
PHYSICAL REVIEW A 93, 043805 (2016)

Full quantum state reconstruction of symmetric two-mode squeezed thermal states via spectral
homodyne detection and a state-balancing detector
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We suggest and demonstrate a scheme to reconstruct the symmetric two-mode squeezed thermal states of
spectral sideband modes from an optical parametric oscillator. The method is based on both a single homodyne
detector and the error signal from the active stabilization of the oscillator cavity. The measurement scheme has
been successfully tested on different two-mode squeezed thermal states, ranging from uncorrelated coherent
states to entangled states.
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I. INTRODUCTION

Homodyne detection (HD) is an effective tool to char-
acterize the quantum state of light in either the time [1–8]
or the frequency [9–28] domain. In a spectral homodyne
detector, the signal under investigation interferes at a balanced
beam splitter with a local oscillator (LO) with frequency
ω0. The two outputs undergo a photodetection process and
their photocurrents are combined leading to a photocurrent
continuously varying in time. The information about the
spectral field modes at frequencies ω0 ± � (sidebands) is
then retrieved by electronically mixing the photocurrent with
a reference signal with frequency � and phase �. Upon
varying the phase θ of the LO, we may access different field
quadratures, whereas the phase � can be adjusted to select the
symmetric S or antisymmetric A balanced combinations of
the upper and lower sideband modes.

Measuring the sole modes S and A through homodyne
detection is not enough to assess the spectral correlation
between the modes under investigation [29] and, in turn, to
fully characterize a generic quantum state. In order to retrieve
the full information about the sidebands it has been suggested
that one should spatially separate the two modes [30,31]
or implement more sophisticated setups [29,32] involving
resonator detection. On the other hand, it would be desirable
to have schemes that do not require structural modifications of
the experimental setup. In turn, this would make it possible to
embed more easily diagnostic tools in interferometry [33] and
continuous-variable-based quantum technology. Remarkably,
in many relevant cases of interest for continuous-variable
quantum information, such as squeezed state generation
by spontaneous parametric down-conversion, the correlation
between the modes vanishes due to the symmetric nature of
the generated state, which should be, of course, experimentally
verified.

In this paper we focus on the characterization of a signal
from an optical parametric oscillator (OPO) that is the
main source of continuous-variable quantum states exploited
in quantum-information processing protocols. We suggest
and demonstrate a measurement scheme where the relevant
information for the quantum state reconstruction of symmetric
spectral modes is obtained by using both a single homodyne
detector and the error signal of an active stabilizer. The latter
is based on the Pound-Drever-Hall (PDH) technique [34] and

stabilizes an OPO used for the state generation. More precisely,
we use the error signal from the PDH to stabilize the OPO
as well as to monitor the state balance. Furthermore, the
reconstruction is achieved by exploiting the phase coherence
of the setup, guaranteed in every step of the experiment, and
two auxiliary combinations of the sideband modes selected by
setting the mixer phase at � = ±π/4.

The paper is structured as follows. In Sec. II we describe
the state generation and the homodyne detection technique.
Section III presents the obtained results concerning coherent,
squeezed, and squeezed-coherent two-mode states. We draw
some concluding remark in Sec. IV.

II. HOMODYNE DETECTION AND STATE
RECONSTRUCTION

A. Experimental setup

A schematic diagram of our apparatus is sketched in
Fig. 1. The principal radiation source is provided by a home-
made Nd:YAG laser (∼300 mW @1064 and 532 nm) internally
frequency doubled by a periodically poled MgO:LiNbO3

(PPLN in Fig. 1). To obtain the single-mode operation, a
light diode is placed inside the laser cavity. One laser output
(@532 nm) pumps the MgO:LiNbO3 crystal of the OPO
whereas the other output (@1064 nm) is sent to a polarizing
beam splitter (PBS) to generate the LO and the seed for the
OPO. The power of the LO (∼10 mW) is set by an amplitude
modulator (AM). Two phase modulators (PMa and PMb in
Fig. 1) generate both the sidebands used as OPO coherent
seeds and as active stabilization of the OPO cavity with the
PDH technique [34]. For the OPO stabilization we use a
frequency of 110 MHz (HF) while the frequency �/(2π ) for
the generation of the input seed is about 3 MHz. This is indeed
a major effort, but it will turn out to be fundamental for the
full reconstruction of the symmetric states addressed below.
The OPO cavity is linear with a free spectral range (FSR) of
3300 MHz, the output mirror has a reflectivity of 92% and
the rear mirror of 99%. The linewidth is about 55 MHz, thus
the OPO stabilization frequency HF is well above the OPO
linewidth while the frequency � is well inside. In order to
actively control the length of the OPO cavity its rear mirror is
connected to a piezo that is controlled by the signal error of
the PDH apparatus.
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FIG. 1. Schematic diagram of the experimental setup. See the
main text for details.

The detector consists of a 50:50 beam splitter, two
low-noise detectors and a differential amplifier based on a
LMH6624 operational amplifier. The interferometer visibility
is about 95%. We remove the low-frequency signal through
a high-pass filter @500 kHz and then the signal is sent to
the demodulation stage. To extract the information about the
signal at frequency � we use an electronic setup consisting of
a phase shifter, a mixer (

⊗
in Fig. 1), and a low-pass filter

@300 kHz. Since, as we will see in the following, we need to
measure the signal at two different orthogonal phases, �1 and
�2 = �1 + π/2, for the sake of simplicity we implemented a
double electronic setup to observe the outputs at the same time
(see Fig. 1). Finally, the LO phase θ is scanned between 0 and
2π by a piezo driven by a ramp generator (RG) and connected
with a mirror before the HD beam splitter. The acquisition
time is 20 ms and we collect about 100 000 points by a 2-GHz
oscilloscope.

B. OPO state reconstruction protocol

If ã0(ω0) is the photon annihilation operator of the signal
mode at the input of the HD, it is easy to show that the
detected photocurrent can be written as (note that the “fast
term” ω0 is canceled by the presence of the LO at the
same frequency) I (t) ∝ ã0(t) e−iθ + ã

†
0(t) eiθ [35], where θ

is the phase difference between the signal and LO and we
introduced the time-dependent field operator ã0(t), which
is slowly varying with respect to the carrier at ω0, such
that ã0(t) = e−iω0t

∫
dω F (ω) ã0(ω0 + ω) e−iωt ≡ e−iω0t a0(t),

F (ω) being the apparatus spectral response function.
To retrieve the information about the sidebands at frequen-

cies ω0 ± �, described by the time-dependent field operators
a±�(t), we use electronic mixers set at the frequency �

with phase shift � with respect to the signal, leading to
the current I�(t,�) = I (t) cos(�t + �). Neglecting the terms
proportional to exp(±2i�t) (low-pass filter), we find the
following expression for the operator describing the (spec-
tral) photocurrent I�(t,�) ∝ Xθ (t,�|�), where Xθ (t,�|�) =
b(t,�|�) e−iθ + b†(t,�|�) eiθ is the quadrature operator as-
sociated with the field operator (note the dependence on the

two sidebands):

b(t,�|�) = a+�(t) ei� + a−�(t) e−i�

√
2

. (1)

Note that [b(t,�|�),b†(t ′,�|�)] = ∫
dω |F (ω)|2 e−iω(t−t ′).

The interaction inside the OPO is bilinear and involves
the sideband modes a±� [35]. It is described by the effective
Hamiltonian H� ∝ a

†
+�a

†
−� + H.c., which is a two-mode

squeezing interaction. Due to the linearity of H�, if the initial
state is a coherent state or the vacuum, the generated two-mode
state ρ� is a Gaussian state, namely, a state described by
Gaussian Wigner functions and, thus, fully characterized by
its covariance matrix (CM) σ� and first moment vector R
[36,37]. It is worth noting that due to the symmetry of H�,
the two-sideband state is symmetric [29] and can be writ-
ten as ρ� = D2(α)S2(ξ )ν+�(N ) ⊗ ν−�(N )S†

2(ξ )D†
2(α), where

D2(α) = exp{[α(a†
+� + a

†
−�) − H.c.]/

√
2} is the symmetric

displacement operator and S2(α) = exp(ξa
†
+�a

†
−� − H.c.) the

two-mode squeezing operator, and ν±�(N ) is the thermal
state of mode a±� with N average photons [36]. The state
ρ� belongs to the so-called class of the two-mode squeezed
thermal states, generated by the application of S

†
2(ξ )D†

2(α)
to two thermal states with (in general) different energies. In
order to test our experimental setup, we acted on the OPO
pump and on the phase modulation to generate and characterize
three classes of states: the coherent (α �= 0 and N,ξ = 0), the
squeezed (ξ,N �= 0 and α = 0), and the squeezed-coherent
(α,ξ,N �= 0) two-mode sideband states. We now consider the
mode operators

b(t,0|�) ≡ as, b(t,π/2|�) ≡ aa, (2)

which correspond to the symmetric (S ) and antisymmetric
(A ) combination of the sideband modes, respectively, and the
corresponding quadrature operators qk = X0(t,�k|�), pk =
Xπ/2(t,�k|�), and z±

k = X±π/4(t,�k|�), k = a,s, with �s =
0 and �a = π/2. In the S /A modal basis, the first moment
vector of ρ� reads R′ = (〈qs〉,〈ps〉,〈qa〉,〈pa〉)T and its 4 × 4
CM can be written in the following block-matrix form:

σ ′ =
(

σ s σ δ

σ T
δ σ a

)
, σ δ =

(
εq δqp

δpq εp

)
, (3)

where [38]

σ k =
( 〈

q2
k

〉 − 〈qk〉2 1
2 〈(z+

k )2 − (z−
k )2〉

1
2 〈(z+

k )2 − (z−
k )2〉 〈

p2
k

〉 − 〈pk〉2

)
(4)

is the CM of the mode k = a,s, εl = 〈lsla〉 − 〈ls〉〈la〉, δll̄ =
〈ls l̄a〉 − 〈ls〉〈l̄a〉 with l,l̄ = q,p and l �= l̄. The matrix elements
of σ k can be directly measured from the homodyne traces of
corresponding mode ak (see Appendix A for further details),
whereas the entries of σ δ cannot. However, the information
about εl can be retrieved by changing the value of the mixer
phase to � = ±π/4. In fact, it easy to show that [38–
40] εl = 1

2 (〈l2
+〉 − 〈l2

−〉) − 〈ls〉〈la〉, l = q,p, where q± = X0(t,
± π/4|�) and p± = Xπ/2(t, ± π/4|�).

We now focus on δll̄ . Given the state ρ�, but with different
thermal contributions, these elements are equal to the energy
unbalance between the sidebands (without the contribution
due to the displacement that does not affect the CM),
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R =

⎛
⎜⎜⎝

0.04 ± 0.06
3.12 ± 0.03
0.03 ± 0.06
0.03 ± 0.06

⎞
⎟⎟⎠

σ =

⎛
⎜⎜⎝

1.00 ± 0.03 0.1 ± 0.1 0.04 ± 0.09 (0.1 ± 0.1) × 10−4

1.03 ± 0.3 −(0.1 ± 0.1) × 10−4 0.0 ± 0.2
1.01 ± 0.01 0.0 ± 0.02

1.00 ± 0.02

⎞
⎟⎟⎠

FIG. 2. Homodyne traces referring to the coherent two-mode
sideband state and the reconstructed R′ and σ ′. The purities of the
modes S and A are μs = 0.99+0.01

−0.02 and μa = 0.99+0.01
−0.01, respectively.

Only the relevant elements are shown.

namely, δqp = −δpq = 
N� = (N+� − N−�), as shown in
Appendix A, and cannot be directly accessed by the spectral
homodyne detection alone. To overcome this issue, a resonator
detection method has been proposed and demonstrated in
Refs. [29,32]. In our case we can exploit the error signal
from the PDH stabilization to check the symmetry of the
sideband state and also to measure the presence of some energy
unbalance of the two sidebands, leading to nonvanishing
δll̄ . More in details, as described in Appendix B, given the
cavity bandwidth, the PDH error signal allows us to measure
the unbalance as 
N� = (τ+� − τ−�)N�, where τ±� are
the relative transmission coefficients associated with the two
sideband modes and N� = N+� + N−� can be obtained from
the (reconstructed) diagonal elements of σ s and σ a (see
Appendix B) [41].

III. EXPERIMENTAL RESULTS

Given the state ρ�, the full reconstruction of the CM
requires the measurement of the quadratures of modes as,aa,

and a± = b(t, ± π/4|�). Once the mode has been selected by
choosing the suitable mixer phase �, the LO phase θ is scanned
from 0 to 2π to acquire the corresponding homodyne trace. The
statistical analysis of each trace allows us to reconstruct the
expectation value of the moments of the quadrature required
to reconstruct the CM σ ′ and the first moments vector R′.

Figures 2, 3, and 4 show the experimental spectral ho-
modyne traces corresponding to the coherent, squeezed, and
squeezed-coherent two-mode sideband states, respectively.

σ =

⎛
⎜⎜⎝

0.50 ± 0.03 0.03 ± 0.06 0.02 ± 0.08 (0.1 ± 0.1) × 10−2

4.2 ± 0.2 −(0.1 ± 0.1) × 10−2 0.02 ± 0.07
0.49 ± 0.03 0.03 ± 0.05

4.2 ± 0.2

⎞
⎟⎟⎠

R =

⎛
⎜⎜⎝

0.04 ± 0.02
0.06 ± 0.06
0.01 ± 0.02
−0.01 ± 0.06

⎞
⎟⎟⎠

FIG. 3. Homodyne traces referring to the squeezed two-mode
sideband state and the reconstructed R′ and σ ′. The noise reduction
is 3.1 ± 0.3 dB for both the modes S and A, whereas their purities
are μs = 0.68 ± 0.07 and μa = 0.67 ± 0.02, respectively. Only the
relevant elements are shown.

The coherent state is generated by removing the OPO pump
and sending to the PMa (see Fig. 1) a sinusoidal signal at
3 MHz with the proper voltage amplitude in order to generate
the desired number of photons on the sidebands. For the
squeezed states, the OPO pump is set at ∼300 mW (well
below the OPO threshold, which is about 4 times greater)
whereas the input of the PMa seed generator is left in the
vacuum (squeezed state) or modulated as in the case of the
coherent state generation (squeezed-coherent state). As one
can see, in the presence of squeezing (Figs. 3 and 4), all
four traces exhibit a phase-dependent quadrature variance; the
dependence disappears when the coherent two-mode sideband
state is considered (Fig. 2). In this last case we can also see
that for � = π/2 the homodyne trace is that of the vacuum
state, as one may expect. In the same figures we report the
corresponding σ ′ and R′. All the reconstructed σ ′ satisfy
the physical condition σ ′ + i� � 0 where � = iσ y ⊕ σ y , σ y

being the Pauli matrix [36]. This implies that the modes S and
A represent the same local quantum state, namely, σ s = σ a:
this is in agreement with our measurement within statistical
errors, as one can check from the Figs. 2–4. Furthermore, the
diagonal elements of the off-diagonal blocks are zero within
their statistical errors, in agreement with the expectation for a
factorized state of the two modes.

We should now calculate the corresponding CMs in the
modal basis â+� and â−� of the upper and lower sidebands,
respectively. Because of Eq. (2) we can write σ� = ST σ ′S
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σ =

⎛
⎜⎜⎝

0.53 ± 0.04 −0.1 ± 0.2 0.02 ± 0.03 (0.1 ± 0.1) × 10−2

4.1 ± 0.2 −(0.1 ± 0.1) × 10−2 0.2 ± 0.4
0.57 ± 0.03 −0.09 ± 0.05

4.2 ± 0.2

⎞
⎟⎟⎠

R =

⎛
⎜⎜⎝

−0.09 ± 0.03
5.69 ± 0.08
0.00 ± 0.02
0.04 ± 0.06

⎞
⎟⎟⎠

FIG. 4. Homodyne traces referring to the squeezed-coherent two-
mode sideband state and the reconstructed R′ and σ ′. The noise
reduction is 2.7 ± 0.3 dB for the S mode and 2.4 ± 0.2 dB for the
S mode, whereas the purities are μs = 0.68 ± 0.07 and μa = 0.64 ±
0.02, respectively. Only the relevant elements are shown.

and R = ST R′, where

S = 1√
2

(
I I

−iσ y iσ y

)
(5)

is the symplectic transformation associated with the mode
transformations of Eq. (2). The results are summarized
in Table I. Whereas the reconstructed two-mode sideband
coherent state is indeed a product of two coherent states, the
other two reconstructed states exhibit nonclassical features.
In particular, the minimum symplectic eigenvalues of the
corresponding partially transposed CMs [42,43] read λ̃ =
0.50 ± 0.02 and λ̃ = 0.55 ± 0.03 for the two-mode squeezed
and squeezed-coherent state, respectively. Since in both
cases λ̃ < 1, we conclude that the sideband modes are
entangled.

IV. CONCLUDING REMARKS

In conclusion, we have presented a measurement scheme to
fully reconstruct the class of symmetric two-mode squeezed
thermal states of spectral sideband modes from an optical
parametric oscillator. This class of states, with Gaussian
Wigner functions, is widely exploited in continuous-variable
quantum technology. The scheme is based on homodyne
detection and active stabilization, which guarantees phase
coherence in every step of the experiment, and on a suitable
analysis of the detected photocurrents. We have shown that
by properly choosing the electronic mixer phase it is possible

TABLE I. Reconstructed first moment vectors R and CMs σ�

of the two-mode sideband states ρ� corresponding to the states of
Figs. 2, 3 and 4, respectively.

• Two-mode coherent state:

R 0.05 0.06, 2.18 0.05, 0.01 0.06, 2.23 0.05 T

Σ

1.00 0.02 0.0 0.1 0.00 0.02 0.1 0.1
0.0 0.1 1.02 0.02 0.0 0.1 0.01 0.02

0.00 0.02 0.0 0.1 1.00 0.02 0.0 0.1
0.1 0.1 0.01 0.02 0.0 0.1 1.02 0.02

• Two-mode squeezed state:

R 0.02 0.04, 0.03 0.04, 0.03 0.04, 0.05 0.04 T

Σ

2.3 0.1 0.00 0.06 1.8 0.1 0.05 0.06
0.00 0.06 2.3 0.1 0.01 0.06 1.8 0.1

1.8 0.1 0.01 0.06 2.3 0.1 0.00 0.06
0.05 0.06 1.8 0.1 0.00 0.06 2.3 0.1

• Two-mode squeezed-coherent state:

R 0.09 0.05, 4.02 0.06, 0.03 0.05, 4.02 0.06 T

Σ

2.4 0.1 0.1 0.2 1.8 0.1 0.02 0.02
0.1 0.2 2.3 0.4 0.2 0.2 1.8 0.4
1.8 0.1 0.2 0.2 2.4 0.1 0.1 0.2

0.02 0.02 1.8 0.4 0.1 0.2 2.3 0.4

to select four different combinations of the upper and lower
sidebands which, together with the information from the
PDH error signal, allows us to reconstruct the elements of
the covariance matrix of the state under consideration. The
scheme has been successfully demonstrated to reconstruct both
factorized and entangled sideband states.

In our implementation we used two electronic mixers and
retrieved information about two modes at a time. It is also
possible to use four mixers and extract information about
four modes at the same time. The method is based on a
single homodyne detector, the error signal from the active
stabilization of the OPO, and does not involve elements
outside the main detection tools of continuous-variable optical
systems. As such, our procedure is indeed a versatile diag-
nostic tool, suitable to be embedded in quantum-information
experiments with continuous-variable systems in the spectral
domain, where, in particular, a state from an OPO is used as
a signal or a quantum probe and, therefore, should be fully
characterized.
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APPENDIX A: COVARIANCE MATRIX ELEMENTS OF
THE TWO-MODE SQUEEZED THERMAL STATE

In this Appendix we explicitly show how we can calculate
the elements of the CM σ ′ given in Eq. (3). We recall that
according to our definitions

b(t,0|�) = â+�(t) + â−�(t)√
2

≡ as, (A1a)

b(t,π/2|�) = i
â+�(t) − â−�(t)√

2
≡ aa, (A1b)

therefore the quadrature operator Xθ (t,�|�) =
b(t,�|�) e−iθ + b†(t,�|�) eiθ can be written as

Xθ (t,�|�) = cos �[qs cos θ + ps sin θ ]

+ sin �[qa cos θ + pa sin θ ].

If we set � = 0, we have

X0(t,0|�) ≡ qs = as + a†
s

= q+� + q−�√
2

⇒ 〈
q2

s

〉 − 〈qs〉2, (A2a)

Xπ/2(t,0|�) ≡ ps = i(a†
s − as)

= p+� + p−�√
2

⇒ 〈
p2

s

〉 − 〈ps〉2, (A2b)

X±π/4(t,0|�) ≡ qs ± ps√
2

⇒ 1

2
〈qsps + psqs〉 − 〈qs〉〈ps〉,

(A2c)

and for � = π/2 we obtain

X0(t,π/2|�) ≡ qa = aa + a†
a

= p−� − p+�√
2

⇒ 〈
q2

a

〉 − 〈qa〉2, (A3a)

Xπ/2(t,π/2|�) ≡ pa = i(a†
a − aa)

= q+� − q−�√
2

⇒ 〈
p2

a

〉 − 〈pa〉2, (A3b)

X±π/4(t,π/2|�) ≡ qa ± pa√
2

⇒ 1

2
〈qapa + paqa〉 − 〈qa〉〈pa〉,

(A3c)

On the other hand, if we set � = ±π/4 we find

X0(t,±π/4|�) = qa ± qs√
2

,

Xπ/2(t,±π/4|�) = ps ± pa√
2

,

and we have the following identities:

〈
X2

0(t,π/4|�) − X2
0(t, − π/4|�)

〉 = 2〈qaqs〉 ≡ εq, (A4)〈
X2

π/2(t,π/4|�) − X2
π/2(t, − π/4|�)

〉 = 2〈paps〉 ≡ εp.

(A5)

As mentioned in Sec. II, it is not possible to calculate the el-
ements δqp and δpq directly from the spectral homodyne traces

[29]. However, when the state under consideration is a two-
mode squeezed thermal state ρ� = D2(α)S2(ξ )ν+�(N1) ⊗
ν−�(N2)S†

2(ξ )D†
2(α), where D2(α) = exp{[α(a†

+� + a
†
−�) −

H.c.]/
√

2} is the symmetric displacement operator, S2(α) =
exp(ξa

†
+�a

†
−� − H.c.) is the two-mode squeezing operator,

and ν±�(N ) is the thermal state of mode a±� with N average
photons [36], we can calculate δqp and δpq as follows.

Since the covariance matrix does not depend on the
displacement operator, we can assume α. Furthermore, it is
useful to introduce the following parametrization: we define
the squeezed photons per mode Nsq = sinh2 r , the total number
of thermal photons Nth = N1 + N2, and the thermal-photon
fraction Rth = N1/Nth. Thereafter, the energies of the two
sidebands are given by

N+� = Nsq(1 + Nth) + RthNth,

N−� = Nsq(1 + Nth) + (1 − Rth)Nth,

respectively, and thus

N+� + N−� = 2Nsq + Nth(1 + 2Nsq),

N+� − N−� = Nth(2Rth − 1).

The covariance matrix associated with ρ� has the following
block-matrix form:

σ� =
(

A I C σ z

C σ z B I

)
, (A6)

where σ z is the Pauli matrix and

A = 1 + 2Nsq(1 + Nth) + 2RthNsq,

B = 1 + 2Nsq(1 + Nth) + 2(1 − Rth)Nsq,

C = 2(1 + Nth)
√

Nsq(1 + Nsq) .

The corresponding measured covariance matrix reads

σ ′ =
(

1
2 (A + B) I + C σ z (N+� − N−�) iσ y

N+� − N−�) iσ y
1
2 (A + B) I + C σ z

)
, (A7)

σ y being the Pauli matrix. Note that while σ ′ is always
symmetric, σ� can be also asymmetric.

APPENDIX B: RETRIEVING THE ENERGY UNBALANCE
OF THE TWO-MODE SQUEEZED THERMAL STATE

In our setup, the presence of the energy unbalance between
the sidebands is due to the possible difference between the cav-
ity transmission coefficients of the involved modes. Therefore,
to determine the energy unbalance, we measure the normalized
OPO cavity transmission coefficient when resonant with the
pump, its bandwidth 
ω and get the corresponding analytical
fit T0(ω). Then, we consider the error signal EPDH(δx) of the
PDH [34], where δx = L − L0, L and L0 being the actual
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0

EPDH(δx)

δω

ω0
= − δx

L0

+Ω−Ω
ω

0

T0(ω)

ω
0

δω

Tδω(ω)

EPDH = 0

EPDH > 0

+Ω−Ω

δx

(b)

(c)

(a)

FIG. 5. (a) PDH error signal as function of the cavity dis-
placement δx = L − L0, where L is the cavity length and L0

refers to the resonant condition with the pump at ω0: the value of
EPDH allows us to retrieve the information about the detuning δω.
(b) Cavity transmission coefficient as a function of ω when EPDH = 0;
one has the maximum T0(0) = 1 and T0(+�) = T0(−�). (b) Cavity
transmission coefficient as a function of ω in the presence EPDH �= 0
(in the plot we consider EPDH > 0); now one finds the transmissivity
maximum at δω, namely, Tδω(δω) = 1. Note that Tδω(ω) = T0(ω −
δω) and it is clear that Tδω(+�) �= Tδω(−�). Starting from the
measured EPDH(δx), one can retrieve the value δω and, thereafter,
the sideband transmission coefficients Tδω(+�) and Tδω(−�). For
the sake of clarity we did not report the real experimental signals,
but their pictorial view to better explain our analysis. See the text for
details.

cavity length and its length at resonance with the pump,
respectively, see Fig. 5(a). The detuning is thus given by δω =
−ω0 δx/L0. If |δω| 
 
ω, which is our working regime, we
can expand the error signal as EPDH(δx) ≈ κ δx, where we
used EPDH(0) = 0 and κ = ∂δxEPDH(0) is directly measured
from the experimental PDH signal. At resonance, the cavity
has a maximum of the (normalized) transmissivity at ω = 0
(or L = L0) and the corresponding PDH error signal vanishes,
namely, EPDH(0) = 0. This scenario is sketched in Fig. 5(b),
where we show a pictorial view of T0(ω) when EPDH = 0: we
have that T0 = 1 and, thus, due to the symmetry of T0(ω), we
find T0(+�) = T0(−�). In the presence of a detuning |δω| 


ω, we measure a PDH error signal E

(exp)
PDH = EPDH(δx) �= 0,

see Fig. 5(c) (note that now the maximum of the transmissivity
is reached at ω = δω). Therefore, we can retrieve the actual
value of detuning as δω = −ω0 E

(exp)
PDH /(κ L0) and use it

to obtain the information about the (normalized) sideband
transmission coefficients Tδω(+�) and Tδω(−�) starting from
Tδω(ω) = T0(ω − δω). Eventually, we can assess the relative
cavity transmission coefficients

τ±� = Tδω(±�)

Tδω(+�) + Tδω(−�)
, (B1)

associated with the two sideband modes, and the energy
difference can be obtained as

N+� − N−� = Tδω(+�) − Tδω(−�)

Tδω(+�) + Tδω(−�)
(N+� + N−�). (B2)

In general, given the covariance matrix σ of a Gaussian state,
the total energy can be obtained from the sum of its diagonal
elements [σ ]kk as (without loss of generality we are still
assuming the absence of the displacement)

Ntot = 1

4

4∑
k=1

[σ ]kk − 1. (B3)

Experimentally, we can find the total energy N+� + N−� from
the first and second moments of the operators in Eqs. (A2) and
(A3), which are measured from the homodyne detection.
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