, i.e. the presence of an initial coherent amplitude, has any in°uence

on the estimation procedure.

We assume that the oscillator is coupled to an ancillary two level system, initially

prepared in a generic pure state j i ¼ cos �2j0i þ ei’ sin �
2j1i. The two systems are

assumed to be initially uncorrelated and undergo a unitary evolution governed by the

interaction Hamiltonian11

HI ¼ gX̂ � �̂1; ð2Þ
where X̂ ¼ ðâ þ â†Þ= ffiffiffi

2
p

is the in-phase quadrature operator of the harmonic oscil-

lator, g is the coupling strength, and �̂1 is the x-Pauli spin operator. This Hamilto-

nian embodies the Jaynes�Cummings coupling beyond the so-called rotating wave

approximation.3

After the interaction, quantum-limited measurements of the excited-state popu-

lation are performed on the probe qubit, which is the qubit state after the evolution,

obtained as the partial trace of the evolved state of the system over the degrees of

freedom of the ¯eld. We have

% ¼ TrF ½U j ih j �Dð�Þ�D†ð�ÞU †� ð3Þ
¼ e�i�a�1%�e

ia��1 ; ð4Þ

where a ¼ ffiffiffi
2

p <ð�Þ, � ¼ gt, X̂ jxi ¼ xjxi, and

%� ¼
Z

dxhxj�jxie�i�x�1 j ih jei�x�1 :

By explicitly computing the matrix elements of the probe state one ¯nds

%00 ¼
1

2
1þ ½cos � cosð2a�Þ þ sin � sin’ sinð2a�Þ�exp � � 2

�

� �� �
; ð5Þ

%01 ¼
1

2
sin � cos’� i

2
½sin � sin’ cosð2a�Þ � cos � sinð2a�Þ�exp � � 2

�

� �
; ð6Þ

%10 ¼ %�
01; and %11 ¼ 1� %00: ð7Þ
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Purity may be thus estimated by exploiting its in°uence on the matrix element of the

qubit. This may be pursued by measuring the population of the qubit, or by other

measurements involving the o®-diagonal elements, and then by processing data

either inverting the above equations or by a Bayesian analysis.12,13 In the next sec-

tion, we introduce the tools of estimation theory, which allows one to look for the

optimal measurement and thus assess the di®erent estimation schemes that may be

implemented experimentally.

3. Basic Tools of Estimation Theory

Our analysis relies on the application of tools from (local) quantum estimation theory

(QET) to the coupled qubit-oscillator system. In any estimation procedure, the

information about the quantity of interest is inferred from some suitable measure-

ment performed on the system. Once the measurement has been chosen, an estimator

is needed, i.e. a function from the data sample to the quantity of interest, � in our

case.

As a matter of fact, the variance Varð�Þ of any unbiased estimator is lower-

bounded, as stated by the Cram�er�Rao inequality

Varð�Þ � 1

MF ð�Þ ð8Þ

withM the number of measurements employed in the estimation and F ð�Þ the Fisher
information relative to the purity �, which is de¯ned as

F ð�Þ ¼
X
j

pjð@� ln pjÞ2 ¼
X
j

j@�pjj2
pj

; ð9Þ

where pj represents the probability to get outcome j from a measurement performed

over the qubit probe state %ð�Þ. Quantum mechanically, such probabilities are cal-

culated via the Born rule assuming the oscillator to have purity �, i.e. pj ¼
Trq½%ð�Þ�̂j�, and the observable to be measured is generally described by the positive

operator valued measurement (POVM) f�̂j : �̂j � 0;
P

j�̂j ¼ Ig. In particular, for

the case of population measurements, the POVM reduces to the projective measure

f�̂jg ¼ fj0ih0j; j1ih1jg. Once the observable is ¯xed, a maximization of the FI over

the qubit parameters (#, ’), as well as over the interaction time � and the coherent

amplitude �, leads to the minimum variance, and hence to the maximum precision

attainable for that particular measurement.

On the other hand, one can even maximize the FI over all possible quantum

measurements, obtaining the quantum mechanical counterpart of the Fisher

Information

Hð�Þ ¼ Tr½%L̂2ð�Þ� ð10Þ
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with L̂ð�Þ the symmetric logarithmic derivative operator (SLD), satisfying the

equation

@�% ¼ ½L̂ð�Þ%þ %L̂ð�Þ�=2: ð11Þ

The quantum Fisher Information (QFI) is an upper bound for Fð�Þ as it embodies

the optimization of the Fisher Information over any possible measurement per-

formed on the probing qubit states. The QFI is thus independent of the speci¯c

measurement strategy and is an intrinsic feature of the family of probing states.

This leads to the extension of the Cram�er�Rao bound to the quantum domain

Varð�Þ � 1

MHð�Þ ; ð12Þ

which embodies the ultimate limit to the precision of the estimate of �. A mea-

surement is optimal when the corresponding Fisher information F ð�Þ equals the

quantum Fisher Information Hð�Þ. Although various instances of optimal

measurement may be found, depending on the model at hand, the observable

embodied by the spectral measure of L̂ð�Þ is certainly optimal. Upon diagonal-

ization of the probe state % ¼ %þj þih þj þ %�j �ih �j, the QFI can be computed

explicitly as

Hð�Þ ¼
X
k¼�

ð@�%kÞ2
%k

þ 2�
X

k 6¼l¼�

X
j¼0;1

ð@�hjj kiÞh ljji
�����

�����
2

ð13Þ

with � ¼ ð1� 2%þÞ2 (see Ref. 11).

Finally, exploiting the fact that Tr½%Lð�Þ� ¼ 0, one can explicitly build the opti-

mal quantum estimator

O� ¼ �Iþ Lð�Þ
Hð�Þ ; ð14Þ

as the one having Tr½%O�� ¼ � and Tr½%O 2
�� ¼ �2 þ Tr½%Lð�Þ 2�

Hð�Þ 2 , thus hO�i ¼ � and

h�O2
�i ¼ 1=Hð�Þ.

4. Estimation of Purity

The FI associated to a population measurement of the qubit state is given by

F ð�Þ ¼ ð�=�Þ4½cos � cosð2a�Þ þ sin � sin’ sinð2a�Þ�2
e

2� 2
� � cos2� cos2ð2a�Þ � 1

2 sinð2�Þ sin ð4a�Þ sin’� sin2� sin2’ sin2ð2a�Þ
:

ð15Þ
Note that, although analytic, the FI is quite an involved expression as it depends on

both the qubit angles ð�; ’Þ and the complex amplitude � ¼ j�jeiArgð�Þ. However, as
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these parameters only appear in the arguments of periodic functions, one may argue

that they will simply a®ect the position of the global maximum of FI, not its value.

We ¯rst veri¯ed that, apart from some cases for which the FI identically vanishes,

e.g. ð�; ’Þ ¼ ð	=2; k	Þ with k ¼ 0; 1; 2, setting ’ to some ¯xed value always guarantee

the achievability of the global maximum. Therefore, from now on we set ’ ¼ 	=2.

In the same manner, we can set the phase of the coherent amplitude to zero, so

that � � <ð�Þ, and for the moment we work at ¯xed value of the intensity, say � ¼ 1.

The FI consequently becomes

Fð�Þ ¼ �

�

� �
4 cos2ð2 ffiffiffi

2
p

� � �Þ
½e 2� 2

� � cos2ð2 ffiffiffi
2

p
� � �Þ�

: ð16Þ

The most challenging conditions to test the precision of the population measurement

are those reached very close to the oscillator's ground state, where temperatures are

vanishing and the corresponding purities approach unity.

If we inspect the FI for a ¯xed value of the purity � ¼ 0:9, which corresponds to an

e®ective temperature of � ¼ 10, we can see that, compared to the case � ¼ 0 where

no displacement acts on the thermal state, the FI is no longer symmetric with respect

to the qubit angle �, as is apparent from the equation. Moreover the FI is no longer

maximized by preparing the qubit in one of the poles but the optimal � has to be

found numerically. We have thus lost both a simple and global optimal preparation of

the qubit. Actually, di®erent choices of ð�; ’Þ can lead to the maximum [see full

expression of Fð�Þ], but we maximize over � only as we work at ¯xed ’.

If we then take into account the e®ects of variable � we ¯nd that, as one can see in

Fig. 1, the displacement modi¯es the optimal angle �opt which yields to the maximum

of the FI, but does not a®ect the magnitude of the latter. This is a ¯rst evidence of the

uselessness of a coherent kick for the purposes of an enhancement in precision.

Fig. 1. (Color online) Left panel: temporal evolution of the FI with a ¯xed purity � ¼ 0:9 for di®erent �

values; the solid red curve corresponds to the optimal QFI Hð�Þopt, while the others are the FI for � ¼ 0

(purple), � ¼ 	
2 (blue) and � ¼ �opt � 2:39 (orange). Right panel: temporal evolution of the FI for di®erent

intensities of the displacement � and for a ¯xed purity, say � ¼ 0:9; the red curve corresponds to
� ¼ 0; �opt ¼ 0 (i.e. the optimal QFI), the orange one to � ¼ 1; �opt � 2:39 while the purple one is for � ¼ 3

and �opt � 0:9.
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Moreover, one can see that the red curve (� ¼ 0) is an envelop from the results

associated with � 6¼ 0 and that the higher � the more oscillating the behavior of the

FI. We ¯nally perform a numerical maximization over � and �, i.e. we consider

maxð�;�ÞF ð�Þ. As shown in Fig. 2 the maximum of the FI and the optimal time �opt at

which it occurs do not depend on �, while �opt does. Moreover �opt does not reach any

steady optimal value.

We conclude our analysis by noticing that, thanks to the one-to-one map between

� and �, the corresponding FI functions are connected by the following transfor-

mation:

F ð�Þ ¼
X
j¼0;1

½@�pjð�Þ�2
pjð�Þ

¼ Fð�Þ @�

@�

� �2

�¼�ð�Þ
ð17Þ

¼ F ð�ð�ÞÞ 4

ð1� �2Þ2 : ð18Þ

In order to understand whether the population measurement, which physically

implements the �̂3 operator, is the best conceivable one, one has to compute the QFI.

The QFI relative to the family of displaced thermal states is

Hð�Þ ¼ 1

8

�

�

� �
4

coth2 � 2

�

� �
� 1

� �
½3þ cos 2�� 2 sin2� cos 2’�: ð19Þ

At a ¯rst glance, one can see that the QFI does not depend on �. This de¯nitely

proves the irrelevance of adding any displacement to the thermal state in order to

improve the precision of estimation. The QFI can be either maximized by choosing

’ ¼ 	
2, regardless of �, or by preparing the qubit in one of the poles, i.e. � ¼ 0; 	. For

both the optimal preparations, the QFI reduces toHð�Þopt ¼ 1
2

�
�

	 

4
coth2 � 2

�

	 

� 1

h i
,

which is equal to the FI of the population measurement without any displacement

and with the qubit in one of the poles, namely the solid red curve in Fig. 1. In this case

the ultimate answer is given by inspecting the SLD, whose spectral measure gives the

best observable, i.e. the one with FI equal to QFI. For ’ ¼ 	
2 or for � ¼ 0; 	 the SLD is

Fig. 2. (Color online) Numerical maximization maxð�;�ÞFð�Þ of the FI with respect to � and �. Left:

logarithmic plot of the maximum of the FI as a function of the purity. Center: plot of the optimal time �opt
as a function of �. Right: plot of the optimal angle �opt for di®erent values of the displacement, � ¼ 0:3

(red), � ¼ 0:5 (orange), � ¼ 1 (purple).
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diagonal and reads

Lð�Þ ¼ �

�

� �
1� coth

� 2

�

� �� �
I� e

� 2
� �3

	 

;

which provides additional evidence of the optimality of population measurements.

4.1. Estimation of purity at a ¯xed total energy

Up to now, we have looked for maxima of the FI treating � and � as independent

parameters. Actually one may wonder how things go if we only have a ¯xed total

amount of energy 
 available. Such value will be determined by both the thermal

excitationsN ¼ 1��
2� and the intensity of the initial displacement, so that we can write


 ¼ j�j2 þ 1� �

2�
: ð20Þ

For � ¼ 0 the only contribution is the thermal one. In Fig. 3 (left) we have randomly

generated di®erent purities � and, for each value, performed a numerical optimiza-

tion over � and �. This has been done for two di®erent values of energy [
 ¼ 0:5

(purple) and 
 ¼ 2 (orange)]. We can see that, by increasing the energy 
, a larger

part of the purity close to 0 becomes accessible but it does not a®ect the value of the

FI. In the right panel we compare, for each randomly generated value of the purity,

maxð�;�ÞFð�Þ with F ð
 ¼ 1��
2� Þ, i.e. the FI relative to only the thermal contribution.

Since the two plots overlap we conclude that a coherent kick cannot guarantee any

improvement in precision.

4.2. Joint estimation of purity and complex amplitude

Let us now consider the case where, by measuring the qubit, we want to estimate

both the purity and the coherent amplitude. In this case the relevant tool in assessing

the estimation precision is the quantum Fisher information matrix H which, thanks

to the unitary nature of the displacement operator, turns out to be diagonal. That is

H�� ¼ H�� ¼ 0: The ultimate precision achievable in such a joint estimation

Fig. 3. (Color online) Optimized FI at set value of the total energy. In both panels, we take 
 ¼ 0:5

(purple), 
 ¼ 2 (orange). The right panel compares maxð�;�ÞFð�Þ to the \thermal" part F ð
 ¼ 1��
2� Þ.
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procedure is ruled by the diagonal elements of the QFI matrix, which read as follow

H�� ¼ Hð�Þ; ð21Þ
H�� ¼ 2� 2e�

2� 2
� ½3þ cos 2�� 2 sin2� cos 2’�: ð22Þ

Therefore, the appropriate bound for H reduces to the case of single parameter

estimation, e.g. Varð�Þ � 1
M ðH�1Þ�� ¼ 1

MH��
.

5. Conclusion

We have addressed the problem of estimating the purity of the state of a quantum

harmonic oscillator initially prepared in a displaced thermal state. Our probing

system is a qubit, coupled to the oscillator via a Jaynes�Cummings model that

also includes the counter-rotating terms, in line with some of experimental systems

considering hybrid qubit-oscillator devices. Using the tools provided by quantum

estimation theory, we have been able to ascertain the irrelevance of the coherent

displacement for the estimation of the purity of the oscillator state. The latter can be

optimally inferred by means of population measurements of the qubit state. These

results have been extended to the case of a constrained problem, where only a ¯xed

and given amount of total energy of the system is available.

Our results extend previous analyses where temperature estimation was addressed

for micromechanical resonators coupled to a superconducting qubit via Jaynes�
Cummings interaction in the rotating-wave approximation.14 As mentioned, our

¯ndings are relevant to the increasingly important scenario where direct access to a

system is impossible or inconvenient (in light, for instance, of the fragility of the

system to the back-action of a direct measurement) and only an indirect inference of

the system's properties is in order. Such a situation is frequently faced in setups

involving quantum mesoscopic devices such as those involving mechanical modes

operating at the quantum level or quantum many-body systems. The analysis of the

simple situation addressed here should be seen as benchmarking more sophisticated

approaches to parameter estimation.
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