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Abstract
Wepropose a feedback controlmechanism for the squeezing of the phononicmode of amechanical
oscillator.We showhow, under appropriate working conditions, a simple adiabatic approach is able
to inducemechanical squeezing.We then go beyond the limitations of such aworking point and
demonstrate the stationary squeezing induced by using repeatedmeasurements and reinitialization of
the state of a two-level system ancilla coupled to the oscillator. Our nonadaptive feedback loop offers
interesting possibilities for quantum state engineering and steering in open-system scenarios.

The development of thefirst generation of devices based on the paradigmof quantum technology requires the
design of feasible schemes for quantum control. A considerable body of work has been recently produced in this
sense [1] and a few significant test-bed demonstration have been reported. Proposals for the fast cooling of the
vibrations of trapped ions andmicromechanical oscillators based on simple controlling schemes [2] have been
put forward recently.Moreover, techniques for the achievement of quantumoptimal control have been
extended to the dynamics of quantummany-body systems [3].

However, a number of hurdles are clearly on the route towards the full grounding of such schemes, ranging
from strong environmental effects to the difficulty of addressing directly fragile quantum systems. Such
challenges are evenmore important for devices exploitingmesoscopic systems, which display enhanced
sensitivity to environmental decoherence.

An architecture that seems to offer a chance to bypass such hindrances combines simple (effective) spin
systems and vibratingmicro- or nanostructures [4] and aims at building hybrid devices of enhanced flexibility
(thanks to the possibility of tuning themutual coupling strengths amongst the various parts of the system) and
robustness (enforced by the possibility to address the spin subsystemwithout affecting the oscillator) [5].
Interesting experimental demonstrations have been performed in this sense [6], and recent endeavours have
shown the possibility to engineermechanisms able to enforce nonclassical features inmassivemechanical
systems [7]. Yet, the route towards the consolidation of suchmethods is still long.

Here we contribute to the aforementioned quest by presenting a scheme that exploits a ‘hybrid’ architecture
of the form sketched earlier to achieve large squeezing of a harmonic oscillator via a feedback-assisted protocol
built on repeated projections of an ancillary qubit and its reinitialization .We demonstrate significant steady-
state squeezing in awide range of operating regimes of the system. In particular, our scheme does not require the
time-gated switching on/off of the qubit-oscillator interaction, and thus relaxes significantly the degree of
control required for the implementation of the protocol that we propose. Our scheme is, in this working
principle, very close to the current design of hybrid configurations for the control of quantumharmonic
oscillators embodied bymassivemechanical structures [5, 6] and can be applied to superconductingmicrostrip
resonators coupled to superconducting qubits, a scenario thatmight be useful for the achievement of large
squeezing of itinerantmicrowave radiation [8].
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1. Effective interactionmodels

Weconsider the coupling between a qubit and an oscillator regulated by theHamiltonianmodel

ω σ ω σ= + + + + ( ) ( ) ( )a a g a aˆ 2 ˆ ˆ ˆ 1 2 ˆ ˆ ˆ , (1)a z m x1
† †

wherewe have assumed units such that == 1 throughout themanuscript,ωm is the frequency of the oscillator
(with annihilation and creation operators â and â†),ωa is the transition frequency between the levels ∣ 〉 ∣ 〉g e{ , }of
the qubit, g is the interaction strength, and σ̂ j is the =j x y z, , Paulimatrix. Finally, we have introduced the

slowly varying quadrature operator ≡ +x a aˆ ˆ ˆ1
†, whose squeezing properties will be addressed here. Thismodel

can be physically embodied by a few systems, including the case of amechanical resonator (endowedwith a
magnetic tip) coupled to a nitrogen-vacancy centre in diamond exposed to a strong transversemagnetic field [9]
or the interaction between a nanomechanical resonator and aCooper-pair box [10]. An alternative scenario is
provided by an intracavity atom that interacts with an externally driven cavitymode. The latter is, in turn,
coupled through radiation pressure to the vibrationalmode of amechanical cavity end-mirror [11], as is typical
of cavity-optomechanical settings [12]. In this context, equation (1)would be achieved by assuming the bad-
cavity limit and eliminating adiabatically the fieldmode so to obtain a direct coupling between the atomand the
mechanicalmode. All these systems offer wide tunability of the relevant parameters aswell as the possibility to
prepare the state of the qubit and read it out accurately. A further configurationwould involve a superconducting
quantum interference device in the charge regime coupledwith amicrostrip resonator [13].However, here we
focus onmechanical bosonic systems forwhich the nonclassical features we are interested in remain to be
demonstrated experimentally.

Wemove to a rotating frame defined by the free qubitHamiltonian ω σ=qubit̂ ˆ 2a z , obtaining

ω σ σ= + +ω ω+ − −int t a a ge x ge xˆ ( ) ˆ ˆ ˆ ˆ ˆ ˆ . (2)m
i i

1,
†

1 1
a a

Aswe consider the large detuning regime δ ω ω≡ − ≫ ga m , we can average over the fast rotating terms and
thus perform the adiabatic elimination of the qubit excitations as described in [14]. This procedure yields the
effectiveHamiltonian

ω ω ω σ= + = + ⨂eff  ⎡
⎣⎢

⎤
⎦⎥h h a a

g
xˆ ˆ 1 ˆ , ˆ ˆ ˆ ˆ ˆ , (3)

a
m

a
z0

† †
2

1
2

wherewe have defined ω= a aˆ ˆ ˆm0
† and σ= −h g xˆ ˆ ˆ1. An alternative approach to the achievement of the very same

effectivemodel is the use of the Schrieffer-Wolff transformation = σ ⨂ +ω eˆ i a aˆ ( ˆ ˆ )g
a y2

†
[15].When applied tô1,

such transformation projects the qubit-oscillator dynamics in the low-lying energy subspace. In fact, by using
the operator-expansion formula truncated to the second order in ωg a, we get

ω σ σ ω
ω σ

ω σ ω

≃ + + + −

+ + +
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By ignoring highly oscillating terms, we obtain the effectivemodel in equation (3). Notice that under the
assumption of strong coupling ω≲g a between qubit and harmonic oscillator, we shall retain the term
containing x̂1

2 [16]. The presence in such a termof â2 and â†2 suggests the possibility to enforce squeezing in the
state of the oscillator. Inwhat follows, we prove such intuition correct and carefully characterize the squeezing
mechanism that we achieve.

2. Stabilizing the evolution

Themechanism embodied by equation (3) would require a precise gating of the interaction between the qubit
and the oscillator to achievemechanical squeezing. Ideally, though, wewould like to bypass such necessity and
enforce nonclassical features on the stationary state of the oscillator. To achieve this, we considerHamiltonian
̂1 and complement the interaction at handwith a dissipation channel, whose role is to stabilize the properties of
the oscillator to steady-state conditions. In order to keep our approach as general as possible, we consider the
oscillator interactingwith a phononic bath at afinite temperature populated by thn thermal phonons. The
corresponding evolution is thus described by themaster equation
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ρ ρ γ ρ γ ρ= − + + +th th  ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( )i n a n a˙ ˆ , 1 ˆ ˆ (5)1
†

with ρ ρ ρ ρ= − + A A A A A A Aˆ [ ˆ] ˆ ˆ ( ˆ ˆ ˆ ˆ ) 2
† † †

a trace-preserving Lindblad super-operator and γ the coupling rate
with the bath. To show that our approach is successful in achieving the anticipated squeezing, we consider the
large-detuning limit so that we can use the effectivemodel eff̂ instead of̂1 in equation (5) and carefully choose
the initial preparation of the qubit. The intuition that we aim at exploiting consists of noticing that if the qubit is
prepared in an eigenstate of σ̂z , we can replaceσ → ±ˆ 1z in eff̂ and thus achieve an effectiveHamiltonian that
affects only the harmonic oscillator and is quadratic in the relevant operators, thus ensuring the solvability of the
dynamical equation. In linewith such an intuitive approach, in the remainder of this work, we consider the case
of a qubit initially prepared in∣ 〉e .

Let us now address the solution of the dynamicalmodel explicitly. The quadratic nature of the effective
model discussed earlier and the assumption of an initial Gaussian state of the harmonic oscillator allow us to
make use of the powerful framework ofGaussian states. These are completely specified by their vector offirst
moments〈 〉r̂ and covariancematrix (CM) σ whose elements areσ ϱ ϱ ϱ= −r r r rTr [{ˆ , ˆ } ] 2 Tr [ˆ ] Tr [ˆ ]jk j k j k ,

where ϱ is the densitymatrix of the oscillator and = Tr x xˆ ( ˆ , ˆ )1 2 [with = −x i a aˆ ( ˆ ˆ)2
† ]is the vector of the

oscillator quadrature operators. Themaster equation can be converted into the following set of dynamical
equations

σ σ σ
∂ =

∂ = + +T

r A r

A A D

ˆ ˆ ,

, (6)

t

t

wherewe have introduced the driftmatrix σ γ= −effA i H I 2y with effH theHamiltonianmatrix given by

=eff
T

eff r H rˆ ˆ ˆ 2. Thematrix γ= +thD n I(2 1) , with I being the identitymatrix, is responsible for diffusion.
Equations similar to the one for σ , which is of thewell-knowndifferential Lyapunovmatrix form, are key for the
study of the conditions for stability in control theory [17] and help address the dynamics of quantum systems
subjected to open-loop and feedback-controlmechanisms [18].

It is physically reasonable and experimentallymotivating to assume that the oscillator is initially at thermal
equilibriumwith its environment. This is the case, for instance, formicro- and nanomechanical oscillators,
which are typically fabricated on substrates sustaining spurious background phononicmodes at a given
temperature [19].Needless to say, other experimentallymotivated examples can be identified.We thus consider
the initial thermal state

∑ϱ =
+ +
( )

( )
m

m
n n(0)

¯

1 ¯n

n

n 1

with = −βω −m e¯ ( 1) 1m the average phonons of the oscillator, β the inverse temperature, and ∣ 〉n an element of
the Fock basis. Under such assumptions, we can analytically solve the differential equation for σ , looking in
particular for the steady-state solutions. In the followingwe set = thm n¯ as the oscillator in the equilibriumwith
the bath described by equation (5). One can check that in the presence of dissipation (i.e., for γ ≠ 0), the
dynamical system is always stable, as the sufficient condition =→∞ elim ( ) 0t

At is always satisfied. In this case, the
oscillator reaches a steady state characterized by the following values of the variances and covariance of the
quadrature operators

Δ ω
ω ω γ ω

= + −
+ +
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16 4
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In the previous equations, + thn(1 2 ) is the variance of the quadratures of a harmonic oscillator prepared in a
thermal state and detached from the ancilla (that is, for g=0). An example of the behaviour of Δx̂1

2 and Δx̂2
2

against time and for =thn 0 is reported infigure 1. As can be seen by inspecting the first of equation (7), for
=thn 0 quantum squeezing of the x̂1 quadrature (i.e., Δ <x̂ 11

2 ) is achieved for any >g 0. At nonzero
temperatures, Δx̂1

2 is reducedwith respect to the variance of a thermal state, thus showing noise reduction below
the corresponding thermal shot noise.More explicitly,
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Similar towhat is found formechanical systems at the quantum level (cf [20, 21]), wewill refer to such effect as
thermomechanical squeezing. Quite remarkably, such effect does not depend on the actual value of g and is
achieved for any non-null value of such parameter, thus showing the inherent efficiency of the protocol
proposed herein.

3.Numerical simulation of the idealmodel

Aswasmade clear throughout its derivation, equation (7) depends crucially on the validity of the performed
adiabatic elimination and the ability to keep the qubit in the state it has been initially prepared into ∣ 〉e
throughout the evolution. Such a possibility is not certain as far asmodel̂1 is concerned, althoughwe expect
that for large values of δ such a condition ismetwith good accuracy. The scope of our analysis herein is to test
such expectations in ameasurable way.

We thus proceed to fully simulate the evolution guided bŷ1 and compare the corresponding results for the
squeezing of the harmonic oscillator to the analogous quantity achieved using equation (7). As shown infigure 2,
it is indeed the case that a large value of δ results in values of Δx̂R

2 very close to the degree of squeezing achieved
via the true dynamics. Quantitatively, wefind a degree of squeezing of about 1 dB for ≳gt 50 [cf figure 2(a)].
While the agreement between the two predictions is perfect as far as =thn 0, the increasingly thermal nature of
the initial state of the harmonic oscillator results in only very small differences in the long-time values of Δx̂R (we
remind that eff̂ is insensitive to thn ).

Figure 1.Time evolution of the two variances Δx̂1
2 (blue dashed line) and Δx̂2

2 (red solid line) in dB-scale for the harmonic oscillator
initialized in the vacuum state withω = g0.1m , γ = g0.1 andω = g15a .

Figure 2.Time evolution of the renormalized variance Δx̂R
2 in dB-scale. The harmonic oscillator is initialized in a thermal state having

= thm n¯ thermal phonons; we considerω γ= = g0.1m and two different choices ofωa:ω = g50a [panel(a)] andω = g8a [panel
(b)]. The solid green curves correspond to the numerical simulations, with different average numbers of thermal phonons (from
bottom to top: =thn 0.2, 0.3, 0.4, 3.0), while the dashed blue curves correspond to the effective evolution governed by eff̂ (which is
insensitive to thn ).

4

New J. Phys. 17 (2015) 013034 MGGenoni et al



Somewhat expectedly, by relaxing the assumption of large detuning, we significantly worsen the
performance of the protocol, and considerable deviations from the ideal results are found. Indeed,moderate or
small values of δ favour transitions between the two logical states of the qubit, thusmaking the basic assumption
on top ofwhich our effective scheme is built (the qubit should remain in state ∣ 〉e throughout thewhole
evolution) no longer tenable. As a consequence, a δ-dependent threshold value of gt exists starting fromwhich
we do not observe any squeezing. Unfortunately, this holds also for the case reported infigure 2. Therefore, in
order to enforce squeezing in the steady state of the oscillator, we need to implement some additional formof
control. The description of suchmechanism is the focus of the next section.

4. Feedback-loopmechanism for steady-state squeezing

In order to effectively force the qubit to remain in its initial state, we rely on the implementation of a feedback-
loop scheme based on the repeatedmeasurement of the qubitʼs energy and its conditional projection on ∣ 〉e .
More specifically, our feedback-assisted scheme can be described as follows:

• We call ρ t( )0 the state of the qubit-oscillator system at a given time t0, andΦΔt the dissipativemap [with the
Hamiltonian part given by equation (3)] describing its evolutionwithin an interval Δt .

• At time Δ= +t t t1 0 , wemeasure the qubit in the ∣ 〉 ∣ 〉g e{ , }basis.

• If the outcome of the projection reveals a transition of the qubit to its logical ground state ∣ 〉g , the spin-flip
operation σ̂x is applied on it. Otherwise, the system is evolved in time for another interval Δt .

The average state of the system that arises from the application of the scheme noted earlier reads

ρ ϱ ϱ σ σ= ⨂ + ⨂( ) ( ) ( )t p t e e p t g gˆ ˆ , (11)e e g g x x1 1 1

whereϱ Φ ρ= 〈 ∣ ∣ 〉Δt k t k p( ) ( )k t k1 0 is the conditional state of the oscillator when the qubit is found in state
∣ 〉 =k k g e( , ) and pk is the corresponding detection probability. The protocol described earlier is then iterative
until the oscillator reaches a steady state at which the variance of the x̂1 quadrature stabilizes around a dynamics-
dependent value. A scheme close in spirit to ours has been implemented to prepare amicrowave radiationfield
in a Fock state [22].

A few comments are in order. First, it should be clear that the choice of Δt is important for the success of the
scheme. Its value results from the delicate trade-off between the intuition necessity to perform the qubit
projectivemeasurement as often as possible (so tomaintain ≃p 1e and thusmimic faithfully the ideal behaviour

thatwould arise from eff̂ ) and the need towait for enough time to let the squeezing build up. The latter request
is due to the fact that the effectiveHamiltonian eff̂ results from a second-order process and thus is ‘slow’with
respect to the natural timescales of the system.

Let us now characterize the performance of the protocol byfirst addressing the case of a zero-temperature
bath (i.e., =thn 0). Infigure 3(a)we report the value of the variance Δ ssx̂ 2 of quadrature x̂1 at steady state, against
the time interval Δt . Clearly, the degree of squeezing is a nonmonotonic function of Δt that results in an
oscillating behaviour. Theminima of such function correspond to =Δ π ω= ∈t p p2 ( )a , i.e.,multiples of the
time taken by the qubit tomake a transition between its states. The choice of p=1 allows for the achievement of
the largest degree of squeezing as a compromise between the coherent protocol and the dissipativemechanism.
In the rest of our study, wewill assume Δ π ω=t 2 a, even for the cases of ≠thn 0.

Having determined the optimal size of the time interval for the evolution, we now establish a performance
benchmark by comparing the ideal results that would arise from the dynamical equation (6) to the results
obtained through the numerical simulations based on̂1 and those arising from the implementation of the
feedback-loop protocol optimized as discussed earlier. Infigure 3(b)we show that the feedback-assisted
protocol reproduces closely the evolution induced by the effectivemodel in equation (3), resulting in a degree of
squeezing at the steady state that is comparable to the value achieved via equation (7). As expected, no steady-
state squeezing is achieved if no feedback is implemented.We thus conclude that themechanism implemented
throughout the feedback-assisted protocol is indeed able to closely resemble the desired effective squeezing
Hamiltonian, at least for the case of a zero-temperature bath.

Beforemoving to the assessment of the case with ≠thn 0, we aim at providing further insight into the
phenomenology of the squeezing process implemented through our qubit-assisted protocol. In order to do so,
infigure 4we show snapshots of the evolution of theWigner function
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∫π
ρ α α= α α− −⎡⎣ ⎤⎦W x y t t D e d( , , )

1
Tr ( ) ˆ ( ) (12)i x y

2
2 ( ) 2i r

associatedwith the state of the harmonic oscillator. Here α = α α−D eˆ ( ) *a aˆ ˆ†
is the displacement operator of

amplitudeα α α= + ir i. As gt grows, squeezing clearly builds up starting from the initial vacuum state, as seen
from the evident anisotropy of theWigner function. To illustrate such effect, we have picked up a few significant
instants of time. Panel(b) shows theWigner function corresponding to the firstminimumdisplayed in the
purple curve infigure 3(b). Panel(c) is for gt=70, when the dynamical degree of squeezing is the same as at the
steady state. Infigure 5we compare the purity of the oscillator when the feedback protocol is implementedwith
what is achieved in the absence of it. Clearly, the steady state of the oscillator has a higher purity when its
evolution is assisted by the reinitialised two-level system. Therefore, this analysis reinforces the idea that the
feedback-assisted protocol that we have devised progressively projects the state of the harmonic oscillator onto a
high-purity squeezed state.

Finally, we assess the effects that the bath temperature has on the squeezing performance. As in the zero-
temperature case, we observe that the feedback-assisted scheme is able to obtain results qualitatively similar to
those achieved through equation (2), even formoderate values of the detuning, where the nonassisted protocol
fails. In particular, the behaviour of the renormalized variance Δx̂R

2 is only slightly affected by the temperature of
the bath, which is evidence of the similarity of performance between the feedback-assisted scheme and the ideal
one, which is indeed independent of thn . Figure 6(a) shows de facto insensitivity to the bath temperature for any
value of <thn 0.5 and only small deviations from the zero-temperature case for larger values of such parameter.
Squeezing below the vacuum limit, on the other hand, can be achieved only for <thn 0.3, as observed in
figure 6(b).

Figure 3. (a): Steady-state variance Δ ssx̂ 2 obtained via the feedback protocol, against the corresponding time-step Δt written as a
fraction of the two-level systemperiod π ω≡T 2 a. The points corresponding to Δ =t T T, 2 are highlighted as they allow for optimal
squeezing. (b): Variance Δx̂1

2 in dB-scale against gt . The numerical simulation of the optimized feedback protocol (purple curve)
agrees with the analytical solution described by the effectiveHamiltonian eff̂ (blue dashed curve). The green curve, showing no
steady-state squeezing, illustrates the results of the numerical simulationwithout feedback. In both plots we have used =thn 0,
ω = g8a ,ω γ= = g0.1m .

Figure 4. Snapshots of the evolution of theWigner function corresponding to the state of the harmonic oscillator for =thn 0,
ω = g8a ,ω γ= = g0.1m , and gt=0 [panel(a)], 7 [(b)], and 70 [(c)].
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5. Analysis of the qubit survival probability

Aswe pointed out earlier, without the feedback loop, no steady-state squeezing can be achieved. Following the
discussionsmade earlier on theworking principles of our protocol, a significantfigure ofmerit for the
performance of the squeezingmechanism is embodied by the excited-state survival probability pe of the qubit.
This is plotted infigure 7 for four different values of thn . Thefigure reveals that, with our feedback-assisted
protocol, the probability of excitation of the qubit is always kept very close to 1, whereas it quickly fades when the
protocol is not used. Upon inspection of equation (3), we realize that for a qubit prepared in∣ 〉g , the harmonic
oscillator would be effectively squeezed in a direction opposite to that corresponding to the case of its
initialization in∣ 〉e . Therefore, if the qubit is notmaintained in its excited state, squeezing along opposite
directions in phase space is performed, leading to a steady state with largefluctuations in the quadratures. This
ultimately leads to thewashing out of the effectivemechanism.

More quantitatively, while for small values of thn (i.e., in cases such that quantum squeezing is expected at
steady state), the qubit survival probability is kept by the feedback protocol at values larger than 95%, a thermal
bath enforces lower values of such probability. As a consequence, no quantum squeezing is obtained.However,
the difference with the casewhere no feedback is implemented is evident, thus leaving room for
thermomechanical squeezing.

6. Conclusions

Wehave proposed a feedback-assisted protocol for the steady-state squeezing of a harmonic oscillator. The
protocol requires only a limited degree of control over the system, and is thus close to the current experimental
state of the art. Contrary to procedures based on the time-controlled interaction between the qubit and the

Figure 5.Weplot the purity of the state of the oscillator against the dimensionless interaction time gt. The green (purple) line is for the
dynamics of the oscillator without (with) feedback-assisted protocol. Other parameters are the same as in figure 4.

Figure 6. (a): Time evolution of the renormalized variance Δx̂R
2 in dB-scale when the feedback protocol is implemented andwith

ω γ= = g0.1m andω = g8a (solid lines). The oscillator is initialized in a thermal state with an average number of phonons equal to
the one of the corresponding thermal bath. Frombottom to top (considering the steady-state values): =thn {0.2, 0.3, 0.4, 1, 3, 5}.
Notice that the curves corresponding to the three lower values of thn are almost superimposed. The dashed blue line shows the time
evolution of Δx̂R

2 for the effectiveHamiltonian (its value does not depend on the number of thermal phonons thn ). (b): Time evolution
of the variance Δx̂1

2 in dB-scale when the feedback protocol is implemented, for the same values of the parameters characterizing the
system. Frombottom to top: =thn {0.2, 0.3, 0.4, 1, 3, 5}.
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oscillator, our proposal is resource efficient, as it is based on an always-on interaction that does not need to be
tuned. It is interesting to compare the performance of our scheme to the case of parametric driving and driven
dissipative architectures. The steady state of parametrically driven oscillators can be squeezed by, atmost, 3 dB
before entering self-oscillatory regimes [23].When compared to such limit, our scheme is found to perform very
well, achieving a steady-state reduction of Δ ∼x̂ 21

2 dB. At short evolution times, we can achieve values
surpassing this performance and comparingwell with schemes based on amplitudemodulation of the optical
driving ofmechanical devices [24]. The combination of continuous quantummeasurements and closed-loop
feedback operated on the oscillator [25], or the combination of detuned parametric driving and oscillator
positionmeasurements [26], can surpass the 3 dB steady-state bound (and thus beat our scheme). However, this
is achieved at the price of nearly ideal (quantumnondemolition)measurements and challenging feedback
mechanisms on the oscillator. Squeezing values well beyond the 3- dB limit can be achieved dynamically using
multi tone drivings and clever reservoir engineering [27], or squeezed drivings [28]. Such proposals require the
engineering of the environmental system, and it remains to be seenwhether replacing this pre-requisite with the
use of the feedbackmechanismdiscussed herewould actually ease the achievement ofmechanical squeezing.

While this point is best addressedwhen explicitly designing an experimental setup, and is thus beyond the
scope of the present proposal, wewould remark that our scheme can be applied to a range of experimental
situations, leaving at the same time room for interesting extensions addressing the area of dissipative quantum-
state engineering [29] of harmonicmotion, where one could achieve qubit-assisted squeezing in the state of the
oscillator.
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=thn {0, 0.2, 1, 3} [panels (a), (b), (c), and (d), respectively]. Other parameters have the same values as infigure 6. The numerical

simulationwith repeatedmeasurements (blue curve) keeps pe at large values at the steady state, thus enabling the squeezing of the
oscillator. Conversely, the purple curve (numerical simulationwithout repeatedmeasurements) shows a decreasing pe. The
corresponding steady state exhibits no squeezing.
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